导数的单调性与极值题型归纳
- 格式:doc
- 大小:77.00 KB
- 文档页数:6
第5讲 导数研究函数单调性5种题型总结【考点总结】 含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根; (4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间; 【题型目录】题型一:导函数为一次函数型 题型二:导函数为准一次函数型 题型三:导函数为二次可分解因式型 题型四:导函数为二次不可因式分解型 题型五:导函数为准二次函数型 【典型例题】题型一:导函数为一次函数型【例1】(2023河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性; 【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a xf x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递; ②当0a >时,令()0f x '>,得02a x <<;令()0f x '<,得2a x >, 所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减; 【例2】(2022·辽宁营口·高二期末)已知函数()ln 1f x a x x =+-(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析【分析】(1)求出原函数的导函数,然后对a 分类求得函数的单调区间; 【详解】(1)()x af x x+'=,,()0x ∈+∞, 当0a ≥时,()0f x '>,()f x ∴在(0,)+∞单调递增, 当0a <时,令()0f x '=,得x a =-, (0,)x a ∈-时,()0f x '<,()f x 单调递减,(,)x a ∈-+∞时,()0,()f x f x '>单调递增;综上:0a ≥时,()f x 在(0,)+∞上递增,无减区间,当0a <时,()f x 的单调递减区间为(0,)a -,单调递增区间为(,)a -+∞;【例3】(2022·江西·二模(文))己知函数()()R a x ax x f ∈++=1ln ,讨论()f x 的单调性。
第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。
导数的应用(单调性与极值)一、求函数单调区间1、函数y=x y—3x的单调递减区间是_______________2、函数/U)=(x—3)"的单调递增区间是____________3、函数金) = hu—Q(“>0)的单调递增区间为()A.(0,》B. 十8)B. C. (— 8, » D. (— 8, “)4、函数y=x—2shu・在(0,2町内的单调增区间为_____5、求函数/(A)=A(e v—1)—y的单调区间.6、已知函数/(x)=-+x+(6/ — l)ln A + 15«,其中“<0,且—1.讨论函数夬尤)的单调性.二、导函数图像与原函数图像关系导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率导函数大小决定原函数陡峭平缓1、若函数y=f(x)的导函数在区间R/, h ]上是增函数,则函数 >=心)在区间[⑺切上的图象可能是()2、若函数y=f(x)的导函数在区间饲上是先增后减的函数,则函数y=J(x)在 区间[g b ]上的图象可能是()4、函数/(x)的导函数f (x)的图象,如图所示,则(B. x=0是极小值点 D.函数人劝在(1,2)上单增三. 恒成立问题 1、已知函数f (x)二x'-;x~+bx+c.若f(x)在(-8, +oo)上是增函数,求b 的取x=\是最小值点C. x=2是极小值点3、设曲线y =工+1在其任一点(X,刃处切线斜率为g(x),则函数y=g(x)・cos x值范围;72、已知函数/(x) = 4x+av2-|x3(xeR)在区间[-1,1]上是增函数,求实数a的取值范围.3、若函数)'=丘_亦+4在(02)内单调递减,则实数"的取值范亂4、已知函数f(x)=ax-\nx,若/⑴>1在区间(1, +~)rt恒成立,实数。
的取值范围。
四. 极值的应用U 若 ynalnx+bF+x 在 x=l 和 x=2 处有极值,则,b= ---------------------- 2、当函数y=x ^取极小值时,x=() A •需 B ・-珏 C. ~ln2 D. In2 3、函数用)=丘一3加+3方在(0,1)内有极小值,则( )A. 0<b<lB. XIC. h>0D. /?<|r 34、函数)=专+/ — 3兀一4在[0,2]上的最小值是(5、已知函数f(x) = — x 3 + 3A 2+9%+«.A. 17 B. 10 TC. -4D. 64 T⑴求・ZU)的单调递减区间:⑵若用)在区间[一2,2]上的最大值为20,求它在该区间上的最小值.6、设函数/U) = 2v3+3+3+8c在x= 1及x=2时取得极值. ⑴求°、b的值;(2)若对任意的•胆[0,3],都有/(x)vc2成立,求c的取值范围.7、若函数J[x)=x i-3x+a有三个不同的零点,则实数。
导数的应用-单调性、极值与最值10大题型导数与函数是高中数学的核心内容,高考中经常在函数、导数与不等式等模块的知识交汇处命题,形成层次丰富的各类题型,常涉及的问题有利用导数解决函数的单调性、极值和最值;与不等式、数列、方程的根(或函数的零点),三角函数等问题。
此类问题体现了分类讨论、数形结合、转化与化归等数学思想,重点考查学生的数形结合能力,处理综合性问题的能力和运算求解能力。
