地球流体力学_浅水方程前八节相关公式的推导
- 格式:pdf
- 大小:339.76 KB
- 文档页数:24
流体力学基本方程的推导和应用流体力学是研究流体运动规律的学科,它的基础是一组基本方程。
这些方程描述了流体的质量守恒、动量守恒和能量守恒。
在本文中,我们将推导这些基本方程,并探讨它们在实际应用中的作用。
首先,我们来推导流体力学的质量守恒方程。
根据质量守恒定律,单位时间内通过某一截面的质量应该等于流入该截面的质量减去流出该截面的质量。
设流体的密度为ρ,流体在x方向上的速度为u,流体通过截面的面积为A,则单位时间内通过该截面的质量为ρuA。
假设流体在该截面上的流入速度为u,流出速度为u+Δu,则单位时间内流入该截面的质量为ρuA,单位时间内流出该截面的质量为ρ(Δu)A。
根据质量守恒定律,我们可以得到以下方程:ρuA - ρ(Δu)A = 0通过简化和除以Δt,我们可以得到质量守恒方程的微分形式:∂(ρuA)/∂t + ∂(ρu^2A)/∂x = 0接下来,我们来推导流体力学的动量守恒方程。
根据牛顿第二定律,流体的动量变化率等于作用在流体上的力。
设流体的密度为ρ,流体在x方向上的速度为u,流体在y方向上的速度为v,流体在z方向上的速度为w,则单位体积内的动量为ρu,ρv和ρw。
假设流体受到的力为Fx,Fy和Fz,则根据动量守恒定律,我们可以得到以下方程组:∂(ρu)/∂t + ∂(ρuv)/∂x + ∂(ρuw)/∂y + ∂(ρu^2)/∂x + ∂(ρuv)/∂y + ∂(ρuw)/∂z = Fx∂(ρv)/∂t + ∂(ρuv)/∂x + ∂(ρvw)/∂y + ∂(ρv^2)/∂y + ∂(ρvw)/∂z = Fy∂(ρw)/∂t + ∂(ρuw)/∂x + ∂(ρvw)/∂y + ∂(ρw^2)/∂z + ∂(ρvw)/∂z = Fz通过简化和除以Δt,我们可以得到动量守恒方程的微分形式:∂(ρu)/∂t + ∂(ρuv)/∂x + ∂(ρuw)/∂y + ∂(ρu^2)/∂x + ∂(ρuv)/∂y + ∂(ρuw)/∂z = Fx∂(ρv)/∂t + ∂(ρuv)/∂x + ∂(ρvw)/∂y + ∂(ρv^2)/∂y + ∂(ρvw)/∂z = Fy∂(ρw)/∂t + ∂(ρuw)/∂x + ∂(ρvw)/∂y + ∂(ρw^2)/∂z + ∂(ρvw)/∂z = Fz最后,我们来推导流体力学的能量守恒方程。
一、N-S 方程的推导过程1, 液体运动微分方程〔根据牛顿第二定律写出〕 2, 切应力的性质和大小 3, 动水压强的性质和大小 4, 由1.2.3推导出N-S 方程对于不可压缩液体所以:二、浅水方程的推导沿垂向方向积分连续方程:H=η+b z莱布尼兹公式:0)())(,()())(,(),(),()()()()(=∂∂-∂∂+∂∂=∂∂⎰⎰xx x x Q x x x x Q dy y x Q x dy y x Q xx x x xαββββαβα带入 ②yz z y x v y y x v udz y dz y v bb z zb b∂∂--∂∂-∂∂=∂∂⎰⎰--),,(),,(ηηηη③),,(),,(b zz y x w y x w dz zwb--=∂∂⎰-ηη深度平均 边界条件自由外表 河道底部X 方向的N-S 方程对于不可压缩的液体 所以可得 其中可以写成〔x 方向无质量力〕 对上式两边沿深度方向积分左边:① ②③④ ①t z z y x u t y x u udz t dz t u b b z zb b∂∂--∂∂-∂∂=∂∂⎰⎰--),,(),,(ηηηη②xz z y x u z y x u x y x u y x u dz u x dz x u b bb z z b b ∂∂---∂∂-∂∂=∂∂⎰⎰--),,(),,(),,(),,()()(22ηηηηη③yz z y x v z y x u y y x v y x u dz uv ydz y uv b b b z zbb∂∂---∂∂-∂∂=∂∂⎰⎰--),,(),,(),,(),,()()(ηηηηη④yzz y x v z y x u x z z y x u z y x u t z z y x u y y x v y x u x y x u y x u t y x u y z z y x v x z z y x u t z z y x u y y x v x y x u t y x u z y x w z y x u y x w y x u dz z uw bb b b b b b b bbb b b b b b z b ∂∂--+∂∂--+∂∂-+∂∂+∂∂+∂∂=∂∂--∂∂--∂∂---∂∂+∂∂+∂∂=---=∂∂⎰-),,(),,(),,(),,(),,(),,(),,(),,(),,(),,()),,(),,()(,,()),,(),,()(,,(),,(),,(),,(),,()(ηηηηηηηηηηηηηηηηη①②③④化简得:①②③①UH udz tbz=∂∂⎰-η②⎰⎰⎰⎰⎰⎰⎰--------∂∂+∂∂=⎥⎦⎤⎢⎣⎡-+-+∂∂=-+∂∂=∂∂ηηηηηηηb b b b b bbz z z z z zzdz U u xdz U x dz U u U dz U u dz U x dzU u U xdz u