微山县第一中学2018-2019学年高二9月月考数学试题解析
- 格式:doc
- 大小:972.50 KB
- 文档页数:15
2016-2017学年山东省济宁市微山一中高二(下)第一次月考数学试卷(创理、重理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知函数f(x)=2ln(3x)+8x,则的值为()A.10B.﹣10C.﹣20D.203.(5分)因为a,b∈R+,a+b≥2,…大前提x+≥2,…小前提所以x+≥2,…结论以上推理过程中的错误为()A.小前提B.大前提C.结论D.无错误4.(5分)函数y=x3﹣3x2﹣9x(﹣2<x<2)有()A.极大值5,极小值﹣27B.极大值5,极小值﹣11C.极大值5,无极小值D.极小值﹣27,无极大值5.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.26.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.7.(5分)下列计算错误的是()A.sin xdx=0B.dx=C.cos xdx=2cos xdxD.sin2xdx=08.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)9.(5分)若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线10.(5分)已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f (x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)11.(5分)用数学归纳法证明不等式“1+++…+<n(n∈N*,n≥2)”时,由n=k(k≥2)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1C.2k D.2k+112.(5分)按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A.C4H9B.C4H10C.C4H11D.C6H12二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(5分)已知四面体四个顶点分别为A(2,3,1)、B(4,1,﹣2)、C(6,3,7)和D (﹣5,﹣4,8),则顶点D到平面ABC的距离为.14.(5分)垂直于直线2x﹣6y+1=0并且与曲线y=x3+3x2﹣5相切的直线方程是15.(5分)已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为.16.(5分)若Rt△ABC中两直角边为a、b,斜边c上的高为h,则,如图,在正方体的一角上截取三棱锥P﹣ABC,PO为棱锥的高,记M=,N=,那么M、N的大小关系是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=ax3+bx+1的图象经过点(1,﹣3)且在x=1处f(x)取得极值.求:(1)函数f(x)的解析式;(2)f(x)的单调递增区间.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4.(1)证明:AC⊥BC1;(2)求二面角C1﹣AB﹣C的余弦值大小.19.(12分)已知a>b>c,求证:.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.21.(12分)数列{a n}满足S n=2n﹣a n(n∈N*).(1)计算a1、a2、a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.22.(12分)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.2016-2017学年山东省济宁市微山一中高二(下)第一次月考数学试卷(创理、重理)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵==﹣i∴复数在复平面对应的点的坐标是(,﹣)∴它对应的点在第四象限,故选:D.2.(5分)已知函数f(x)=2ln(3x)+8x,则的值为()A.10B.﹣10C.﹣20D.20【解答】解:函数f(x)=2ln(3x)+8x,∴f′(x)=+8,∴f′(1)=10,∴=﹣2=﹣2f′(1)=﹣20,故选:C.3.(5分)因为a,b∈R+,a+b≥2,…大前提x+≥2,…小前提所以x+≥2,…结论以上推理过程中的错误为()A.小前提B.大前提C.结论D.无错误【解答】解:∵,这是基本不等式的形式,注意到基本不等式的使用条件,a,b都是正数,是小前提,没有写出x的取值范围,∴本题中的小前提有错误,故选:A.4.(5分)函数y=x3﹣3x2﹣9x(﹣2<x<2)有()A.极大值5,极小值﹣27B.极大值5,极小值﹣11C.极大值5,无极小值D.极小值﹣27,无极大值【解答】解:y′=3x2﹣6x﹣9=0,得x=﹣1,x=3,当x<﹣1时,y′>0;当x>﹣1时,y′<0,当x=﹣1时,y极大值=5;x取不到3,无极小值.故选:C.5.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.6.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z 轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.7.(5分)下列计算错误的是()A.sin xdx=0B.dx=C.cos xdx=2cos xdxD.sin2xdx=0【解答】解:∫﹣ππsin xdx=(﹣cos x)|﹣ππ=(﹣cosπ)﹣(﹣cos(﹣π)=0因为y=cos x为偶函数所以=π故选:D.8.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.9.(5分)若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线【解答】解::由=++,可得=1,又A,B,C不共线,∴P,A,B,C四点共面.故选:B.10.