本题考试难度大,除了方法与技巧的训练,考生在复习中要注意强化基础题型的解题步骤,提高解题熟练度。
一、导数与函数的单调性相关问题及解决方法1、求函数单调区间的步骤(1)确定函数()f x 的定义域;(2)求()f x '(通分合并、因式分解);(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.2、已知函数的单调性求参数(1)函数()f x 在区间D 上单调增(单减)⇒)(00)(≤≥'x f 在区间D 上恒成立;(2)函数()f x 在区间D 上存在单调增(单减)区间⇒)(00)(<>'x f 在区间D上能成立;(3)已知函数()f x 在区间D 内单调⇒)(x f '不存在变号零点(4)已知函数()f x 在区间D 内不单调⇒)(x f '存在变号零点3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。
二、利用导数求函数极值的方法步骤(1)求导数()f x ';(2)求方程()0f x '=的所有实数根;(3)观察在每个根x 0附近,从左到右导函数()f x '的符号如何变化.①如果()f x '的符号由正变负,则0()f x '是极大值;②如果由负变正,则0()f x '是极小值.③如果在()0f x '=的根x =x 0的左右侧()f x '的符号不变,则不是极值点.三、函数的最值与极值的关系1、极值是对某一点附近(即局部)而言,最值时对函数的定义区间[,]a b 的整体而言;2、在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);3、函数()f x 的极值点不能是区间的端点,而最值点可以是区间的端点;4、对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得。
考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
导数及其应用题型一:求解导数中的切线问题题型二:利用导数研究函数的单调性1、求不含任何参数的函数的单调区间2、求含参函数的单调区间3、根据函数的单调性求参数的取值范围 常考题型 题型三:利用导数研究函数的极值1、求函数的极值(含参与不含参);2、已知函数的极值求参数题型四:导数与零点题型五:导数中的恒成立问题题型六:利用导数证明不等式题型七:有关隐零点的导数题题型一:求解导数中的切线问题1、已知曲线C :y =ln x x. (1)求曲线C 在点(1,0)处的切线l 1的方程;(2)求过原点与曲线C 相切的直线l 2的方程.2、若直线1y x =+与函数()ln f x ax x =-的图像相切,则a 的值为 .题型二:利用导数研究函数的单调性:1、求不含任何参数的函数的单调区间2、求含参函数的单调区间3、根据函数的单调性求参数的取值范围1、求函数3()4ln f x x x x=--的单调区间2、设函数()(1)ln(1)f x ax a x =-++其中1a ≥-,求()f x 的单调区间。
3、若函数21()ln 2f x x x x tx =+++在定义域内递增,求实数t 的范围。
题型三:利用导数研究函数的极值:1、求函数的极值(含参与不含参);2、已知函数的极值求参数例1、求函数2()ln 1f x x x x =--+的极值例2、求函数23212()=33f x a x ax -+,0a >在[1,1]-上的极值例3、已知函数322()3f x x ax bx a =+++在1x =-时有极值0,求,a b思路点拨:求定义域→求导→令'(1)0(1)0f f -=⎧⎨-=⎩→求得,a b →检验变式1:已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.变式2:已知函数32()132x a f x x x =-++在区间1(,3)2上有极值点,求实数a 的取值范围。
第11讲 导数中极值的5种常考题型总结【考点预测】 知识点一:极值 1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.①0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 【题型目录】题型一:求函数的极值与极值点 题型二:利用导函数图像判断极值 题型三:根据极值、极值点求参数的值 题型四:根据极值、极值点求参数的范围 题型五:证明函数存在极值点极值问题 【典型例题】题型一:求函数的极值与极值点 【方法总结】利用导数求函数极值的步骤如下: (1)求函数()f x 的定义域; (2)求导;(3)解方程()00f x '=,当()00f x '=; (4)列表,分析函数的单调性,求极值:①如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值; ①如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值【例1】(2022·全国·高二课时练习)“()00f x '=”是“函数()f x 在0x x =处有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例2】(2022石泉县石泉)函数()2x x f x e=的极小值为( )A .0B .1eC .2D .24e【例3】(2022·北京大兴·高二期中)已知函数21f x x x ,则( )A .()f x 有极小值,无极大值B .()f x 有极大值,无极小值C .()f x 既有极小值又有极大值D .()f x 无极小值也无极大值【例4】(2022·全国·高三专题练习)函数()3211y x =-+在1x =-处( )A .有极大值B .