2008年江西省高考数学试卷(理科)答案与解析
- 格式:doc
- 大小:346.50 KB
- 文档页数:17
准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C k n P k(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin 2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6 3.若函数y =f (x )的值域是[21,3],则函数F (x )=f (x )+)(1x f 的值域是 A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{a n }中,a 1=2,a n +1=a n +ln(1+n1),则a n =A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n 6.函数y =tan x +sin x -|tan x -sin x |在区间(2π,23π)内的图象大致是A B C D7.已知F 1、F 2是椭圆的两个焦点.满足1MF ²2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21] C .(0,22) D .[22,1) 8.(1+3x )6(1+41x)10展开式中的常数项为A .1B .46C .4245D .42469.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是A .a l b l +a 2b 2B .a l a 2+b 1b 2C .a 1b 2+a 2b lD .21 10.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .4801 12.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项: 第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点A(1,2)、B(3,-2)、C(9,7),若E 、F 为线段BC 的三等分点,则AE ²AF= . 14.不等式132+-xx ≤21的解集为 . 15.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c . 18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi (i =1,2)表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)等差数列{ a n }各项均为正整数,a 1=3,前n 项和为S n ,等比数列{ b n }中,b 1=1,且b 2S 2=64,{ b n }是公比为64的等比数列. (1)求a n 与b n ; (2)证明:11S +21S +……+n S 1<43. 20.(本小题满分12分)正三棱锥O -ABC 的三条侧棱OA 、OB 、OC两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA 、OB 、OC或其延长线分别相交于A 1、B 1、C 1,已知OA 1=23. (1)证明:B 1C 1⊥平面OAH ;(2)求二面角O -A 1B 1-C 1的大小. 21.(本小题满分12分) 设点P (x 0,y 0) 在直线x =m ( y ≠±m ,0<m <1)上,过点P 作双曲线搿x 2-y 2=1的两条切线P A 、PB ,切点为A 、B ,定点M(m1,0). (1)过点A 作直线x -y =0的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程; (2)求证:A 、M 、B 三点共线.22.(本小题满分14分) 已知函数f (x )=x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当a =8时,求f (x )的单调区间; (2)对任意正数a ,证明:l <f (x )<2.。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(江西卷)(理科) 测试题 2019.91,在数列中,, ,则A .B .C .D .2,函数在区间内的图象是3,已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是A .B .C .D .4,展开式中的常数项为 A .1 B .46 C .4245 D .42465,若,则下列代数式中值最大的是A .B .C .D .6,连结球面上两点的线段称为球的弦。
半径为4的球的两条弦、的长度分别等于、、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦、可能相交于点 ②弦、可能相交于点 ③的最大值为5 ④的最小值为1 其中真命题的个数为A .1个B .2个C .3个D .4个{}n a 12a =11ln(1)n n a a n +=++n a =2ln n +2(1)ln n n +-2ln n n +1ln n n ++tan sin tan sin y x x x x=+--3(,)22ππ1F 2F 120MF MF ⋅=M (0,1)1(0,]2(0,22610(1(1+121212120,01a a b b a a b b <<<<+=+=,且1122a b a b +1212a a b b +1221a b a b +12AB CD M N AB CD AB CD M AB CD N MN MN7,电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为A .B .C .D .8,已知函数,,若对于任一实数,与至少有一个为正数,则实数的取值范围是A .B .C .D . 9,在中,角所对应的边分别为,,,求及 10,某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。
2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kkn kn n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23 D .10[3,]34.1limx →=A .12B .0C .12- D .不存在5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120M F M F ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C.(0,2D.28.6101(1(1++展开式中的常数项为A .1B .46C .4245D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a b b + C .1221a b a b + D .1210.连结球面上两点的线段称为球的弦。
绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为 A .0 B .2 C .3 D .6 【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)函数的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C .D .3.(5分)在△ABC 中,=,=.若点D 满足=2,则=( )A .B .C .D .4.(5分)设a ∈R ,且(a +i )2i 为正实数,则a=( )A .2B .1C .0D .﹣15.(5分)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=() A .138B .135C .95D .236.(5分)若函数y=f (x )的图象与函数y=ln 的图象关于直线y=x 对称,则f (x )=( )A .e 2x ﹣2B .e 2xC .e 2x +1D .e 2x +27.(5分)已知曲线y=在点(3,2)处的切线与直线ax +y +1=0垂直,则a的值为( )A .2B .C .﹣D .﹣28.(5分)为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。