x222222)()(2)()( ③⎰⎰⎰⎰⎰⎰⎰⎰----------∂∂+∂∂=--∂∂+-∂∂+-∂∂+∂∂=-+-+∂∂=∂∂ηηηηηηηηbbbbbbbbzz zzzz zz dzV v U u yUVdz y dzV v U u ydz V v U yVdz U u xUVdz y dzV v V U u U xuvdz y))(())(()()())((左边最后等于dzV v U uydz U u xUVH y H U x UH t bbz z⎰⎰----∂∂+-∂∂+∂∂+∂∂+∂∂ηη))(()()()()(22右边由坐标变换水面的坡度很小,所以所以扩展到三维同样,对于河床底部)(,ητxz 和)(,b xz z -τ是沿水面方向的切应力和沿河床平面的切应力,可以表示为bx τ和by τ。
流体力学公式总结工程流体力学公式总结第二章 流体的主要物理性质❖ 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m2.重度 γ = G3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ =γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ =5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)TV V ∆∆=1αpV V ∆∆-=1κVPV K ∆∆-=κ1nA F d d υμ=dnd vμτ±=11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δ、直线运动惯性力Δ = Δm ·a离心惯性力Δ = Δm ·rω2 .2.质量力为F 。
:F = m · = m ()= = 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,为水平面,则单位质量力在x 、y 、 z 轴上的分量为0 , 0 , =式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即: p (),由此得静压强的全微分为:nv d /d τμ=z z p y y p x x p p d d d d ∂∂∂∂∂∂++=4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数积分得:U = + cd d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dUρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 + + = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
浅水方程的推导概述说明以及解释1. 引言1.1 概述本文旨在对浅水方程进行推导、概述和解释。
浅水方程是描述水波在近岸区域传播的重要数学模型,具有广泛的应用领域,包括海洋学和地质灾害研究等。
通过深入理解浅水方程的基本原理和数值方法,可以更好地理解和预测海洋及近岸区域的变化。
1.2 文章结构本文分为五个主要部分。
首先,引言部分将提供对整篇文章的总体概述,包括目的、结构和主要观点。
其次,我们将详细介绍浅水方程的推导过程,其中包括相关的流体力学基础知识、守恒方程与连续性方程以及声波与水波传播特性的说明。
然后,我们将对浅水方程进行概述,并探讨其在不同领域中的应用实例。
接下来,我们将比较传统数值方法和新兴数值方法对浅水方程求解过程进行简要介绍,并分析不同数值方法解释结果之间的差异。
最后,在结论与展望部分将对本文内容进行总结,并展望未来对浅水方程研究的可能发展方向。
1.3 目的本文的目的是提供读者对浅水方程的全面了解。
通过对浅水方程推导、概述与解释的详细介绍,读者可以更好地理解浅水方程模型,并掌握相关数值方法。
同时,本文也希望能够展示浅水方程在海洋学和地质灾害研究等领域中的实际应用,并为未来研究提供参考和展望。
通过阅读本文,读者将能够获得关于浅水方程及其应用领域的全面知识,并为进一步研究和实践奠定基础。
2. 浅水方程的推导:2.1 水流动力学基础知识在介绍浅水方程之前,我们首先需要了解一些水流动力学的基础知识。
水流动力学是研究液体在各种运动状态下的行为和规律的科学。
它包括了流体的动力学和静力学两个方面。
其中,动力学主要关注于描述液体运动时产生的压力、速度和加速度等参数,而静力学则研究液体处于平衡状态时的压强分布及其变化。
2.2 守恒方程与连续性方程的简介守恒方程是描述流体在空间中某一区域内各种物理量守恒的数学表达式。
其中最基本也是最重要的一个守恒方程就是质量守恒方程,也称为连续性方程。
连续性方程表达了质量在空间中不断传递和积累的原理,通常用偏微分形式表示。
关于N-S 方程的推导1.切向应力互等定律将作用与六面体上的所有表面力和质量力得对通过六面体中心点M 且与Z 轴平行的轴线取矩。