无极值C .有极小值D .无法确定极值情况【例5】(2023·全国·高三专题练习多选题)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极小值点,以下结论一定正确的是( ) A .0x 是()f x 的最小值点 B .0x 是()f x -的极大值点 C .0x -是()f x -的极大值点 D .0x -是()f x --的极大值点【例6】(2022全国·高二期末)已知函数()c bx ax x x f +++=23,下列结论中错误的是( )A .存在R x ∈,使得()0=x fB .若0==c a ,则函数()x f y =的图像是中心对称图形C .若0x 是()x f 的极小值点,则()x f 在区间()0,x ∞-上单调递减D .若0x 是()x f 的极值点,则()00='x f【例7】(2023·全国·高三专题练习)已知函数()f x 的导函数()()()()324123f x x x x x '=---,则下列结论正确的是A .()f x 在0x =处有极大值B .()f x 在2x =处有极小值C .()f x 在[]1,3上单调递减D .()f x 至少有3个零点【例8】(2022·浙江·高二期中)下列关于极值点的说法正确的是( ) A .若函数()f x 既有极大值又有极小值,则该极大值一定大于极小值 B .2()1f x x x =++在任意给定区间[,]a b 上必存在最小值 C .()||f x x =-的最大值就是该函数的极大值D .定义在R 上的函数可能没有极值点,也可能存在无数个极值点【题型专练】1.(2023·全国·高三专题练习)已知函数()e 1x f x x-=,则( )A .()f x 在()0,∞+上为增函数B .()f x 在()0,∞+上为减函数C .()f x 在()0,∞+上有极大值D .()f x 在()0,∞+上有极小值2.(2022·全国·高三专题练习)函数21()(1)x f x x e +=-(e 为自然对数的底数),则下列说法正确的是( ) A . ()f x 在R 上只有一个极值点 B .()f x 在R 上没有极值点 C .()f x 在0x =处取得极值点 D .()f x 在1x =-处取得极值点3.(2022·全国·高二课时练习)若函数3()ln f x x x =,则( ) A .既有极大值,也有极小值 B .有极小值,无极大值 C .有极大值,无极小值 D .既无极大值,也无极小值4.(2022·全国·高三专题练习)设()21cos 2=+f x x x ,则函数()f x ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值5.(2018·云南·红河县第一高二期末(文))已知函数()3269f x x x x =-+,则下列结论中错误的是( )A .0x R ∃∈,()00f x =B .函数()y f x =的图像是中心对称图形C .3x =是函数()y f x =的极大值点D .函数()y f x =在区间()1,3单调递减6.(2022·河南·高二阶段练习(理))已知函数()3x x f x e=,那么( )A .()f x 有极小值,也有大极值B .()f x 有极小值,没有极大值C .()f x 有极大值,没有极小值D .()f x 没有极值7.(2022·福建·厦门外国语高二期末多选题)已知函数()ln f x x x =,则下列结论正确的是( ) A .()f x 在点()e,e 处的切线方程为2e 0x y --=B .()f x 的单调递减区间为()1,e ∞--C .()f x 有且只有一个零点D .()f x 的极小值点为()11e ,e ---8.(2022·重庆·高二阶段练习多选题)对于定义在R 上的可导函数()f x ,()'f x 为其导函数,下列说法不正确的是( )A .使()0f x '=的x 一定是函数的极值点B .()f x 在R 上单调递增是()0f x '>在R 上恒成立的充要条件C .若函数()f x 既有极小值又有极大值,则其极小值一定不会比它的极大值大D .若()f x 在R 上存在极值,则它在R 一定不单调9.(2022全国高三专题练习)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极大值点,以下结论错误的是( )A .x R ∀∈,()()0f x f x ≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点10.(2022·全国·高三专题练习)已知函数()ln x f x x =,则1f e ⎛⎫'= ⎪⎝⎭_____,()f x 有极__________(填大或小)值.题型二:利用导函数图像判断极值【例1】(2023·全国·高三专题练习)已知定义在R 上的函数f (x ),其导函数()f x '的大致图象如图所示,则下列叙述正确的是( )A .()()()f b f a f c >>B .函数()f x 在x =c 处取得最大值,在e x =处取得最小值C .函数()f x 在x =c 处取得极大值,在e x =处取得极小值D .函数()f x 的最小值为()f d【例2】(2022·黑龙江·牡丹江市第三高级高三阶段练习)设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+的图象如图所示,则下列结论中正确的是( )A .函数()f x 有极大值()3f -和()3fB .函数()f x 有极小值()3f -和()3fC .函数()f x 有极小值()3f 和极大值()3f -D .