(5分)已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f (x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)【解答】解:设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则∵函数g(x)单调递增,∴由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B.11.(5分)用数学归纳法证明不等式“1+++…+<n(n∈N*,n≥2)”时,由n=k(k≥2)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1C.2k D.2k+1【解答】解:n=k时,左边=1+++…+,当n=k+1时,左边=1+++…++++…+.∴左边增加的项数为2k+1﹣1﹣(2k﹣1)=2k+1﹣2k=2k.故选:C.12.(5分)按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A.C4H9B.C4H10C.C4H11D.C6H12【解答】解:由前三种化合物的结构式及分子式的规律可知,后一种化合物比前一种化合物多一个C两个H,故后一种化合物的分子式是C4H10故选:B.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(5分)已知四面体四个顶点分别为A(2,3,1)、B(4,1,﹣2)、C(6,3,7)和D (﹣5,﹣4,8),则顶点D到平面ABC的距离为11.【解答】解:因为四面体四个顶点分别为A(2,3,1)、B(4,1,﹣2)、C(6,3,7)和D(﹣5,﹣4,8),所以=(2,﹣2,﹣3),=(4,0,6),=(﹣7,﹣7,7).设平面ABC的法向量为=(a,b,c)所以,不妨令a=3,则c=﹣2,解得b=6.平面ABC的法向量为=(3,6,﹣2).所以顶点D到平面ABC的距离,就是在平面ABC的法向量投影的长度,即:==11.故答案为:11.14.(5分)垂直于直线2x﹣6y+1=0并且与曲线y=x3+3x2﹣5相切的直线方程是3x+y+6=0【解答】解:设切点为P(a,b),函数y=x3+3x2﹣5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=﹣3,得a=﹣1,代入到y=x3+3x2﹣5,得b=﹣3,即P(﹣1,﹣3),y+3=﹣3(x+1),3x+y+6=0.故答案为:3x+y+6=0.15.(5分)已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为﹣3.【解答】解:由图知方程f(x)=0有两个相等的实根x1=x2=0,于是b=0,∴f(x)=x2(x+a),有,∴a=±3.又﹣a>0⇒a<0,得a=﹣3.故答案为:﹣3.16.(5分)若Rt△ABC中两直角边为a、b,斜边c上的高为h,则,如图,在正方体的一角上截取三棱锥P﹣ABC,PO为棱锥的高,记M=,N=,那么M、N的大小关系是M=N.【解答】解:在Rt△ABC中,c2=a2+b2①,由等面积法得ch=ab,∴c2•h2=a2•b2②,①÷②整理得.类比得,S△ABC2=S△P AB2+S△PBC2+S△P AC2①,由等体积法得,∴②,①÷②整理得M=N.故答案为:M=N.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=ax3+bx+1的图象经过点(1,﹣3)且在x=1处f(x)取得极值.求:(1)函数f(x)的解析式;(2)f(x)的单调递增区间.【解答】解:(1)由f(x)=ax3+bx+1的图象过点(1,﹣3)得f(1)=a+b+1=3,∵f'(x)=3ax2+b,又f'(1)=3a+b=0,∴a=2,b=﹣6,∴f(x)=2x3﹣6x+1.(2)∵f'(x)=6x2﹣6,∴由f'(x)>0得x>1或x<﹣1,∴f(x)的单调递增区间为(﹣∞,﹣1)和(1,+∞).18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4.(1)证明:AC⊥BC1;(2)求二面角C1﹣AB﹣C的余弦值大小.【解答】解∵直三棱柱ABC﹣A1B1C1,底面三边长AC=3,BC=4,AB=5,∴AC,BC,CC1两两垂直.如图以C为坐标原点,建立空间直角坐标系C﹣xyz,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4).…(2分)证明:(1)∵=(﹣3,0,0),=(0,﹣4,4),∴•=0,故AC⊥BC1…(4分)解:(2)平面ABC的一个法向量为=(0,0,1),设平面C1AB的一个法向量为=(x,y,z),=(﹣3,0,4),=(﹣3,4,0),由得:…(6分)令x=4,则z=3,y=3则=(4,3,3).…(7分)故cos<,>==.所求二面角的大小为arccos19.(12分)已知a>b>c,求证:.【解答】证明:∵+==4,(a>b>c)∴+≥4∴20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.21.(12分)数列{a n}满足S n=2n﹣a n(n∈N*).(1)计算a1、a2、a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【解答】解:(1)当n=1时,a1=S1=2﹣a1,∴a1=1;当n=2时,a1+a2=S2=2×2﹣a2,∴a2=;当n=3时,a1+a2+a3=S3=2×3﹣a3,∴a3=.由此猜想a n =(n∈N*)(2)证明:①当n=1时,a1=1结论成立,②假设n=k(k≥1,且k∈N*)时结论成立,即a k =,当n=k+1时,a k+1=S k+1﹣S k=2(k+1)﹣a k+1﹣2k+a k=2+a k﹣a k+1,∴2a k+1=2+a k∴a k+1==,∴当n=k+1时结论成立,于是对于一切的自然数n∈N*,a n =成立22.(12分)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x )≤,求k的取值范围.【解答】解:(Ⅰ)=,令f′(x)=0,得x=±k当k>0时,f′(x)f(x)随x的变化情况如下:所以,f(x)的单调递增区间是(﹣∞,﹣k),和(k,+∞),单调递减区间是(﹣k,k);的变化情况如下:当k<0时,f′(x)f(x)随x所以,f(x)的单调递减区间是(﹣∞,k),和(﹣k,+∞),单调递增区间是(k,﹣k);(Ⅱ)当k>0时,有f(k+1)=,不合题意,当k<0时,由(I)知f(x)在(0,+∞)上的最大值是f(﹣k)=,∴任意的x∈(0,+∞),f(x)≤,⇔f(﹣k)=≤,解得﹣,故对于任意的x∈(0,+∞),都有f(x)≤,k的取值范围是﹣.。