dy y∂∂+yxyx ττxyτ dy •Mdx xxy∂∂+ττxy dx yx τ222xy )(dx dx dx d d d M d d d d d d d d zy x x yx z y xy z x y y yxyx z y x yx ⎪⎪⎪⎪⎭⎫ ⎝⎛++++-∂∂∂∂∑-=ττττττ (1) 根据转动定律有Ja M =∑ (2)2)(d d d d J rzyxρ= (3)J-流体微团对通过中心点M 且与Z 轴平行的轴的转动惯量,kg.2ma -角加速度,1/sdr -转动惯量半径。
m合并(1)(2)(3)的a dr d d d d d d d y d x d d d zyxzyxyyxxyxzyxyxxy2)(2)()(ρττττ=∂∂-∂∂+-(4)ττττττττzxxzzyyzyx xy zyxyxxyd d d ====-0)( (5)2.广义牛顿内摩擦定律dydxμτ=θ∆ B C 'BA D 'A剪变形角速度。
用{}z y x γγγ,,表示流体微团在yz 面、xz 面、xy 面内某一直角在单位时间内改变量的一半则有⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂+∂∂=∂∂+∂∂=)(21)(21)(21x y x z z y yxzzxyyzxυυγυυγυυγ (6)剪变形角速度是流体微团中某一直角的减小速度的一半,下标XYZ 表示剪切变形的法线方向其中γ的下标与偏微分方向可以按 zX y 的顺序。
根据(6)式可知,其中垂直于Z 轴的平面上的角变形速度为yx xyz∂∂+∂∂=υυγ2 (7)因此,切向应力μγττ2xy== (8)由牛顿内摩擦定律和(6)(7)(8)式可以得⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂==∂∂+∂∂==∂∂+∂∂==)()()(z x z y x xzzxxzyzzyyzyy xyxxyυυμττυυμττυυμττ(9)⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+-=∂∂+-=∂∂+-=z p y p x p zzzyyy xxx υμσυμσυμσ222 (10)3.不可压流体的连续方程0=∂∂+∂∂+∂∂zy x zyxυυυ (11) 4.N-S 方程的推导 由牛顿第二定律a Fm =即质量力+表面力=加速度×质量(先研究X 方向)dtd dxdydzdxdy z dxdy dzdx dy y dzdxdydz dx xdydz dxdydz f xzxzxzxyxyxyxxxxxxxxυρττττττσσσρ=∂∂++-∂∂++-∂∂++-)()()( (12) 整理方程得dtd z y x f xzxyxxxxυττσρ=∂∂+∂∂+∂∂+)(1 (13) 同理可得Y Z 方向dtd y x z f dtd x z y f zyzxzzzxyxyzyyyyυττσρυττσρ=∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+)(1)(1 (14)将切向应力和法向应力的关系式(9)(10)代入(13)得)()(1}21222222zy x x z y x x p f x xz z y x y x p x f dt d zy x x x x x z x x y x x x ∂∂+∂∂+∂∂∂∂+∂∂+∂∂+∂∂+∂∂-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂+-⎩⎨⎧∂∂+=υυυρμυυυρμρυυμυυμυμρυ (15)根据不可压流体的连续方程(11),上面(15)等号右端的第四项为零,故得⎪⎭⎫⎝⎛∂∂+∂∂+∂∂+∂∂-=2222221d y y x x p fx dt xxxxυυυνρυ (16) 同理可得)(1)(1222222222222zy x fz dt d zy x fy dt d zzzzyyyy∂∂+∂∂+∂∂+-=∂∂+∂∂+∂∂+-=υυυνρυυυυνρυ (17)这就是 N-S 方程3.N-S 方程的物理意义和几何意义基于N-S 方程的水泵管道动态分析一.工程实际问题的描述在管道运输过程中,管道存在各种非恒定定流动,水泵运行时也面临各种各样的暂态过程,这些暂态过程会对水泵及水泵站的经济及安全造成一定的影响。
流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。
今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。
1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。
这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。
你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。
比如,水管里流动的水,流量是一定的。
如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。
你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。
2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。