函数()f x 有极小值()3f -和极大值()3f【例3】(2022·重庆市璧山来凤中高二阶段练习)已知函数()f x 的导函数()f x '的图象如图所示,则下列选项中正确的是( )A .1x =是函数()f x 的极值点B .()f x 在区间(2,3)-上单调递减C .函数()f x 在1x =-处取得极小值D .()f x 的图象在0x =处的切线斜率小于零【题型专练】1.(2022·陕西·泾阳县教育局教学研究室高二期中(理))定义在区间1,42⎡⎤-⎢⎥⎣⎦上的函数()f x 的导函数()f x '的图象如图所示,则下列结论错误的是( )A .函数()f x 在区间()0,4单调递增B .函数()f x 在区间1,02⎛⎫- ⎪⎝⎭单调递减C .函数()f x 在0x =处取得极小值D .函数()f x 在3x =处取得极小值2.(2022·全国·高二单元测试)设函数()f x 在R 上可导,其导函数为()f x ',且函数()2y x =-()f x '的图像如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()2f 和极小值()1fB .函数()f x 有极大值()2f -和极小值()1fC .函数()f x 有极大值()2f 和极小值()2f -D .函数()f x 有极大值()2f -和极小值()2f3.(2022·全国·高三专题练习)已知函数()f x 的导函数为'()f x ,函数()()1'()g x x f x =-的图象如图所示,则下列结论正确的是( )A .()f x 在(),2-∞-,()1,2上为减函数B .()f x 在()2,1-,()2,+∞上为增函数C .()f x 的极小值为()2f -,极大值为()2fD .()f x 的极大值为()2f -,极小值为()2f4.(2022·河北邢台·高二阶段练习)如图是导函数()y f x '=的图象,则下列说法正确的是( )A .(1,3)-为函数()y f x =的单调递增区间B .(0,5)为函数()y f x =的单调递减区间C .函数()y f x =在0x =处取得极大值D .函数()y f x =在5x =处取得极小值题型三:根据极值、极值点求参数的值 【方法总结】解含参数的极值问题要注意:①()00f x '=是0x 为函数极值点的必要不充分条件,故而要注意检验;①若函数()y f x =在区间(,)a b 内有极值,那么()y f x =在(,)a b 内绝不是单调函数,即在某区间上的单调函数没有极值.【例1】(2022·天津市第四高二期中)函数()3222f x x cx c x =-+在2x =处取极小值,则c =( )A .6或2B .6或2-C .6D .2【例2】(2022全国课时练习)若函数()2()1xf x x ax e =--的极小值点是1x =,则()f x 的极大值为( )A .e -B .22e -C .25e -D .2-【例3】(2022·四川·阆中高二阶段练习(文))函数()()2f x x x a =-在2x =处有极大值,则a 的值为( ) A .2 B .6 C .2或6 D .【例4】(2022·重庆·万州纯阳中高二期中)已知函数()3223f x x mx nx m =+-+在1x =-时有极值0,则mn =______ .【题型专练】1.(2023全国高三专题练习)已知函数()ln 1xf x ae x =--,设1=x 是()f x 的极值点,则a =___,()f x 的单调增区间为___.2.(2022·江苏南通·模拟预测)已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1 B .2 C .-3 D .43.设函数()23ln 2f x x ax x =+-,若1x =是函数()f x 是极大值点,则函数()f x 的极小值为________4.(2023河南省实验高二月考)函数1sin sin 33y a x x =+在3x π=处有极值,则a 的值为( ) A .6- B .6 C .2-D .25.(2021·河南新乡市)已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为( ) A .ln21-- B .ln21-+ C .1-D .1题型四:根据极值、极值点求参数的范围【例1】(2022·全国·高二专题练习)若函数()()22e x x a f x x =++既有极大值又有极小值,则实数a 的取值范围是______.【例2】(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是( )A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-【例3】(2022·全国·高二课时练习)若函数32()1(0)f x x mx m =-++≠在区间(0,2)上的极大值为最大值,则m 的取值范围是( ) A .(0,3) B .(3,0)- C .(,3)-∞- D .(3,)+∞【例4】(2022·江西江西·高三阶段练习(文))设0a ≠,若=x a 为函数2()()(1)f x a x a x =--的极小值点,则( ) A .1a < B .1a > C .2a a < D .2a a >【例5】(2023·全国·高三专题练习)已知函数()2e 2ln x f x k x kx x=-+,若2x =是函数()f x 的唯一极值点,则实数k 的取值集合是( )A .2e ,4⎛⎤-∞- ⎥⎝⎦B .2e ,4⎛⎤-∞ ⎥⎝⎦C .2e ,4⎡⎫-+∞⎪⎢⎣⎭D .2e ,4⎡⎫+∞⎪⎢⎣⎭【例6】(2022·全国·高二课时练习)若函数2()e 21x f x ax =-+有两个不同的极值点,则实数a 的取值范围是__________.