微山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数2. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.3. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或54. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =5. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能6. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .137. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n8. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力. 9. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A. B.或C.D.或11.已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .2712.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+二、填空题13.已知线性回归方程=9,则b= .14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 16.计算:×5﹣1= .17.数列{a n }是等差数列,a 4=7,S 7= .18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6( C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.20.已知椭圆C :+=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.21.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
山东省微山县一中2018-2019学年高二数学上学期12月月考试题第I 卷一. 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的).1.已知,b a >则下列结论正确的是( )A 、b a >B 、c b c a +>+C 、bc ac >D 、22b a > 2、抛物线y =2x 2的焦点坐标是( ) A 、(0,41) B 、(0,81) C 、(21,0) D 、 (41,0) 3、“2b=a+c“是“a,b ,c 成等差数列”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件D 、 即不充分也不必要条件4、已知空间四边形ABCD 中,=,=,=,则=( ) A .-+ B .-- C. -+ D .++5、若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( )A .275 B .245C.5 D .66、已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为2,则C 的渐近线方程为( )A 、14y x =±B 、13y x =±C 、12y x =± D 、y x =±7、已知F 为抛物线x y 42=的焦点,P 是抛物线上的一个动点,点A 的坐标为)3,5(,则||||PF PA +的最小值为( )A .5B . 6 C. 7 D .8 8、设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则=( )A 、 ﹣11B 、﹣8C 、5D 、 119、已知数列{}n a 满足,2,011n a a a n n +==+那么2009a 的值是( )A 、20092B 、2008×2007C 、2009×2010D 、2008×200910、m 为实数,函数)()(2m x x x f -=,若1)1('-=-f ,则函数)(x f 的单调递增区间是() A 、),0(),34,(+∞--∞ B 、),0()34,(+∞⋃--∞ C 、)0,34(-D )34,0( 11、若命题:“01,0200>--∈∃ax ax R x ”为假命题,则实数a 的取值范围是( )A 、 04<<-aB 、04≤<-aC 、04≤≤-aD 、04<≤-a12、长方体1111ABCD A BC D -中,3=AB ,21=AA ,1=AD ,F E ,分别是11,BB AA 的中点,G 是DB 上的点,GB DG 2=,平面C EB 1与平面11ADD A 的交线为l ,则l 与GF 所成角的余弦值为( ). A 、 65657 B 、-65657C 、D 、-第Ⅱ卷二.填空题:(本大题共4小题,每小题5分,共20分) 13、若函数f (x )=x sin ,则lim Δx →0f 1-Δx -f 12Δx= .14、已知向量)1,1,0(-=,)0,2,3(=,若11||=+λ,则=λ .15、已知函数)(x f 的导函数为)('x f ,且满足x e xf x f ln )(2)('+=,则)(e f = 16、已知双曲线C :=1(a >0,b >0)的左右焦点分别为1F ,2F ,点P 在双曲线上,且满足|1PF |=234PF ,|OP|=| 1OF |(O 为坐标原点),则双曲线C 的离心率为_ _.三.解答题:(共6小题, 70分,写出文字说明,证明过程或演算步骤) 17、(本小题满分10分)已知数列{}n a 的前n 项和212n n S n -=. (1)求数列{}n a 的通项公式;(2)若n n a n c -=12,求数列⎭⎬⎫⎩⎨⎧⋅+11n n c c 的前n 项和.18、(本小题满分12分)如图,在四棱锥P ABCD - 中,底面ABCD 是平行四边形,22AB AD == ,60BAD ∠=︒ ,1PD = ,PD ⊥ 底面ABCD.