它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。
2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。
在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。
想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。
3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。
简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。
流速快的地方,压力就低;流速慢的地方,压力就高。
这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。
3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。
流体力学NS方程简易推导过程小菜鸟0 引言流体力学的NS方程对于整个流体力学以及空气动力学等领域的作用非常显著,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。
1 基本假设空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。
不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。
自然界中宏观情况的流体运动毕竟占据大多数,NS方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。
连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。
连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS 方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS 方程也适用于描述湍流。
有些情况下连续介质假设不成立,存在哪些情况?第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。
计算浅水动力学
浅水动力学是一门研究浅海洋流动的力学学科。
它主要研究海洋中的流体运动、波浪、潮汐等现象,对于海洋环境的研究和海洋工程的设计都有着非常重要的意义。
浅水动力学的基本方程式是二维浅水方程,它描述了水流与波浪在水深远小于波长的情况下的运动规律。
这个方程式非常重要,因为它不仅可以用于研究海洋中的流体运动,还可以用于研究河流、湖泊等自然水域中的流体运动。
二维浅水方程的形式如下:
∂h/∂t + ∂(hu)/∂x + ∂(hv)/∂y = 0
∂(hu)/∂t + ∂(hu^2/h + 1/2gh^2)/∂x + ∂(huv)/∂y = −gh(∂h/∂x)
∂(hv)/∂t + ∂(huv)/∂x + ∂(hv^2/h + 1/2gh^2)/∂y = −gh(∂h/∂y)
其中h表示水深,u和v分别表示水流在x和y方向上的速度,g表示重力加速度,t表示时间,x和y表示空间坐标。
通过对这个方程式进行求解,可以得到流体在不同条件下的运动规律。
例如,在研究海洋中的海浪时,可以将海浪看作一种扰动,通过对方程式进行线性化处理,得到了著名的线性波浪理论。
这个理论可以用来描述海浪的传播、反射、折射等现象。
除了线性波浪理论之外,还有很多其他的浅水动力学理论。
例如,非线性波浪理论可以用来研究海洋中的大浪和风浪;潮汐理论可以用来研究潮汐现象;海流理论可以用来研究海洋中的水流等。
总之,浅水动力学是一门非常重要的学科,它对于我们了解海洋环境、保护海洋生态、设计海洋工程等都有着至关重要的作用。
流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。
流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。
在流体力学的研究中,有一些重要的计算公式被广泛应用。
下面将介绍一些常见的流体力学计算公式。
1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。
这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。
流体力学计算公式1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghAA p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh gp p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1)10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,v gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρ?ρ?ρχ?====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
