地球动力学复习_2018-2019
- 格式:pptx
- 大小:1.01 MB
- 文档页数:52
专题强化三动力学图象和连接体问题、临界极值问题【专题解读】1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。
2.理解几种常见的临界极值条件。
3.会用极限法、假设法、数学方法解决临界极值问题。
题型一动力学中的连接体问题所谓连接体就是多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。
连接体一般具有相同的运动情况(速度、加速度)。
类型1同速连接体(如图)(1)特点:两物体通过弹力、摩擦力作用,具有相同速度和相同加速度。
(2)处理方法:用整体法求出a与F合的关系,用隔离法求出F内力与a的关系。
【例1】如图1所示,粗糙水平面上放置B、C两物体,A叠放在C上,A、B、C的质量分别为m、2m和3m,物体B、C与水平面间的动摩擦因数相同,其间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为F T。
现用水平拉力F拉物体B,使三个物体以同一加速度向右运动,则()图1A.此过程中物体C受五个力作用B.当F逐渐增大到F T时,轻绳刚好被拉断C.当F逐渐增大到1.5F T时,轻绳刚好被拉断D.若水平面光滑,则绳刚断时,A、C间的摩擦力为F T 6答案C解析对A受力分析,A受重力、支持力和向右的静摩擦力作用,由此可知C受重力、A对C的压力、地面的支持力、绳子的拉力、A对C的摩擦力以及地面的摩擦力六个力作用,故A错误;对整体分析,整体的加速度a=F-μ·6mg6m=F6m-μg,隔离对AC分析,根据牛顿第二定律得,F T-μ·4mg=4ma,计算得出F T=23F,当F=1.5F T时,轻绳刚好被拉断,故B错误,C正确;若水平面光滑,绳刚断时,对AC分析,加速度a=F T4m,隔离对A分析,A受到的摩擦力F f=ma=F T4,故D错误。
力的“分配协议”如图所示,一起做加速运动的物体系统,若外力F作用于m1上,则m1和m2的相互作用力F12=m2Fm1+m2,若作用于m2上,则F12=m1Fm1+m2。
地球动力学的基础原理和应用地球动力学是研究地球内部和外部功能、结构、过程和现象的学科。
这个学科旨在了解地球内部和外部的构成,分析它们的运动、能量、热和物质传输,以了解地球的演化历程、自然灾害的成因和预报,并为人类的生存和发展提供有益的信息。
地球动力学的基本原理地球动力学建立在物理学、化学、数学和地质学等学科的基础上。
其基本原理可以总结为三个方面:地球的内部组成结构、地球内部流体运动以及地球表面的地质变化。
1. 地球的内部组成结构地球是由地幔、地核、外核和地壳构成的。
地幔和地核是由固态岩石、液态金属和气体组成的,是地球内部的动力来源。
外核环绕着内核,由液态铁和镍组成。
地壳则是最外层,是人类所在的居住环境,使大气圈和水圈得以存在。
2. 地球内部流体运动地球内部存在着流体的运动,包括岩浆上升、下沉和地震等现象。
岩浆上升时形成火山,降落则会引发地震。
地震是大地运动的一种形式,是地球内部能量释放的结果。
这些地震能量释放过程称为地震波。
3. 地球表面的地质变化地球表面存在着地质变化,包括地壳板块移动和山脉构造。
地球上的大陆和海洋不断向周围环境移动,形成地壳板块。
过去数十亿年来,这种板块运动不断发生变化,形成了今天的世界版图。
同时,岩石、水和气体等物质的循环也是地球表面的重要变化。
地球动力学的应用地球动力学在许多方面都有广泛的应用。
其应用包括以下几个方面:1. 地震预测通过分析地球内部的流体运动和地幔的结构,科学家可以尝试预测地震。
这样就可以更好地保护人类生命和财产安全,为避免重大灾害提供帮助。
2. 矿产资源勘探和开发地球内部的化学物质和矿物资源对人类生产和生活产生着极大的影响。
通过地球动力学原理,我们可以了解地球内部的地质构造,预测矿产资源的分布情况,并通过合理的开发和利用更好地利用这些资源。