(1)求证:AD ⊥ 平面PBD ;(2)若M 为AB 的中点,求直线PM 与平面PBC 所成角的正弦值.19、(本小题满分12分)已知函数ax x x f +=32)(与cx bx x g +=2)(的图象都过点P (2,0),且在点P 处有公切线.(1)求)(x f 和)(x g 的表达式及公切线方程;(2)若16)()()('x g x f x F +=,求)(x F 的单调区间.20、(本小题满分12分)如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD )的围栏,按照修建要求,中间用围墙EF 隔开,使得ABEF 为矩形,EFDC 为正方形,设AB=x 米,已知围墙(包括EF )的修建费用均为每米500元,设围墙(包括EF )的修建总费用为y 元.(1)求出y 关于x 的函数解析式及x 的取值范围;(2)当x 为何值时,围墙(包括EF )的修建总费用y 最小?并求出y 的最小值.21、(本小题满分12分)已知数列{}n a 的前n 项和为n S ,并且满足11a = ,1(1)n n na S n n +=++ .(1)求数列{}n a 通项公式; (2)设n T 为数列{}3nna 的前n 项和,求证:1n T <22、(本小题满分12分)如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形,CD AB //,22=AB ,DC BC ⊥,2====DM AM DC BC ,四边形BDMN 为矩形.(1)求证:平面⊥ADM 平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角M AD H --的大小为4π?若存在,确定点H 的位置并加以证明.数学试卷(文科)参考答案一.选择题BBCBA CBCDA BA . 二.填空题 13.121COS -14.1 15.-1. 16.0. 三.解答题17.18.解:(1)在ABC △中由余弦定理得214212cos603BD =+-⨯⨯⨯︒= 222BD AD AB += ,∴90ADB ∠=︒ ,AD BD ⊥又PD ⊥ 底面ABCD ,所以,PD AD ⊥ ,又PDBD D = 所以,AD ⊥ 平面PBD .(2)以D 为原点,分别以DA 、DB 、DP 为x 轴、y 轴、z 轴,建立空间直角坐标系,则(100)A ,,,(00)B,(10)C - ,(001)P ,,1(0)2M 所以,1(1)22PM =-,,,(11)PC =-- ,(100)BC =-,, . 设平面PBC 的法向量为()m x y z =,, 由0m PC ⋅= ,0m BC ⋅=,得x z x ⎧--=⎪⎨-=⎪⎩ ,令1y = 得0x =,z =,即(01m =, 设直线PM 与平面PBC 所成角为θ ,则2sin cos 82PM m PM m PM mθ⋅=<>===, 19、20、解:(1)设AD=t 米,则由题意得xt=2400,且t >x ,故t=>x ,可得0,则y=500(3x+2t )=500(3x+2×),所以y 关于x 的函数解析式为y=1500(x+)(0).(2)y=1500(x+)≥1500×2=120000,当且仅当x=,即x=40时等号成立.故当x 为40米时,y 最小.y 的最小值为120000元. 21.解:(1)∵1(1)n n na S n n +=++当2n ≥ 时,1(1)(1)n n n a S n n --=+- ,得21=-+n n a a 当1n =时,212a a =+ ,即212a a -=∴数列{}n a 时以11a = 为首项,2 为公差的等差数列. ∴1(1)221n a n n =+-⨯=- .(2)∵2133n n n a n -= ∴12313523333n n n T -=++++ ①231113232133333n n n n n T +--=++++ ② 由①- ②得12312122221333333n n n n T +-=++++-12121[1()]121333313n n n -+--=+--122233n n ++=- ∴1113n n n T +=-<22、解:(1)证明:由平面几何的知识,易得2BD =,2AD =,又AB =ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥.因为四边形BDMN 为矩形,所以BD DM ⊥.由BD AD ⊥,BD DM ⊥,DM AD D =, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点,DA 为x 轴,DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则(0,0,0),(2,0,0),(0,2,0)D A B ,(1,0,1)M , 设(,,)H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得(1,2,1)H λ. 设平面ADH 的一个法向量为1111(,,)x y z =n ,则,即,不妨设11y =,取1(0,1,2)λ=-n . 平面ADM 的一个法向量为2(0,1,0)=n . 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.。
微山县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能2. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i3. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%4. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}5. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .486. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1207. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .08. 图 1是由哪个平面图形旋转得到的( )A .B .C .D .9. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .20310.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( ) A .89 B .76C .77D .3511.