精心整理流体力学NS 方程简易推导过程小菜鸟0引言流体力学的NS 方程对于整个流体力学以及空气动力学等领域的作用非常显着,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS 方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。
1例会为0子,以至于,这设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。
在层流边界层情况下,分子平均运动自由程与边界层之间存在近似关系:从这个关系中,可以发现,当马赫数非常大但是同时雷诺数非常小的时候,流场微小尺度才可能达到分子平均运动自由程lmd的程度。
可以想象一下,在大多数我们能观察到的情况下,上述公式的结果都是非常小的,满足连续介质假设,这个公式不成立的情况在大气层外边缘,此时大气分子之间平均动量交换降低,导致粘性变得非常小,雷诺数很高,因此公式计算结果急剧降低,导致连续介质假设失效。
前面讨论了连续介质建设成立的条件以及不成立的例子,下面讨论的都是连续介质假设范围内的结果。
2连续性方程:质量守恒定律的流体表达(1=0v⋅或者1=-Dvρρ∇⋅(23体积+控制体体其中根据引论1和引论2,可知方程左边具有两种偏导数表达形式,(1)微元体表达形式:根据引论2,上式左边具有这两种偏导数表达形式(一种根据定义,一种引入质量守恒关系):(2)张量表达形式:根据引论2,上式左边具有两种偏导数表达形式(一种定义,一种引入质量守恒):(3)补充说明1:粘性应力表达式上述公式中,我们将表面力表达为表面压力+粘性力的形式,其中表面压力为法向力,粘性力由流体粘性引起,包括法向力和切向力,根据各项同性假设,粘性应力张量可以表达为:其中,\miu称为动力粘性系数。
关于N-S 方程的推导1.切向应力互等定律将作用与六面体上的所有表面力和质量力得对通过六面体中心点M 且与Z 轴平行的轴线取矩。
yx222xy )(dx dx dx d d d M d d d d d d d d zy x x yx z y xy z x y y yxyx z y x yx ⎪⎪⎪⎪⎭⎫ ⎝⎛++++-∂∂∂∂∑-=ττττττ (1) 根据转动定律有Ja M =∑ (2)2)(d d d d J rzyxρ= (3)J-流体微团对通过中心点M 且与Z 轴平行的轴的转动惯量,kg.2ma -角加速度,1/sdr -转动惯量半径。
m合并(1)(2)(3)的a dr d d d d d d d y d x d d d zyxzyxyyxxyxzyxyxxy2)(2)()(ρττττ=∂∂-∂∂+-(4)ττττττττzxxzzyyzyx xy zyxyxxyd d d ====-0)( (5)2.广义牛顿内摩擦定律dydxμτ=剪变形角速度。
用{}z y x γγγ,,表示流体微团在yz 面、xz 面、xy 面内某一直角在单位时间内改变量的一半则有⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂+∂∂=∂∂+∂∂=)(21)(21)(21x y x z z y yxzzxyyzxυυγυυγυυγ (6)剪变形角速度是流体微团中某一直角的减小速度的一半,下标XYZ 表示剪切变形的法线方向其中γ的下标与偏微分方向可以按 zX y 的顺序。
根据(6)式可知,其中垂直于Z 轴的平面上的角变形速度为yx xyz∂∂+∂∂=υυγ2 (7)因此,切向应力μγττ2xy== (8)由牛顿内摩擦定律和(6)(7)(8)式可以得⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂==∂∂+∂∂==∂∂+∂∂==)()()(z x z y x xzzxxzyzzyyzyy xyxxyυυμττυυμττυυμττ(9)⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+-=∂∂+-=∂∂+-=z p y p x p zzz yyy xxx υμσυμσυμσ222 (10)3.不可压流体的连续方程0=∂∂+∂∂+∂∂zy x zyxυυυ (11) 4.N-S 方程的推导 由牛顿第二定律a Fm =即质量力+表面力=加速度×质量(先研究X 方向)dtd dxdydzdxdy z dxdy dzdx dy y dzdxdydz dx xdydz dxdydz f xzxzxzxyxyxyxxxxxxxxυρττττττσσσρ=∂∂++-∂∂++-∂∂++-)()()( (12) 整理方程得dtd z y x f xzxyxxxxυττσρ=∂∂+∂∂+∂∂+)(1 (13)同理可得Y Z 方向dtd y x z f dtd x z y f zyzxzzzxyxyzyyyyυττσρυττσρ=∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+)(1)(1 (14)将切向应力和法向应力的关系式(9)(10)代入(13)得)()(1}21222222zy x x z y x x p f x