准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin 2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B的所有元素之和为A .0B .2C .3D .63.若函数y =f (x )的值域是[21,3],则函数F (x )=f (x )+)(1x f 的值域是 A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim 1--+→x x x =A .21 B .0 C .-21 D .不存在 5.在数列{a n }中,a 1=2,a n +1=a n +ln(1+n 1),则a n = A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n6.函数y =tan x +sin x -|tan x -sin x |在区间(2π,23π)内的图象大致是A B C D7.已知F 1、F 2是椭圆的两个焦点.满足1MF ²2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21]C .(0,22)D .[22,1) 8.(1+3x )6(1+41x )10展开式中的常数项为A .1B .46C .4245D .42469.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是A .a l b l +a 2b 2B .a l a 2+b 1b 2C .a 1b 2+a 2b lD .21 10.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N③MN 的最大值为5 ④MN 的最小值为l其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A .1801B .2881C .3601D .4801 12.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点A(1,2)、B(3,-2)、C(9,7),若E 、F 为线段BC 的三等分点,则AE ²AF = .14.不等式132+-x x ≤21的解集为 . 15.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF = . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan 2B A ++tan 2C =4,sin B sin C =cos 22A .求A 、B 及b 、c . 18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi (i =1,2)表示方案i 实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)等差数列{ a n }各项均为正整数,a 1=3,前n 项和为S n ,等比数列{ b n }中,b 1=1,且b 2S 2=64,{ b n }是公比为64的等比数列.(1)求a n 与b n ;(2)证明:11S +21S +……+n S 1<43. 20.(本小题满分12分)正三棱锥O -ABC 的三条侧棱OA 、OB 、OC两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA 、OB 、OC 或其延长线分别相交于A 1、B 1、C 1,已知OA 1=23. (1)证明:B 1C 1⊥平面OAH ;(2)求二面角O -A 1B 1-C 1的大小.21.(本小题满分12分)设点P (x 0,y 0) 在直线x =m ( y ≠±m ,0<m <1)上,过点P 作双曲线搿x 2-y 2=1的两条切线PA 、PB ,切点为A 、B ,定点M(m1,0). (1)过点A 作直线x -y =0的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A 、M 、B 三点共线.22.(本小题满分14分)已知函数f (x )=x +11+a +11+8+ax ax ,x ∈(0,+∞). (1)当a =8时,求f (x )的单调区间;(2)对任意正数a ,证明:l <f (x )<2.。
2008年江西省高考数学试卷理科参考答案与试题解析一、选择题共12小题,每小题5分,满分60分1.5分2008 江西在复平面内,复数z=sin2+icos2对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限考点复数的代数表示法及其几何意义.分析由复数的几何意义作出相应判断.解答解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.点评本题考查的是复数的几何意义,属于基础题.2.5分2008 江西定义集合运算:AB={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合AB的所有元素之和为A.0 B.2 C.3 D.6考点集合的确定性、互异性、无序性.分析根据题意,结合题目的新运算法则,可得集合AB中的元素可能的情况;再由集合元素的互异性,可得集合AB,进而可得答案.解答解:根据题意,设A={1,2},B={0,2},则集合AB中的元素可能为:0、2、0、4,又有集合元素的互异性,则AB={0,2,4},其所有元素之和为6;故选D.点评解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.5分2008 江西若函数y=fx的值域是,则函数的值域是A.B.C.D.考点基本不等式在最值问题中的应用.分析先换元,转化成积定和的值域,利用基本不等式.解答解:令t=fx,则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B点评做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.5分2008 江西=A.B.0 C. D.不存在考点极限及其运算.专题计算题.分析把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.解答解:==,故选A.点评本题考查池函数的极限,解题时要注意计算能力的培养.5.5分2008 江西在数列{a n}中,a1=2,a n+1=a n+ln1+,则a n=A.2+lnn B.2+n﹣1lnn C.2+nlnn D.1+n+lnn考点数列的概念及简单表示法.专题点列、递归数列与数学归纳法.分析把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答解:∵,,…∴=故选:A.点评数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.5分2008 江西函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是A.B.C.D.考点正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.专题压轴题;分类讨论.分析本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.解答解:函数,分段画出函数图象如D图示,故选D.点评准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.5分2008 江西已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是A.0,1 B.0,C.0,D.,1考点椭圆的应用.专题计算题.分析由=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.解答解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.点评本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.5分2008 江西展开式中的常数项为A.1 B.46 C.4245 D.4246考点二项式定理的应用.专题计算题.分析利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.解答解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D点评本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.5分2008 江西若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.考点基本不等式.分析本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.解答解:又∵a1b1+a2b2﹣a1b2+a2b1=a1﹣a2b1﹣a1﹣a2b2=a2﹣a1b2﹣b1>0∴a1b1+a2b2>a1b2+a2b1而1=a1+a2b1+b2=a1b1+a2b1+a1b2+a2b2<2a1b1+a2b2∴解法二:取,,,即可.故选A点评本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.5分2008 江西连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为A.1个B.2个C.3个D.4个考点球面距离及相关计算.专题计算题;综合题.分析根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.