3. 可持续发展地球动力学可以指导我们建立可持续的社会和自然环境,促进人类经济、社会和环境的协调发展。
通过科技和社会的发展,可以最大限度地利用地球的资源,同时最大限度地减少负面影响。
北京四中20182019学年上学期高一年级期末考试物理试卷试卷满分为150分,考试时间为100分钟I卷(100分)一、单项选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项正确。
)1.在国际单位制中,以下表达正确的是A. 1N=1kg·m/sB. 1N=kg·m/s2C. 1N=kg·mD. 1N=kg·s【答案】B【解析】【分析】明确牛顿第二定律的内容,同时知道物理公式可同时对应单位的换算,从而明确牛顿与基本单位间的关系式。
【详解】力的单位是牛,根据牛顿第二定律F=ma可知:1N=1kg•m/s2,ACD错误、B正确。
故选:B。
【点睛】本题考查对力的单位的掌握情况,要注意明确物理公式同时对应了物理单位间的换算关系。
2.一根轻弹簧,受到20N的拉力时,伸长了2cm,如果施加10N的压力,则弹簧的压缩量为(弹簧始终在弹性限度范围内)A. 1cmB. 2cmC. 3cmD. 4cm【答案】A【解析】【分析】先据弹簧的伸长求出劲度系数,再利用胡克定律求压缩时,弹簧的弹力即可.【详解】由弹簧伸长时,据胡克定律得:当压缩时,压缩量为:,故A正确。
故选:A。
【点睛】此题考查的是弹簧的伸长与受到的拉力成正比的应用,在解决此类问题时,一定要清楚弹簧的“原长”、“伸长”和“长度”三者的区别和联系。
3.有2个力,它们的合力为0。
现把其中一个大小等于10N、方向向东的力改为向南(大小不变),则它们的合力A. 大小为10N,方向东偏南45°B. 大小为10N,方向西偏南45°C. 大小为10N,方向西偏南45°D. 大小为10N,方向东偏南45°【答案】C【解析】【分析】因物体两力而平衡,将一个正东10N的力改为正南方向,即可看成两个大小相等,相互垂直的两力的合成。
【详解】由题意知,两力的大小为10N,方向相互垂直,根据力的平行四边形定则,由勾股定理可得,合力大小为:;方向为两力夹角的角平分线上,即西偏南45°;故选:C。
高考纽横+糾f教学参考第50卷第1期2021年1月高考中动力学两类基本问题和临界极值问题李峥胡治宏朱兴强 (重庆求精中学重庆400015)文章编号:l 〇〇2-218X (2021)01-0058-04 中图分类号:G 632.4 文献标识码:B摘要:结合历年高考试题中动力学两类基本问题和临界极值问题,根据课程标准及能力考查要 求,重点分析了试题考查的内容和角度,解题的思路和方法,解题的疑点和难点,总结相关规律从 而提炼出相应的复习策略及方法。
关键词:动力学;复习备考;临界极值问题《普通高中物理课程标准(2017年版)》中,明 确指出要理解牛顿运动定律,能用牛顿运动定律解 释生产生活中的有关现象、解决有关问题。
解决动 力学两类基本问题和临界极值问题,就是要能利 用牛顿三大定律分析解决现实情境中的问题,通过 牛顿运动定律为知识载体,逐步形成运动与相互作 用观念,提升分析综合与创造性解决实际问题的 能力。
一、动力学两类基本问题动力学两类基本问题包含:①已知物体的受力 情况求运动情况;②已知物体的运动情况求受力情 况两种类型。
(一)两类基本问题的解题思路(如图1)牛顿第二定律运动学公式第一类问题受力情况L -------------运动情况^,x ,/第二类问题牛顿第二定律运动学公式图1基本思维流程:(1) 明确研究对象。
根据问题需要和解题方便,确定研究对象为单个物体或几个物体构成的系统。
(2)受力分析和运动状态分析。
画好受力示意图、运动情境图、明确物体的运动性质和运动过程。
(3) 建立坐标系。
通常沿加速度方向和垂直加 速度方向建立坐标系并以加速度方向为某一坐标轴的正方向。
(4)确定合外力。