x z z y x y x p x f dt d zy x x x x x z x x y x x x ∂∂+∂∂+∂∂∂∂+∂∂+∂∂+∂∂+∂∂-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂+-⎩⎨⎧∂∂+=υυυρμυυυρμρυυμυυμυμρυ (15)根据不可压流体的连续方程(11),上面(15)等号右端的第四项为零,故得⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+∂∂-=2222221d y y x x p fx dt xxxxυυυνρυ (16) 同理可得)(1)(1222222222222zy x fz dt d zy x fy dt d zzzzyyyy∂∂+∂∂+∂∂+-=∂∂+∂∂+∂∂+-=υυυνρυυυυνρυ (17)这就是 N-S 方程3.N-S 方程的物理意义和几何意义基于N-S 方程的水泵管道动态分析一.工程实际问题的描述在管道运输过程中,管道存在各种非恒定定流动,水泵运行时也面临各种各样的暂态过程,这些暂态过程会对水泵及水泵站的经济及安全造成一定的影响。
流体力学NS 方程简易推导过程小菜鸟0 引言流体力学的NS 方程对于整个流体力学以及空气动力学等领域的作用非常显著,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。
1 基本假设空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。
不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。
自然界中宏观情况的流体运动毕竟占据大多数,NS 方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。
连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。
连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS方程也适用于描述湍流。
有些情况下连续介质假设不成立,存在哪些情况?第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。
流体主要计算公式主要的流体力学事件有:•1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。
•1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。
•1781年拉格朗日首先引进了流函数的概念。
•1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。
•1876年雷诺发现了流体流动的两种流态:层流和紊流。
•1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。
•19世纪末,相似理论提出,实验和理论分析相结合。
•1904年普朗特提出了边界层理论。
•20世纪60年代以后,计算流体力学得到了迅速的发展。
流体力学内涵不断地得到了充实与提高。
理想势流伯努利方程(3-14)或(3-15)物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C均相等。
(应用条件:“”所示)符号说明物理意义几何意义单位重流体的位能(比位能)位置水头单位重流体的压能(比压能)压强水头单位重流体的动能(比动能)流速水头单位重流体总势能(比势能)测压管水头总比能总水头二、沿流线的积分1.只有重力作用的不可压缩恒定流,有2.恒定流中流线与迹线重合:沿流线(或元流)的能量方程:(3-16)注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。
一般不同流线各不相同(有旋流)。
(应用条件:“”所示,可以是有旋流)流速势函数(势函数)观看录像>>•存在条件:不可压缩无旋流,即或必要条件存在全微分dϕ直角坐标(3-19)式中:ϕ——无旋运动的流速势函数,简称势函数。
•势函数的拉普拉斯方程形式对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:或(3-20)适用条件:不可压缩流体的有势流动。
流体力学NS方程简易推导过程小菜鸟0 引言流体力学的NS方程对于整个流体力学以及空气动力学等领域的作用非常显著,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。
1 基本假设空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。
不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。
自然界中宏观情况的流体运动毕竟占据大多数,NS方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。
连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。