解答解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.点评本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.5分2008 江西电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为A.B.C.D.考点等可能事件的概率.专题计算题;压轴题.分析本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.解答解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C点评本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.5分2008 江西已知函数fx=2mx2﹣24﹣mx+1,gx=mx,若对于任一实数x,fx与gx至少有一个为正数,则实数m的取值范围是A.0,2 B.0,8 C.2,8 D.﹣∞,0考点一元二次不等式的应用.专题压轴题.分析当m≤0时,显然不成立;当m>0时,因为f0=1>0,所以仅对对称轴进行讨论即可.解答解:当m≤0时,当x接近+∞时,函数fx=2mx2﹣24﹣mx+1与gx=mx均为负值,显然不成立当x=0时,因f0=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=44﹣m2﹣8m=4m﹣8m﹣2<0即可,即4<m<8则0<m<8故选B.点评本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题共4小题,每小题4分,满分16分13.4分2008 江西直角坐标平面上三点A1,2、B3,﹣2、C9,7,若E、F为线段BC的三等分点,则= 22 .考点平面向量数量积的运算.分析本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.解答解:根据三等分点的坐标公式,得E5,1,F7,4;=4,﹣1,=6,2=4×6﹣2=22,故答案为:22点评看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.4分2008 江西不等式的解集为﹣∞,﹣3∪0,1.考点指数函数的单调性与特殊点;其他不等式的解法.专题计算题.分析≤0x∈﹣∞,﹣3∪0,1解答解:∵,∴,∴,∴∴x∈﹣∞,﹣3∪0,1答案:﹣∞,﹣3∪0,1.点评本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.4分2008 江西过抛物线x2=2pyp>0的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点点A在y轴左侧,则= .考点抛物线的简单性质.专题计算题;压轴题.分析作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣2,整理后两边同除以x B2得关于的一元二次方程,求得的值,进而求得.解答解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A x B=﹣p2,∴x A x B=﹣p2=﹣2=﹣x A2+x B2+2x A x B∴3x A2+3x B2+10x A x B=0两边同除以x B2x B2≠0得32+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣﹣=.故答案为:点评本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.4分2008 江西如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P图2有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD 写出所有真命题的代号.考点棱柱的结构特征.专题综合题;压轴题;探究型.分析设出图1的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.解答解:设图1水的高度h2几何体的高为h1图2中水的体积为b2h1﹣b2h2=b2h1﹣h2,所以b2h2=b2h1﹣h2,所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD点评本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题共6小题,满分74分17.12分2008 江西在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.考点三角形中的几何计算.专题计算题.分析由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sinB﹣C=0,进而求得B,最后由正弦定理即可求得b,c.解答解:由得∴∴∴,又C∈0,π∴,或由2sinBcosC=sinA得2sinBcosC=sinB+C即sinB﹣C=0∴由正弦定理得点评本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.12分2008 江西某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.若实施方案二,预计当年可以使柑桔产量达到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.实施每种方案,第二年与第一年相互独立.令ξi i=1,2表示方案实施两年后柑桔产量达到灾前产量的倍数.1.写出ξ1、ξ2的分布列;2.实施哪种方案,两年后柑桔产量超过灾前产量的概率更大3.不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大考点离散型随机变量及其分布列;离散型随机变量的期望与方差.专题计算题;应用题.分析1根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.2根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.3根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.解答解:1ξ1的所有取值为、、、、ξ2的所有取值为、、、、,ξ1、ξ2的分布列分别为:2令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,PA=+=,PB=+=∴方案二两年后柑桔产量超过灾前产量的概率更大3令ηi表示方案i所带来的效益,则∴Eη1=,Eη2=∴方案一所带来的平均效益更大.点评本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.12分2008 江西数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.1求a n,b n;2求证.考点数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.专题证明题;综合题.分析1设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+n﹣1d,b n=q n﹣1,依题意有,由此可导出a n与b n.2S n=3+5+…+2n+1=nn+2,所以,然后用裂项求和法进行求解.解答解:1设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+n﹣1d,b n=q n﹣1依题意有①由6+dq=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2n﹣1=2n+1,b n=8n﹣12S n=3+5+…+2n+1=nn+2∴==.点评本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.20.12分2008 江西如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.1求证:B1C1⊥平面OAH;2求二面角O﹣A1B1﹣C1的大小.考点直线与平面垂直的判定;与二面角有关的立体几何综合题.专题计算题;证明题;综合题.分析1要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;2作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.解答解:1证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.2作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:1以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH2由已知,设B10,0,z则由与共线得:存在λ∈R有得同理:C10,3,0,∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为3由2知,,B0,0,2,平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.