若物体只受两个共点力作用,通常用合成法;若物体受到三个及以上不在同 一直线上的力,一般用正交分解法。
(5) 列方程求解。
根据牛顿第二定律列方程求解,必要时对结果进行讨论。
(二)近年全国卷考情分析(如表1)表1试题分布考向分析试题统计考查内容1. 题目注重情境的真实性、时代 性,强调理论联系实际。
2019届高考物理二轮复习第二章相互作用牛顿动动定律提能增分练(二)动力学四大模型之二——斜面1.如图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁。
若再在斜面上加一物体m,且M、m相对静止,此时小车受力个数为( )A.3 B.4 C.5 D.6解析:选B 先对物体m受力分析,受到重力、支持力和静摩擦力;再对M受力分析,受重力、m对它的垂直斜面向下的压力和沿斜面向下的静摩擦力,同时地面对M有向上的支持力,共受到4个力。
故B正确。
2.如图所示,质量为m带+q电荷量的滑块,沿绝缘斜面匀速下滑,当滑块滑至竖直向下的匀强电场区域时,滑块运动的状态为( )A.继续匀速下滑 B.将加速下滑C.将减速下滑 D.以上三种情况都可能发生解析:选A 滑块在电场中受力方向沿着电场线方向,即竖直向下,相当于滑块的重力变大了,因为滑块开始是匀速下滑的,则摩擦力大小等于滑块重力沿着斜面向下的分力的大小。
故滑块在斜面方向上的合力为零不改变,所以滑块继续匀速下滑。
只有A正确。
3.物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F,A中F 垂直于斜面向上,B中F垂直于斜面向下,C中F竖直向上,D中F竖直向下,施力后物块仍然静止,则物块所受的静摩擦力增大的是( )解析:选D 物块受重力、支持力及摩擦力处于平衡,A中当加上F后,物块仍处于平衡,则在沿斜面方向上物块平衡状态不同,而重力沿斜面向下的分力不变,故摩擦力不变;故A错误;同理B中摩擦力也不变,故B错误;C中加竖直向上的F后,F有沿斜面向上的分力,若物块有沿斜面向下的运动趋势,此时沿斜面向下的重力的分力与沿斜面向上的F 的分力及摩擦力平衡,故摩擦力将变小,故C错误;同理D中加竖直向下的力F后,F有沿斜面向下的分力,则沿斜面向下的力增大,故增大了摩擦力;故D正确。
4.(2017·四川双流中学模拟)如图,静止在水平面上的斜面体质量为M,一质量为m的物块恰能沿斜面匀速下滑,现对物块施加水平向右的拉力F,物块m仍能沿斜面运动。
高考物理复习两类动力学问题专题练习(含解析)动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。
查字典物理网整理了两类动力学问题专题练习,请大家练习。
一、选择题(在题后给的选项中,第1~4题只有一项符合题目要求,第5~9题有多项符合题目要求.)1.(2019年广州调研)静止在光滑水平面上O点的物体,从t=0时刻开始受到水平力作用,设向右为F的正方向,则物体()A.一直向左运动B.一直向右运动C.一直匀加速运动D.在O点附近左右运动【答案】B【解析】设物体质量为m,由图象可知,0~1 s内物体向右做匀加速直线运动,1 s末的速度v1=;1~2 s内物体以初速度v1=向右做匀减速直线运动,2 s末的速度v2=v1-=0;综上可知,物体会一直向右运动.选项B正确.2.质量为 2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()图K3-2-2A.18 mB.54 mC.72 mD.198 m【答案】B【解析】滑动摩擦力大小Fmg=4 N,则0~3 s物体静止,6~9 s物体做匀速直线运动,3~6 s和9~12 s做加速度相等的匀加速直线运动,加速度a=m/s2=2 m/s2.6 s末的速度v1=23 m/s=6 m/s,12 s末的速度v2=6 m/s+23 m/s=12 m/s.3~6 s发生的位移大小x1=3 m=9 m,6~9 s 发生的位移大小x2=63 m=18 m,9~12 s发生的位移大小x3=3 m=27 m,则0~12 s发生的位移大小x=x1+x2+x3=54 m,故选项B正确. 