椭圆=1的离心率为( ) A . B . C .D .12.已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.二、填空题13.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)14.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .15.不等式()2110ax a x +++≥恒成立,则实数的值是__________.16.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .17.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .三、解答题19.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a ,b 足+=,求证:+≥m .21.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.22.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.23.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合A∪B,A∩B.24.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n•b n,求数列{c n}的前n项和T n.微山县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.2.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.3.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.4.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N 不可能是{2,7}, 故选:D【点评】本题主要考查集合的关系的判断,比较基础.5. 【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,∴△PF 1F 2的面积=.故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.6. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .7. 【答案】 C【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.8. 【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念. 9. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.10.【答案】C【解析】解:因为a 1=1,a 2=2,所以a 3=(1+cos 2)a 1+sin2=a 1+1=2,a 4=(1+cos 2π)a 2+sin 2π=2a 2=4.一般地,当n=2k ﹣1(k ∈N *)时,a 2k+1=[1+cos 2]a 2k ﹣1+sin 2=a 2k ﹣1+1,即a 2k+1﹣a 2k ﹣1=1.所以数列{a 2k ﹣1}是首项为1、公差为1的等差数列,因此a 2k ﹣1=k .当n=2k (k ∈N *)时,a 2k+2=(1+cos2)a 2k +sin2=2a 2k .所以数列{a 2k }是首项为2、公比为2的等比数列,因此a 2k =2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77 故选:C .11.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.12.【答案】D二、填空题13.【答案】 (1,+∞)【解析】解:∵命题p :∃x ∈R ,x 2+2x+a ≤0,当命题p 是假命题时,命题¬p :∀x ∈R ,x 2+2x+a >0是真命题;即△=4﹣4a <0, ∴a >1;∴实数a 的取值范围是(1,+∞). 故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.14.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3), 整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.15.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题.16.【答案】.【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.17.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.18.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题三、解答题19.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.20.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.21.【答案】【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,∴f(1)=1,∴切点为(1,1)∵f′(x)=﹣1﹣=,∴f′(1)=﹣2,∴切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0;(Ⅱ)f(x)的定义域是(0,+∞),f′(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2﹣x+2在(0,+∞)2个解,故,解得:0<a<.22.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.23.