点评本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.12分2008 江西设点Px0,y0在直线x=my≠±m,0<m<1上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.1求证:三点A、M、B共线.2过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.考点直线与圆锥曲线的综合问题.专题计算题;综合题;压轴题;数形结合;转化思想.分析1先根据题意设Ax1,y1,Bx2,y2,将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点Ax1,y1,Bx2,y2都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.2设重心Gx,y,欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程.解答证明:1设Ax1,y1,Bx2,y2,由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=kx﹣x1由得1﹣k2x2﹣2ky1﹣kx1x﹣y1﹣kx12﹣1=0从而△=4k2y1﹣kx12+41﹣k2y1﹣kx12+41﹣k2=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又Pm,y0在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点Ax1,y1,Bx2,y2都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线2垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心Gx,y所以解得由x12﹣y12=1可得即为重心G所在曲线方程点评本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.14分2008 江西已知函数fx=++,x∈0,+∞1当a=8时,求fx的单调区间;2对任意正数a,证明:1<fx<2.考点利用导数研究函数的单调性;不等式的证明.专题函数的性质及应用;不等式的解法及应用.分析1把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.2令,则abx=8①,②,将fx解析式进行放缩,使用基本不等式,可证fx>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将fx解析式进行放缩,可证fx<2;当a+b<7③,将fx解析式进行放缩,再使用基本不等式证明fx<2,结论得证.解答解:1当a=8时,,求得,于是当x∈0,1时,f'x≥0;而当x∈1,+∞时,f'x≤0.即fx在0,1中单调递增,而在1,+∞中单调递减.2对任意给定的a>0,x>0,由,若令,则abx=8①,且②.一先证fx>1:因为,,,又由,得a+b+x≥6.所以==.二再证fx<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.ⅰ当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.ⅱ当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>1+a1+b,即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得fx<2.综上所述,对任何正数a,x,皆有1<fx<2.点评本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.。
准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin 2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B的所有元素之和为A .0B .2C .3D .63.若函数y =f (x )的值域是[21,3],则函数F (x )=f (x )+)(1x f 的值域是 A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim 1--+→x x x =A .21 B .0 C .-21 D .不存在 5.在数列{a n }中,a 1=2,a n +1=a n +ln(1+n 1),则a n = A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n6.函数y =tan x +sin x -|tan x -sin x |在区间(2π,23π)内的图象大致是A B C D7.已知F 1、F 2是椭圆的两个焦点.满足1MF ·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21]C .(0,22)D .[22,1) 8.(1+3x )6(1+41x )10展开式中的常数项为A .1B .46C .4245D .42469.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是A .a l b l +a 2b 2B .a l a 2+b 1b 2C .a 1b 2+a 2b lD .21 10.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N③MN 的最大值为5 ④MN 的最小值为l其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A .1801B .2881C .3601D .4801 12.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点A(1,2)、B(3,-2)、C(9,7),若E 、F 为线段BC 的三等分点,则·= .14.不等式132+-x x ≤21的解集为 . 15.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF = . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan 2B A ++tan 2C =4,sin B sin C =cos 22A .求A 、B 及b 、c . 18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi (i =1,2)表示方案i 实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)等差数列{ a n }各项均为正整数,a 1=3,前n 项和为S n ,等比数列{ b n }中,b 1=1,且b 2S 2=64,{ b n }是公比为64的等比数列.(1)求a n 与b n ;(2)证明:11S +21S +……+n S 1<43. 20.(本小题满分12分)正三棱锥O -ABC 的三条侧棱OA 、OB 、OC两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA 、OB 、OC 或其延长线分别相交于A 1、B 1、C 1,已知OA 1=23. (1)证明:B 1C 1⊥平面OAH ;(2)求二面角O -A 1B 1-C 1的大小.21.(本小题满分12分)设点P (x 0,y 0) 在直线x =m ( y ≠±m ,0<m <1)上,过点P 作双曲线搿x 2-y 2=1的两条切线PA 、PB ,切点为A 、B ,定点M(m1,0). (1)过点A 作直线x -y =0的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A 、M 、B 三点共线.22.(本小题满分14分)已知函数f (x )=x +11+a +11+8+ax ax ,x ∈(0,+∞). (1)当a =8时,求f (x )的单调区间;(2)对任意正数a ,证明:l <f (x )<2.。
2008年江西高考数学理科试题一. 选择题(本大题共12小题,共0分)1. (2008年江西理1)在复平面内,复数对应的点位于(D )A.第一象限B.第二象限C.第三象限D.第四象限2. (2008年江西理2)定义集合运算:设,,则集合的所有元素之和为( D )A.0B.2C.3D.63. (2008年江西理3)若函数的值域是,则函数的值域是( B )A. B. C. D.4. (2008年江西理4)( A)A.B.C.D.不存在5. (2008年江西理5)在数列中,,,则(A )A. B. C. D.6. (2008年江西理6)函数在区间内的图象是( D )A. B.C. D.7. (2008年江西理7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是( C )A.B. C. D.8. (2008年江西理8)展开式中的常数项为( D)A.1B.46C.4245D.42469. (2008年江西理9)若,则下列代数式中值最大的是(A )A. B. C. D.10. (2008年江西理10)连结球面上两点的线段称为球的弦。