【例7】(2022·河南·安阳高三阶段练习(理))已知函数()()2ln 21f x x a x =++有两个不同的极值点21,x x ,且12x x <,则实数a 的取值范围是___________.【例8】(2022·全国·高二专题练习)已知函数()e 1x f x t x x x ⎛⎫=-+ ⎪⎝⎭在区间()0,∞+上有且只有一个极值点,则实数t 的取值范围为___________.【例9】(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围( )A .()2,2-B .(-C .⎡-⎣D .[]22-,【题型专练】1.(2022吉林通榆县第高二期末(理))已知函数321()(23)13f x x ax a x =+++-有两个极值点,则实数a 的取值范围是( ) A .(1,3)- B .(,1)(3,)-∞-+∞ C .(3,1)- D .(,3)(1,)-∞-⋃+∞2.(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞ B .(0,1) C .(1,)+∞ D .(1,0)-3.(2022·黑龙江·哈尔滨市阿城区第高二期末)若函数()()216ln 62f x a x x a x =+-+有2个极值点,则实数a 的取值范围是( )A .()(),66,-∞⋃+∞B .()()0,66,⋃+∞C .{}6D .()0,∞+4.(2022·江西·丰城高二期末(理)多选题)函数32()132ax ax f x x =-++在区间1,33⎛⎫ ⎪⎝⎭内仅有唯一极值点的一个充分不必要条件为( )A .9,2a ⎡⎫∈+∞⎪⎢⎣⎭B .9,2a ⎛⎫∈+∞ ⎪⎝⎭C .1,06a ⎛⎫∈- ⎪⎝⎭D .19,62a ⎛⎫∈- ⎪⎝⎭5.(2022·辽宁葫芦岛·高二期末多选题)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.若()f x 在2x =处取得极大值,a 的值可能为( ) A .-2 B .14C .1D .26.(2022·广东·东莞市东华高级高三阶段练习多选题)对于函数()ln xf x x=,下列选项正确的是( ) A .函数()f x 的极小值点为e -,极大值点为eB .函数()f x 的单调递减区间为 ][,,(e e ) -∞-⋃+∞,单调递增区为[]e,0)(0,e -⋃C .函数()f x 的最小值为1e -,最大值为1eD .函数()f x 存在两个零点1和1-7.(2022·广东广雅高三阶段练习)若函数()22ln f x ax x x =-+有两个不同的极值点,则实数a 的取值范围是____________.8.(2022·山东青岛·高三开学考试)已知函数()()e xf x x a =-有两个极值点,则实数a 的取值范围是___________.9.(2022·全国·高三专题练习)函数()(ln )xe f x a x x x =--在()1,0内有极值,则实数a 的取值范围是( )A .(,)e -∞B .(0,)eC .(,)e +∞D .[),e +∞10.(2022贵州遵义·高三)若函数无极值点则实数a 的取值范围是( ) A . B .C .D .11.(2022辽宁高三月考)已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.321()53f x x ax x =-+-(1,1)-[1,1]-(,1)(1,)-∞-+∞(,1][1,)-∞-+∞题型五:证明函数存在极值点极值问题【例4】(2022·上海市进才高三阶段练习)已知函数()()e 0=->xf x ax x a .(1)求()()0,0f 处的切线方程; (2)求证:()f x 有且仅有一个极值点;【例2】(2022·江西师大附中三模(理))已知函数()sin ,()e xxf x xg x =-为()f x 的导函数. (1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;【例3】(2022·全国·高三专题练习)已知函数()()ln 1e xx f x +=. (1)求证:函数()f x 存在唯一的极大值点;【题型专练】1.(2022·安徽省定远县第三高三阶段练习)已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数. (1)判断并证明()'f x 在区间1,2π⎛⎫- ⎪⎝⎭上存在的极大值点个数;2.(2022·北京房山·高三开学考试)已知函数()ln(1)sin =++f x x x . (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在(0,)π上的单调性; (3)证明:()f x 在(1,)π-上存在唯一的极大值点.3.(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;。