【答案】【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,解得:x>3或x<2,即A={x|x>3或x<2},由g(x)=,得到﹣1≥0,当x>0时,整理得:4﹣x≥0,即x≤4;当x<0时,整理得:4﹣x≤0,无解,综上,不等式的解集为0<x≤4,即B={x|0<x≤4};(2)∵A={x|x>3或x<2},B={x|0<x≤4},∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.【答案】【解析】解:(1)∵S n=a n﹣,∴当n≥2时,a n=S n﹣S n﹣1=a n﹣﹣,即a n=3a n﹣1,.∵a1=S1=﹣,∴a1=3.∴数列{a n}是等比数列,∴a n=3n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1.(2)∵c n=a n•b n=(2n﹣1)•3n,∵T n=1×3+3×32+5×33+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴3T n=1×32+3×33+5×34+…+(2n﹣3)3n+(2n﹣1)3n+1,两式相减得:﹣2T n=3+2×(32+33+34+…+3n)﹣(2n﹣1)3n+1,=﹣6﹣2(n﹣1)3n+1,∴T n=3+(n﹣1)3n+1.。
山东省济宁市微山县第一中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面α和直线l,则α内至少有一条直线与l ()A.平行B.相交C.垂直D.异面参考答案:C2. 已知是椭圆上一点,是椭圆的一个焦点,则以线段为直径的圆和以椭圆长轴为直径的圆的位置关系是A.相离B.内切 C.内含 D.可以内切,也可以内含参考答案:B略3. 将一颗骰子连续抛掷2次,则向上的点数之和为6的概率为()A.B. C. D.参考答案:A4. 抛物线的焦点为,点在抛物线上,且,弦中点在准线上的射影为的最大值为A. B.C.D.参考答案:D 5. 已知椭圆的左顶点为,右焦点为,点为椭圆上的一动点,则当取最小值的时候,的值为()A. B.3 C. D.参考答案:B6. 焦点为且与双曲线有相同的渐近线的双曲线方程是()A.B. C.D.参考答案:D7. 已知函数f(x)=,则f(f(﹣2))=( )A.B.C.D.9参考答案:D考点:函数的值.专题:函数的性质及应用.分析:首先求出﹣2对应的函数值,然后再求其对应的函数值.解答:解:由已知,﹣2<0,所以f(﹣2)=,又>0,所以f()=;故选D.点评:本题考查了分段函数的函数值求法;关键是明确自变量所属的范围,找到对应的解析式求值.8. 若,则( )(A )(B )B(C) C (D ) D参考答案: A9. 已知集合A ={1,2,3},,则A ∩B =A. {-2,-1,0,1,2,3}B. {-2,-1,0,1,2}C. {1,2,3}D. {1,2}参考答案:D 【分析】 求出集合中的范围确定出,再求和的交集即可【详解】则故选【点睛】本题主要考查了集合的运算法则及其交集运算,求出集合中的范围确定出是解题的关键,属于基础题。
10. 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A. B. C. D.参考答案:B解法一:由排列组合知识可知,所求概率;解法二:任取两个数可能出现的情况为(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4);符合条件的情况为(1,3)、(2,4),故.【考点定位】本题考查古典概型的概率运算,考查学生的基本运算能力.二、 填空题:本大题共7小题,每小题4分,共28分11. 正方体的内切球与外接球的表面积的比为 .参考答案:【考点】球的体积和表面积. 【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键. 12. 已知向量,,若,则实数x的值为.参考答案:﹣813. 某几何体的三视图如图所示,其中俯视图为等边三角形,则其外接球的表面积是______;参考答案:略14. 边长为4的正四面体中,为的中点,则平面与平面所成锐二面角的余弦值为参考答案:略15. 在一只布袋中有1形状大小一样的32颗棋子,其中有16颗红棋子,16棵绿棋子。
微山县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD的中点,则等( )A. B. C. D.2. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 3. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 4. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .45. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.B.C.D.6. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7.设复数z满足z(1+i)=2(i为虚数单位),则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i8.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.39.若实数x,y满足,则(x﹣3)2+y2的最小值是()A.B.8 C.20 D.210.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.11.已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为()A.B.C.﹣6 D.612.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________. 14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .15.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .16.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .17.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为18.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .三、解答题19.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