半径为4的球的两条弦、的长度分别等于、,、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦、可能相交于点②弦、可能相交于点③的最大值为5 ④的最小值为1其中真命题的个数为(C)A.1个B.2个C.3个D.4个11. (2008年江西理11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为( C)A. B. C. D.12. (2008年江西理12)已知函数,,若对于任一实数,与至少有一个为正数,则实数的取值范围是( B )A. B. C. D.二. 填空题(本大题共4小题,共0分)13. (2008年江西理13)直角坐标平面上三点,若为线段的三等分点,则=____22____.14. (2008年江西理14)不等式的解集为______.15. (2008年江西理15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则________.16. (2008年江西理16)如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。
2008年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】由复数的几何意义作出相应判断.【解答】解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.【点评】本题考查的是复数的几何意义,属于基础题.2.(5分)(2008•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6【考点】集合的确定性、互异性、无序性.【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.(5分)(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.【考点】基本不等式在最值问题中的应用.【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B【点评】做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.(5分)(2008•江西)=()A.B.0 C. D.不存在【考点】极限及其运算.【专题】计算题.【分析】把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.【解答】解:==,故选A.【点评】本题考查池函数的极限,解题时要注意计算能力的培养.5.(5分)(2008•江西)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn【考点】数列的概念及简单表示法.【专题】点列、递归数列与数学归纳法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.【点评】数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n 换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.(5分)(2008•江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.【考点】正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.【专题】压轴题;分类讨论.【分析】本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.【解答】解:函数,分段画出函数图象如D图示,故选D.【点评】准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.(5分)(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)【考点】椭圆的应用.【专题】计算题.【分析】由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.(5分)(2008•江西)展开式中的常数项为()A.1 B.46 C.4245 D.4246【考点】二项式定理的应用.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.【解答】解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D【点评】本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.(5分)(2008•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2 B.a1a2+b1b2 C.a1b2+a2b1 D.【考点】基本不等式.【分析】本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.【解答】解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A【点评】本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.(5分)(2008•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【考点】球面距离及相关计算.【专题】计算题;综合题.【分析】根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.【解答】解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.【点评】本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.(5分)(2008•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.【考点】等可能事件的概率.【专题】计算题;压轴题.【分析】本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.【解答】解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C【点评】本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.(5分)(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【考点】一元二次不等式的应用.【专题】压轴题.【分析】当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.【点评】本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=22.【考点】平面向量数量积的运算.【分析】本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.【解答】解:根据三等分点的坐标公式,得E(5,1),F(7,4);=(4,﹣1),=(6,2)=4×6﹣2=22,故答案为:22【点评】看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.(4分)(2008•江西)不等式的解集为(﹣∞,﹣3]∪(0,1].【考点】指数函数的单调性与特殊点;其他不等式的解法.【专题】计算题.【分析】≤0⇒x ∈(﹣∞,﹣3]∪(0,1]【解答】解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].【点评】本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.(4分)(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.【考点】抛物线的简单性质.【专题】计算题;压轴题.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣()2得关于的一元二次方程,求得的值,进而求得.2,整理后两边同除以xB【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A•x B=﹣p2,∴x A x B=﹣p2=﹣()2=﹣(x A2+x B2+2x A x B)∴3x A2+3x B2+10x A x B=0两边同除以x B2(x B2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣(﹣)=.