利用导数求函数单调性题型全归纳一.求单调区间二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式九.函数零点个数(方程根的个数) 十.探究函数图像一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=,因为当0,1a a >≠,所以2()2ln 0xg x a a '=+>所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()xf x e ax =-,求()f x 的单调区间解:'()xf x e a =-,当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0xf x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由'()0xf x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <,又*a N ∈,解得:5542a <<,所以正整数a 的取值集合{2} 三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x,若函数()y f x 在1(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x在1(,)上是减函数所以'2ln 1()0(ln )x f x ax 在1(,)上恒成立,即2ln 1(ln )x ax 在1(,)上恒成立令ln ,(1)t x x ,则0t,21()(0)t h t t t ,则max ()ah t因为222111111()=()()24t h t t t tt,所以max 1()=(2)4h t h ,所以14a 变式:若函数3211()(1)132f x x ax a x 在区间1,4()上为减函数,在区间(6,)上为增函数,试求实数a 的取值范围.解:2'()=1f x x ax a因为函数()yf x 在区间1,4()上为减函数,在区间(6,)上为增函数所以''()0(1,4)()0,(6,)f x x f x x,恒成立,即2210(1,4)10,(6,)x ax a x xaxa x,所以2211,(1,4)111,(6,)1x ax x x x ax xx ,所以4161a a,所以57a四.比较大小例4. 设a 为实数,当ln 210a x且时,比较x e 与221x ax 的大小关系.解:令2()21(0)x f x e x axx,则'()=22xf x e x a令'()()g x f x则'()e 2xg x ,令'()0g x 得:ln 2x当ln 2x 时,'()0g x ;当ln 2x时,'()0g x所以ln2min ()()=(ln 2)2ln 2222ln 22g x g x g e aa极小值,因为ln 21a,所以'()()0g x f x ,所以()f x 在0(,)上单调递增 所以()(0)0f x f ,即2210xe x ax ,所以221xe x ax变式:对于R 上的可导函数()y f x ,若满足'(3)()0xf x ,比较(1)(11)f f 与2(3)f 的大小关系.解:因为'(3)()0xf x所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f > 当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kxG x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k 上单调递增当1()x k ∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >=即()()f x g x >,综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 变式:已知关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、.求证:120x x <+证明:因为2(1)xx e ax a --=,所以2(1)1x x e a x -=+,令2(1)()1x x e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减,当0x <时()0f x '>,()f x 单调递增 因为关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、 所以不妨设12(,0),(0,)x x ∈-∞∈+∞,要证:120x x <+,只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x ,所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0xxx e x e---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x xx x e x e -=--+,0x ∈-∞(,),则g ()()xx x x e e -'=-因为0x ∈-∞(,),所以0xx e e -->所以g ()()0xx x x ee -'=-<恒成立所以g()(1)(1)xxx x e x e -=--+在0-∞(,)上单调递减,所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()xf x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)xxxxf x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去由表可知:2()=(2)(42)3f x f a a e --=-+=极大值解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -=,所以:=3a a e令()3(2)ag a e a a =->,则'2()31310ag a e e =->-> 所以()y g a =在2+∞(,)上单调递增,又2(2)320g e =-> 所以函数()y g a =在2+∞(,)上无零点,即方程=3aa e 无解 综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)xf x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围.