山东省济宁市微山第一中学2018-2019学年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于A. B. C. D.参考答案:C2. 有关命题的说法错误的是( )A.命题“若则”的逆否命题为:“若, 则”B.“”是“”的充分不必要条件C.对于命题:. 则:D.若为假命题,则、均为假命题参考答案:D略3. 下图是函数的导函数的图象,下列说法错误的是 ( )A.是函数的极小值点;B.是函数的极值点;C.在处切线的斜率大于零;D.在区间上单调递增.参考答案:B略4. 若不等式 x+px+q<0的解集为(-)则不等式qx+px+1>0的解集为()A.(-3,2) B.(-2,3) C.(-) D.R参考答案:B略5. 已知双曲线的渐近线方程为( )A. B. C. D.参考答案:A6. 若则f′(x)的解集为()A.B.(-1,0)C.D.参考答案:C略7. 已知等差数列{a n}的前n项和为S n,若m>1且a m﹣1+a m+1﹣a m2﹣1=0,S2m﹣1=39,则m等于()A.10 B.19 C.20 D.39参考答案:C【考点】等差数列的前n项和.【专题】计算题.【分析】利用等差数列的性质a m﹣1+a m+1=2a m,根据已知中a m﹣1+a m+1﹣a m2﹣1=0,我们易求出a m 的值,再根据a m为等差数列{a n}的前2m﹣1项的中间项(平均项),可以构造一个关于m 的方程,解方程即可得到m的值.【解答】解:∵数列{a n}为等差数列则a m﹣1+a m+1=2a m则a m﹣1+a m+1﹣a m2﹣1=0可化为2a m﹣a m2﹣1=0解得:a m=1,又∵S2m﹣1=(2m﹣1)a m=39则m=20故选C.【点评】本题考查的知识点是等差数列的性质,其中等差数列最重要的性质:当m+n=p+q 时,a m+a n=a p+a q,是解答本题的关键.8. 设点B是点A(2,-3,5)关于xOy平面的对称点,则|AB|=( )A.10 B. C. D.38参考答案:A9. 设P(x,y)是曲线C:为参数,0≤θ<2π)上任意一点,则的取值范围是()A.B.C.D.参考答案:C【考点】直线与圆的位置关系;直线的斜率;圆的参数方程.【分析】求出圆的普通方程,利用的几何意义,圆上的点与坐标原点连线的斜率,求出斜率的范围即可.【解答】解:曲线C:为参数,0≤θ<2π)的普通方程为:(x+2)2+y2=1,P(x,y)是曲线C:(x+2)2+y2=1上任意一点,则的几何意义就是圆上的点与坐标原点连线的斜率,如图:.故选C.10. 已知x,y满足的最大值为()A.1 B.2 C.3 D. 4参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为参考答案:12. 函数y=2x在[0,1]上的最小值为.参考答案:1【考点】函数的最值及其几何意义.【分析】分析函数y=2x在[0,1]上单调性,进而可得答案.【解答】解:函数y=2x在[0,1]上为增函数,故当x=0时,函数取最小值1,故答案为:113. 甲乙两名选手进行一场羽毛球比赛,采用三局二胜制,先胜两局者赢得比赛,比赛随即结束,已知任一局甲胜的概率为p,若甲赢得比赛的概率为q,则q-p取得最大值时p=______参考答案:【分析】利用表示出,从而将表示为关于的函数,利用导数求解出当时函数的单调性,从而可确定最大值点.【详解】甲赢得比赛的概率:,令,则,令,解得:当时,;当时,即在上单调递增;在上单调递减当时,取最大值,即取最大值本题正确结果:【点睛】本题考查利用导数求解函数的最值问题,关键是根据条件将表示为关于变量的函数,同时需要注意函数的定义域.14. 对于各项均为整数的数列,如果为完全平方数,则称数列具有“性质”,不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:(1)是的一个排列;(2)数列具有“性质”,则称数列具有“变换性质”。
高二年级阶段检测数学试题注意事项:本试卷分第第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试试题卷和答题卡一并交回。
一、选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果集合{}1->=x x P ,那么( )A .P ⊆0B .P ∈}0{C .P ∈∅D .P ⊆}0{ 2.i 是虚数单位,复数131ii的共轭复数是( ) A .2i B .2i C .12i D .12i 3.函数2))(2(a x a x y -+=的导数为( )A .)(222a x -B .)(322a x +C .)(322a x -D .)(222a x + 4.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+B .2y x =-C .1y x=D .||y x x =5.下列四个命题正确的是( ) ①样本取值的范围会影响回归方程的适用范围。
②残差平方和越小的模型,拟合的效果越好。
③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好。
④随机误差e 是衡量预报变量唯一的一个量。
A.①②B.③④C. ①④D.②③6. 方程220xx +-=的解所在的区间为( )A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.对于ab b a R b a 2,,≥+∈+……大前提xx x x 121⋅≥+……小前提所以21≥+xx ……结论 以上推理过程中的错误为( ) A .大前提B .小前提C .结论D .无错误8. 已知a >1,函数xa y =与)(log x y a -=的图象可能是( )9.在工商管理学中,MRP 指的是物质需要计划,基本MRP 的体系结构如图所示.从图中能看出影响基本MRP 的主要因素有( )个.A .1B .2C .3D .410. 已知m x x x f +-=2362)((m 为常数)在[]2,2-上有最大值3,那么此函数在[]2,2-上的最小值为( )A .37-B .29-C .5-D .11-第Ⅱ卷xy Oxy Oxy OxyOAB二、填空题:本大题共5小题,每小题5分,共25分.11.若函数[]2(2)3,,y x a x x a b=+++∈的图像关于直线1x=对称,则______b=12.