故答案为:【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.(4分)(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD(写出所有真命题的代号).【考点】棱柱的结构特征.【专题】综合题;压轴题;探究型.【分析】设出图(1)的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.【解答】解:设图(1)水的高度h2几何体的高为h1图(2)中水的体积为b2h1﹣b2h2=b2(h1﹣h2),所以b2h2=b2(h1﹣h2),所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD【点评】本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题(共6小题,满分74分)17.(12分)(2008•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.【考点】三角形中的几何计算.【专题】计算题.【分析】由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sin(B﹣C)=0,进而求得B,最后由正弦定理即可求得b,c.【解答】解:由得∴∴∴,又C∈(0,π)∴,或由2sinBcosC=sinA得2sinBcosC=sin(B+C)即sin(B﹣C)=0∴由正弦定理得【点评】本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.(12分)(2008•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;应用题.【分析】(1)根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.(2)根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.(3)根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.【解答】解:(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25ξ2的所有取值为0.8、0.96、1.0、1.2、1.44,ξ1、ξ2的分布列分别为:(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,P(A)=0.15+0.15=0.3,P(B)=0.24+0.08=0.32∴方案二两年后柑桔产量超过灾前产量的概率更大(3)令ηi表示方案i所带来的效益,则∴Eη1=14.75,Eη2=14.1∴方案一所带来的平均效益更大.【点评】本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.(12分)(2008•江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求a n,b n;(2)求证.【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.【专题】证明题;综合题.【分析】(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n ﹣1,依题意有,由此可导出a n与b n.(2)S n=3+5+…+(2n+1)=n(n+2),所以,然后用裂项求和法进行求解.【解答】解:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1依题意有①由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2(n﹣1)=2n+1,b n=8n﹣1(2)S n=3+5+…+(2n+1)=n(n+2)∴==.【点评】本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.20.(12分)(2008•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.【考点】直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(1)要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;(2)作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.【解答】解:(1)证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.(2)作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:(1)以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH(2)由已知,设B1(0,0,z)则由与共线得:存在λ∈R有得同理:C1(0,3,0),∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为(3)由(2)知,,B(0,0,2),平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12分)(2008•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.【考点】直线与圆锥曲线的综合问题.【专题】计算题;综合题;压轴题;数形结合;转化思想.【分析】(1)先根据题意设A(x1,y1),B(x2,y2),将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点A (x1,y1),B(x2,y2)都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.(2)设重心G(x,y),欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程.【解答】证明:(1)设A(x1,y1),B(x2,y2),由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=k(x﹣x1)由得(1﹣k2)x2﹣2k(y1﹣kx1)x﹣(y1﹣kx1)2﹣1=0从而△=4k2(y1﹣kx1)2+4(1﹣k2)(y1﹣kx1)2+4(1﹣k2)=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又P(m,y0)在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线(2)垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心G(x,y)所以解得由x12﹣y12=1可得即为重心G 所在曲线方程【点评】本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.(14分)(2008•江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.【考点】利用导数研究函数的单调性;不等式的证明.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.(2)令,则abx=8①,②,将f(x)解析式进行放缩,使用基本不等式,可证f(x)>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将f(x)解析式进行放缩,可证f(x)<2;当a+b<7③,将f(x)解析式进行放缩,再使用基本不等式证明f(x)<2,结论得证.【解答】解:(1)当a=8时,,求得,于是当x∈(0,1]时,f'(x)≥0;而当x∈[1,+∞)时,f'(x)≤0.即f(x)在(0,1]中单调递增,而在[1,+∞)中单调递减.(2)对任意给定的a>0,x>0,由,若令,则abx=8①,且②.(一)先证f(x)>1:因为,,,又由,得a+b+x≥6.所以==.(二)再证f(x)<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.(ⅰ)当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.(ⅱ)当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>(1+a)(1+b),即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得f(x)<2.综上所述,对任何正数a,x,皆有1<f(x)<2.【点评】本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.。