解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可 又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 变式:已知函数()ln()(0)x af x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值. 解:1()=x af x ex a -'-+,令()()g x f x '=,则21()=0(x ag x e x a -'+>+) 所以()y g x =在区间0+∞(,)单调递增,所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a -=-=+,即001=x a e x a -+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x af x f x ex a -==-+,由001=x aex a-+得:00=ln()x a x a --+所以0min 00001()()ln()=x af x f x ex a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件,所以12a = 八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e解:令()()xxg x e f x e =-,则()()()(()()1)xxxxg x e f x e f x e e f x f x '''=+-=+- 因为对任意1)()('>+∈x f x f R x ,,所以()0g x '>, 所以()y g x =为R 上的单调递增函数,又(0)(0)11g f =-=所以当1)(+>xxe xf e 即()1xxe f x e ->,所以()(0)g x g >,所以0x > 即不等式:1)(+>xxe xf e 的解集为0+∞(,) 变式:已知定义在R 上的可导函数()yf x 满足'()1f x ,若(12)()13f m f m m ,求m 的取值范围.解:令()()g x f x x =-,则()()1g x f x ''=-,因为'()1f x所以()()10g x f x ''=-<,所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m ,得:(12)()f m m f m m (1-2)>即(12)()g m g m ->,所以12m m ->,即13m < 九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围. 解: '2()21f x x x a =--+,因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-,即2a =,检验知2a =符合题意. 令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln3b -<≤-所以实数b 的取值范围是:2ln 222ln 3]--(, 变式:已知函数()y f x 是R 上的可导函数,当0x时,有'()()0f x f x x,判断函数13()()F x xf x x的零点个数 解:当0x时,有'()()f x f x x,即'()()xf x f x x令()()g x xf x =,则'()()()g x xf x f x所以当0x >时,'()()()0g x xf x f x ,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >, 所以当0x >时,13()()0F x xf x x恒成立,函数()y F x 无零点当0x <时,'()()()0g x xf x f x ,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立所以13()()F x xf x x在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ,所以13()0F x x当x →-∞时,10x,所以()()0F x xf x所以13()()F x xf x x 在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合. 变式:已知函数ln(2)()x f x x=,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围.解:21ln(2)()=x f x x -',令()=0f x '得2ex = 所以当02ex <<时,()0,()f x f x '>单调递增当2ex >时,()0,()f x f x '<单调递减由当12x <时,()0f x <,当12x >时,()0f x >作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(1) (2)(4)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解,所以()f x a >-有两个整数解,因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =,所以ln 6ln 23a ≤-<,所以ln 6ln 23a -<≤-。