当x∈(0,+∞)时,幂函数y=(m2-m-1)x m为减函数,则实数m的值为________.13.已知0.1 1.32log0.3,2,0.2a b c===,则cba,,的大小关系是________.14. 已知)(xfy=在定义域)6,3(-内可导,其图像如图,其导函数为)(xfy'=,则不等式0)(≤'xf的解集为.15.给出下列三个命题:①若ABC∆三边为cba,,,面积为S,内切圆的半径cbaSr++=2,则由类比推理知四面体ABCD的内切球半径43213SSSSVR+++=(其中,V为四面体的体积,4321,,,SSSS为四个面的面积);②若回归直线的斜率估计值是23.1,样本点的中心为)5,4(,则回归直线方程是08.023.1+=∧xy;③若偶函数()()f x x R∈满足(2)()f x f x+=,且[0,1]x∈时,()f x x=,则方程3()log||f x x=有3个根.其中,正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知集合{|36}A x x =-<≤,{|37}B x b x b =-<<+,{|45}M x x =-≤<,全集U =R . (1)求M A ⋂; (2)若R M C B U =⋃)(,求实数b 的取值范围.17.(本小题满分12分)当m 为何实数时,复数z =2223225m m m ---+()2m 3m 10i +- (1)是实数; (2)是虚数; (3)是纯虚数.18.(本小题满分12分)已知函数)1,0(log )(≠>=a a x x f a ,且1)2()3(=-f f . (1)若)52()23(+<-m f m f ,求实数m 的取值范围;(2)求使27log )2(23=-x x f 成立的x 的值.19.(本小题12分)为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人,根据以上数据列出22⨯列联表,并判断40岁以上的人患胃病与否和生活规律是否有关。
微山县第一中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 2. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .183. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l4. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( )A .14 B .18 C .23 D .112 5. 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 6. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等. 7. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +8. 执行如图所示的程序框图,输出的值是( )A .5B .4C .3D .29. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=10.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.11.集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 12.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .14.计算121(lg lg 25)1004--÷= ▲ .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.16.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.18.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;19.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.20.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]21.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.22.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.微山县第一中学2018-2019学年高二9月月考数学试题解析(参考答案)一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .2. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 3. 【答案】C 111] 【解析】考点:线线,线面,面面的位置关系 4. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 5. 【答案】A 【解析】试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此()()()()20164416412f f f =-=-=--=-,故选A.考点:1、函数的奇偶性;2、函数的解析式及单调性. 6. 【答案】B7. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 8. 【答案】D 【解析】考点:1、程序框图;2、循环结构. 9. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 10.【答案】D第Ⅱ卷(共90分)11.【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1 12.【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】25【解析】考点:分层抽样方法.14.【答案】-20【解析】考点:对数式运算15.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:116.【答案】±.【解析】分析题意得,问题等价于264x ax++≤只有一解,即220x ax++≤只有一解,∴280a a∆=-=⇒=±,故填:±.三、解答题(本大共6小题,共70分。