3.(2019年江苏卷)将一个皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t的图象,可能正确的是() A B C D【答案】C【解析】对皮球进行受力分析,受到竖直向下的重力、阻力作用,根据牛顿第二定律,知皮球在上升过程中的加速度大小a=,因皮球上升过程中速度v减小,加速度减小,当v=0时,加速度最终趋近一条平行于t轴的直线,选项C正确,A、B、D错误.4. (2019年河南模拟)2019年8月14日,中国乒乓球公开赛在苏州市体育中心体育馆拉开战幕,吸引了上千市民前往观看.假设运动员在训练中手持乒乓球拍托球沿水平面做匀加速运动,球拍与球保持相对静止且球拍平面和水平面之间的夹角为.设球拍和球质量分别为M、m,不计球拍和球之间的摩擦,不计空气阻力,则()A.运动员的加速度大小为gsinB.球拍对球的作用力大小为mgcosC.运动员对球拍的作用力大小为D.运动员对地面的作用力方向竖直向下【答案】C【解析】以乒乓球为研究对象,球受重力和球拍的支持力,不难求出球受到的合力为mgtan ,其加速度为gtan ,受到球拍的支持力为mg/cos ,由于运动员、球拍和球的加速度相等,选项A、B错误;同理运动员对球拍的作用力大小为(M+m)g/cos ,选项C正确;将运动员看做质点,由上述分析知道运动员在重力和地面的作用力的合力作用下产生水平方向的加速度,地面对运动员的作用力应该斜向上,由牛顿第三定律知道,运动员对地面的作用力方向斜向下,选项D 错误.5.(2019年黑龙江模拟)A、B两物块的质量分别为2 m和m, 静止叠放在水平地面上. A、B间的动摩擦因数为,B与地面间的动摩擦因数为.最大静摩擦力等于滑动摩擦力,重力加速度为 g.现对A施加一水平拉力F,则()图K3-2-4A.当 F mg时,A、B都相对地面静止B.当 F=mg时,A的加速度为gC.当 Fmg时,A相对B滑动D.无论F为何值,B的加速度不会超过g【答案】BCD【解析】当A、B刚要发生相对滑动时,A、B间的摩擦力达到最大静摩擦力,即f=2mg ,隔离B分析,根据牛顿第二定律得,23mg=ma,解得a=g.对整体分析,根据牛顿第二定律有:F-3mg=3ma,解得F=3mg.故当Fmg时,A、B发生相对滑动,故C正确;通过隔离B分析,知B的加速度不会超过g,故D正确;当F=mg时,A、B保持相对静止,对整体分析,加速度a===g,故B正确;当Fmg,知小于A、B之间的最大静摩擦力,则A、B不发生相对滑动,对整体分析,由于整体受到地面的最大静摩擦力fm=3mg=mg,知A、B不能相对地面静止,故A错误.6.(2019年潮州模拟)如图K3-2-5所示,一小车放在水平地面上,小车的底板上放一光滑小球,小球通过两根轻弹簧与小车两壁相连.当小车匀速运动时,两弹簧L1、L2恰处于自然状态.当发现L1变长、L2变短时,下列判断正确的是() 图K3-2-5A.小车可能正在向右做匀加速运动B.小车可能正在向右做匀减速运动C.小车可能正在向左做匀加速运动D.小车可能正在向左做匀减速运动【答案】BC【解析】L1变长,L2变短,小球受到L1向左的拉力和L2向左的弹力,合力方向向左,则加速度方向向左,选项B、C 正确.7.如图K3-2-6所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端的距离为L,稳定时绳与水平方向的夹角为,当传送带分别以v1、v2的速度做逆时针转动时(v1图K3-2-6A.F1C.t1一定大于t2D.t1可能等于t2【答案】BD【解析】皮带以不同的速度运动,物体所受的滑动摩擦力相等,物体仍处于静止状态,故F1=F2;物体在两种不同速度下运动时有可能先加速再匀速,也可能一直加速,故t1可能等于t2.8甲、乙两图都在光滑的水平面上,小车的质量都是M,人的质量都是m,甲图人推车、乙图人拉绳子(绳与轮的质量和摩擦均不计)的力都是F,对于甲、乙两车的加速度大小,下列说法正确的是()图K3-2-7A.