连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS 方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS 方程也适用于描述湍流。
有些情况下连续介质假设不成立,存在哪些情况?第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。
流体力学N S方程推导过程It was last revised on January 2, 2021流体力学N S方程简易推导过程小菜鸟0 引言流体力学的NS方程对于整个流体力学以及空气动力学等领域的作用非常显着,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。
1 基本假设空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。
不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。
自然界中宏观情况的流体运动毕竟占据大多数,NS方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。
连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。
连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS方程也适用于描述湍流。
有些情况下连续介质假设不成立,存在哪些情况第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。
1. 浅水方程推导将三维的基本方程沿水深积分平均,即可得到沿水深平均的平面二维流动基本方程。
定义水深为0H Z ζ=-, ζ、0Z 为基准面下液面水位和河床高程x定义沿水深平均流速i U 为:01i i z U u dz Hζ=⎰引用莱布尼兹公式abbabaiiiifb a f dz dz f f x x x x ∂∂∂∂=+-∂∂∂∂⎰⎰自由表面及底部运动学条件0000z x y z z z zxyz z z z z z d u u u dt t xyd z z z z u u u dt t xyζζζζζζζ======∂∂∂==++∂∂∂∂∂∂==++∂∂∂以x 方向为例三维流动的运动方程沿水深平均为02222221()()()()0y x x z x x x y x z t z u u u u pu u u u u u dz t x y z x x y z ζυρ⎡⎤∂∂∂∂∂∂∂∂++++-++=⎢⎥∂∂∂∂∂∂∂∂⎢⎥⎣⎦⎰非恒定项积分00000x x x x z z z z z x x xz z z u z dz u dz u u t t t t HU z u u t t tζζζζζζ====∂∂∂∂=-+∂∂∂∂∂∂∂=-+∂∂∂⎰⎰对流项积分首先将时均流速分解为i i i u U u =+∆,式中i U 为垂线平均流速,i u ∆为时均流速i u 与垂线平均流速i U 的差值。
0000x x x x x xx xz z z z z u u z dz u u dz u u u u x x x xζζζζ==∂∂∂∂=-+∂∂∂∂⎰⎰()()(2)x x x x x x z z x x x x x x z x x x x xx x xz u u dz U u U u dzU U u u U u dzHU U u u dz HU U ζζζζβ=+∆+∆=+∆∆+∆=+∆∆=⎰⎰⎰⎰式中,01x x z xxx xu u dz HU U ζβ∆∆=+⎰,是由于流速沿垂线分布不均匀而引入的修正系数,类似于水力学中的动量修正系数,其数值一般在 1.02—1.05,可以近似取1.0,因此00x x x x x xx x z z z z u u HU U z dz u u u u x x xxζζζ==∂∂∂∂=-+∂∂∂∂⎰类似,可以得到x y x yx y x y z z z z u u HU U z dz u u u u yyyyζζζ==∂∂∂∂=-+∂∂∂∂⎰00x zx zx zz z z z u u dz u u u u x ζζ==∂=-∂⎰上几式相加,并利用底部及自由表面运动学条件可得0()()()x x x x y x z z x yx x x u u u u u u u dz t x y z HU U HU HU U t x yζ⎡⎤∂∂∂∂+++⎢⎥∂∂∂∂⎣⎦∂∂∂=++∂∂∂⎰压力项积分000z z z z z z p dz pdz p p x x x x ζζζζ==∂∂∂∂=-+∂∂∂∂⎰⎰(莱布尼茨公式) 将()p g z ρζ=-代入上式后化简得:00z z p H dz gH gH gH x x x xζζρρρ∂∂∂∂=+=∂∂∂∂⎰ 扩散项积分022222222222[()]()cos y x x x a z t t w z u u HU HU u dz g C x y z x y ζρννωβρ∂∂∂∂∂++=+-∂∂∂∂∂⎰上式右边后两项分别为由底部创面阻力和表面风阻力引起的阻力项。