函数的单调性与极值点例题和知识点总结在数学的学习中,函数的单调性与极值点是非常重要的概念,它们不仅在理论上有着深刻的意义,在实际应用中也能帮助我们解决很多问题。
接下来,让我们通过一些具体的例题来深入理解函数的单调性与极值点,并对相关知识点进行总结。
一、函数单调性的定义函数的单调性是指函数在某个区间内的增减性质。
如果对于区间内的任意两个自变量的值\(x_1\)和\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就说函数在这个区间上是单调递增的;如果当\(x_1 < x_2\)时,都有\(f(x_1) > f(x_2)\),那么就说函数在这个区间上是单调递减的。
二、函数单调性的判定方法1、导数法对于一个可导函数\(f(x)\),如果其导数\(f'(x) > 0\)在某个区间内恒成立,那么函数在这个区间上单调递增;如果\(f'(x) <0\)在某个区间内恒成立,那么函数在这个区间上单调递减。
例如,函数\(f(x) = x^2\),其导数\(f'(x) = 2x\)。
当\(x >0\)时,\(f'(x) > 0\),函数单调递增;当\(x < 0\)时,\(f'(x) < 0\),函数单调递减。
2、定义法设\(x_1\),\(x_2\)是给定区间上的任意两个自变量的值,且\(x_1 < x_2\),计算\(f(x_2) f(x_1)\),然后判断其正负。
若\(f(x_2) f(x_1) > 0\),则函数单调递增;若\(f(x_2) f(x_1) < 0\),则函数单调递减。
三、函数极值点的定义设函数\(f(x)\)在点\(x_0\)处可导,且在\(x_0\)附近左侧导数\(f'(x) < 0\),右侧导数\(f'(x) > 0\),则\(x_0\)为函数的极小值点,\(f(x_0)\)为极小值;若在\(x_0\)附近左侧导数\(f'(x) > 0\),右侧导数\(f'(x) < 0\),则\(x_0\)为函数的极大值点,\(f(x_0)\)为极大值。
导数的应用(单调性与极值)
一、求函数单调区间
1、函数y =x 3-3x 的单调递减区间是________________
2、函数f (x )=(x -3)e x 的单调递增区间是_______________
3、函数f (x )=ln x -ax (a >0)的单调递增区间为( )
A .(0,1a )
B .(1
a ,+∞)
B .
C .(-∞,1
a ) D .(-∞,a )
4、函数y =x -2sin x 在(0,2π)内的单调增区间为________.
5、求函数f (x )=x (e x -1)-x 2
2的单调区间.
6、已知函数f (x )=a
x +x +(a -1)ln x +15a ,其中a <0,且a ≠-1.讨论函数f (x )的单调性.
二、导函数图像与原函数图像关系
导函数正负决定原函数递增递减
导函数大小等于原函数上点切线的斜率
导函数大小决定原函数陡峭平缓
1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,
b]上的图象可能是()
2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是()
3、设曲线y=x2+1在其任一点(x,y)处切线斜率为g(x),则函数y=g(x)·cos x 的部分图象可以为()
4、函数f(x)的导函数f′(x)的图象,如图所示,则()
x=1是最小值点B.x=0是极小值点
C.x=2是极小值点D.函数f(x)在(1,2)上单增
三、恒成立问题
1、已知函数f(x)=x 3-2
1x 2+bx+c .
若f(x)在(-∞,+∞)上是增函数,求b 的取
值范围;
2、已知函数 232
()4()3
f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的
取值范围.
3、若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围。
4、已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围。
四、极值的应用
1、若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.
2、当函数y =x ·2x 取极小值时,x =( ) A.1ln2 B .-1
ln2 C .-ln2 D .ln2
3、函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1
C .b >0
D .b <1
2
4、函数y =x 33+x 2
-3x -4在[0,2]上的最小值是( )
A .-173
B .-103
C .-4
D .-64
3
5、已知函数f (x )=-x 3+3x 2+9x +a .
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
6、设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a、b的值;
(2)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
7、若函数f(x)=x3-3x+a有三个不同的零点,则实数a的取值范围是________.
8、设函数f(x)=6x3+3(a+2)x2+2ax.
(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;
(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.
9、已知x∈R,求证:e x≥x+1.。