甲车的加速度大小为B.甲车的加速度大小为0C.乙车的加速度大小为D.乙车的加速度大小为0【答案】BC【解析】对于甲,以人、车整体为研究对象,水平方向合力为零,由牛顿第二定律,得a甲=0;对于乙,水平方向整体受力为2F,再由牛顿第二定律,得a乙=,所以选项B、C正确.9.(2019年全国卷Ⅰ)2019年11月,歼15舰载机在辽宁号航空母舰上着舰成功.图K3-2-8(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度时间图线如图K3-2-8(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为1 000 m.已知航母始终静止,重力加速度的大小为g.则()图K3-2-8A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4~2.5 s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变【答案】AC【解析】速度时间图象中,图线与坐标轴所围图形的面积为物体的位移,所以可以计算飞机受阻拦时运动的位移约为x=700.4 m+(3.0-0.4)70 m=119 m,A正确;0.4 s到2.5 s时间内,速度时间图象的斜率不变,说明两条绳索张力的合力不变,但是两力的夹角不断变小,所以绳索的张力不断变小,B错;0.4 s到2.5 s时间内平均加速度约为a= m/s2=26.7 m/s2;C正确;0.4 s到2.5 s时间内,阻拦系统对飞机的作用力不变,飞机的速度逐渐减小,由P=Fv可知,阻拦系统对飞机做功的功率逐渐减小,D错.二、非选择题10.(2019年汕头模拟)一质量m=2.0 kg的小物块以一定的初速度冲上一倾角为37、足够长的斜面,某同学利用传感器测出小物块从一开始冲上斜面到往后上滑过程中多个时刻的瞬时速度,并用计算机作出了小物块上滑过程的速度-时间图象,如图K3-2-9所示,求:(已知sin 37=0.6,cos 37=0.8,g取10 m/s2)图K3-2-9(1)小物块冲上斜面过程中加速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块所到达斜面最高点与斜面底端的距离.【答案】(1)8 m/s2 (2)0.25 (3)4.0 m【解析】(1)由小物块上滑过程的速度时间图象,可得小物块冲上斜面过程中的加速度a==m/s2=-8 m/s2,加速度大小为8 m/s2.(2)对小物块进行受力分析如图所示,有mgsin 37+f=ma,FN-mgcos 37=0,f=FN.代入数据,得=0.25.(3)由图象知距离s=t=1.0 m=4.0 m.11.消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg、训练有素的消防队员从7楼(即离地面18 m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10 m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:(1)消防队员下滑过程中的最大速度;(2)消防队员下滑过程中杆对地面的最大压力;(3)消防队员下滑的最短时间.【答案】(1)12 m/s (2)2 900 N (3)2.4 s【解析】(1)消防队员开始阶段自由下落的末速度即为下滑过程的最大速度vm,有2gh1=v.消防队员受到的滑动摩擦力Ff=FN1=0.51 800 N=900 N.减速阶段的加速度大小a2==5 m/s2,减速过程的位移为h2,由v-v2=2a2h2,又h=h1+h2,以上各式联立,可得vm=12 m/s.(2)以杆为研究对象,得FN2=Mg+Ff=2 900 N.根据牛顿第三定律,得杆对地面的最大压力为2 900 N. (3)最短时间tmin=+=2.4 s.12.(2019年中山模拟)如图K3-2-10所示,一光滑斜面固定在水平地面上,质量m=1 kg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F.此后,物体到达C点时速度为零.每隔0.2 s通过速度传感器测得物体的瞬时速度,下表给出了部分测量数据. 图K3-2-10t/s 0.0 0.2 0.4 2.2 2.4 v/(ms-1) 0.0 1.0 2.0 3.3 2.1 试求:(1)斜面的倾角(2)恒力F的大小;(3)t=1.6 s时物体的瞬时速度.【答案】(1)37 (2)11 N (3)6.9 m/s【解析】(1)物体从A到B做匀加速运动,设加速度为a1. 则a1= m/s2=5 m/s2,若物体加速了2.2 s,则2.2 s末速度为11 m/s,由表格数据知2.2 s末的速度为3.3 m/s,故当t=2.2 s时,物体已通过B点.因此减速过程加速度大小a2= m/s2=6 m/s2,mgsin =ma2,解得=37.(2)由(1)知a1=5 m/s2,F-mgsin =ma1,解得F=11 N.(3)设第一阶段运动的时间为t1,在B点时有5t1=2.1+6(2.4-t1),t1=1.5 s.可见,t=1.6 s的时刻处在第二运动阶段,由逆向思维可得v=2.1 m/s+6(2.4-1.6) m/s=6.9 m/s.两类动力学问题专题练习及答案的内容就是这些,查字典物理网预祝考生取得更好的成绩。
2019-2020年高三物理第二轮专题复习专题一力和运动教案人教版一、考点回顾1.物体怎么运动,取决于它的初始状态和受力情况。
牛顿运动定律揭示了力和运动的关系,关系如下表所示:2.力是物体运动状态变化的原因,反过来物体运动状态的改变反映出物体的受力情况。
从物体的受力情况去推断物体运动情况,或从物体运动情况去推断物体的受力情况,是动力学的两大基本问题。
3.处理动力学问题的一般思路和步骤是:①领会问题的情景,在问题给出的信息中,提取有用信息,构建出正确的物理模型;②合理选择研究对象;③分析研究对象的受力情况和运动情况;④正确建立坐标系;⑤运用牛顿运动定律和运动学的规律列式求解。
4.在分析具体问题时,要根据具体情况灵活运用隔离法和整体法,要善于捕捉隐含条件,要重视临界状态分析。
二、经典例题剖析1.长L的轻绳一端固定在O点,另一端拴一质量为m的小球,现使小球在竖直平面内作圆周运动,小球通过最低点和最高点时所受的绳拉力分别为T1和T2(速度分别为v0和v)。
5求证:(1)T1-T2=6mg(2)v0≥gL证明:(1)由牛顿第二定律,在最低点和最高点分别有:T1-mg=mv02/L T2+mg=mv2/L由机械能守恒得:mv02/2=mv2/2+mg2L以上方程联立解得:T1-T2=6mg(2)由于绳拉力T2≥0,由T2+mg=mv2/L可得v≥gL5代入mv02/2=mv2/2+mg2L得:v0≥gL点评:质点在竖直面内的圆周运动的问题是牛顿定律与机械能守恒应用的综合题。
加之小球通过最高点有极值限制。
这就构成了主要考查点。
2.质量为M 的楔形木块静置在水平面上,其倾角为α的斜面上,一质量为m 的物体正以加速度a 下滑。
求水平面对楔形木块的弹力N 和摩擦力f 。
解析:首先以物体为研究对象,建立牛顿定律方程: N 1‘=mgcosα mgsinα-f 1’=ma ,得:f 1‘=m(gsinα-a) 由牛顿第三定律,物体楔形木块有N 1=N 1’,f 1=f 1‘然后以楔形木块为研究对象,建立平衡方程:N =mg +N 1cosα+f 1sinα=Mg +mgcos 2α+mgsin 2α-masinα =(M +m)g -masinαf =N 1sinα-f 1cosα=mgcosαsinα-m(gsinα-a)cosα=macosα 点评:质点在直线运动问题中应用牛顿定律,高考热点是物体沿斜面的运动和运动形式发生变化两类问题。