深圳大学数学专业考纲
- 格式:doc
- 大小:38.50 KB
- 文档页数:5
2024年硕士研究生招生数学考试大纲一、考试目的与基本要求2024年硕士研究生招生数学考试是为了选拔优秀的数学专业研究生而设立的。
考试旨在评估考生在数学领域的基础知识和能力,以及对数学应用和解决问题的能力。
考试要求考生能够熟练掌握数学的基本概念、定理和推理方法,具备独立思考和解决数学问题的能力。
二、考试内容与形式2024年硕士研究生招生数学考试的内容包括数学分析、线性代数、概率论与数理统计三个主要领域。
考试形式为笔试,分为两个部分:选择题和解答题。
1. 数学分析:主要内容包括实数与数列、函数与极限、连续与导数、积分与微分方程等。
考生需熟练掌握实数的基本性质和数列的收敛性,能够应用极限的定义和性质解决极限问题。
此外,考生还需具备基本的导数和积分计算能力,能够理解函数的连续性和导数的几何意义,并能运用微分方程解决相关问题。
2. 线性代数:主要内容包括向量空间与矩阵、线性方程组、特征值与特征向量、二次型等。
考生需熟悉向量空间的基本定义和性质,能够应用矩阵进行线性变换和线性方程组的求解。
此外,考生还应理解特征值和特征向量的概念以及它们在线性变换中的应用,能够掌握二次型的基本理论和应用方法。
3. 概率论与数理统计:主要内容包括概率基础、随机变量、随机过程、统计推断等。
考生需了解概率空间和概率的基本概念,能够掌握随机变量的概率分布、矩、生成函数等基本性质,并能运用随机变量解决概率统计问题。
此外,考生还需具备统计推断的基本知识和方法,能够进行点估计、区间估计和假设检验等统计推断问题的分析和计算。
三、考试评分标准与要求2024年硕士研究生招生数学考试将根据考生在各个领域的掌握程度和解题能力进行评分。
考试中选择题占总分的50%,解答题占总分的50%。
对于选择题,考生应根据题目要求选择正确答案,并将答案填涂在答题卡上。
每题4个选项中只有一个正确答案,每题得分为1分。
若答案错误或未选择答案,不得分。
对于解答题,考生应根据题目要求给出完整的解题过程和答案,并写清楚各个步骤和推理过程,以便评分人员准确判断和评分。
2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
在我决定考研的那一刻正面临着我人生中的灰暗时期,那时发生的事对当时的我来讲是一个重大的打击,我甚至一再怀疑自己可不可以继续走下去,而就是那个时候我决定考研,让自己进入一个新的阶段,新的人生方向。
那个时刻,很大意义上是想要转移自己的注意力,不再让自己纠结于一件耗费心力和情绪的事情。
而如今,已相隔一年的时间,虽然这一年相当漫长,但在整个人生道路上不过是短短的一个线段。
就在短短的一年中我发现一切都在不知不觉中发生了变化。
曾经让自己大为恼火,让自己费尽心力和心绪的事情现如今不过是弹指的一抹灰尘。
而之所以会有这样的心境变化,我认为,是因为,在备考的这段时间内,我的全身心进入了一个全然自我,不被外界所干扰的心境,日复一日年复一年的做着同样枯燥、琐碎、乏味的事情。
这不正是一种修行吗,若说在初期,只是把自己当作机器一样用以逃避现实生活的灾难的话,但在后期就是真的在这过程中慢慢发生了变化,不知不觉中进入到了忘记自身的状态里。
所以我就终于明白,佛家坐定,参禅为什么会叫作修行了。
本来无一物,何处惹尘埃。
所以经过这一年我不仅在心智上更加成熟,而且也成功上岸。
正如我预期的那样,我开始进入一个新的阶段,有了新的人生方向。
在此,只是想要把我这一年备考过程中的积累的种种干货和经验记录下来,也希望各位看到后能够有所帮助,只不过考研毕竟是大工程,所以本篇内容会比较长,希望大家可以耐心看完,文章结尾会附上我的学习资料供大家下载。
深圳大学数学的初试科目为:(101)思想政治理论(201)英语一(711)数学分析和(931)高等代数参考书目为:1.《数学分析》上下,欧阳光中等(复旦大学),高等教育出版社,2007年第3版2.《2020深圳大学考研931高等代数复习全析(含历年真题)》根据深圳大学考试大纲要求及《高等代数》(北大第四版)关于英语复习的一些小方法英语就是平时一定要做真题,把真题阅读里面不会的单词查出来,总结到笔记上,背诵单词,在考试之前,可以不用大块的时间,但一定要每天都看最起码2小时英语,把英语当做日常的任务,真题一定要做,而且单词要背熟,我在考试之前背了3遍的考研单词,作文可以背诵一些好词好句,在考场灵活运用。
最新!2020年深圳大学数学与统计学院应用统计专硕432统计学考试大纲、考试题型及复试参考书目一、考试性质全国硕士研究生入学统一考试应用统计硕士专业学位《统计学》考试是为高等院校和科研院所招收应用统计硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读应用统计专业硕士所必须的基本素质、一般能力和培养潜能,选拔具有发展潜力的优秀人才入学,为国家的经济建设培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决实际问题能力的高层次、应用型、复合型的统计专业人才。
二、考试要求测试考生是否掌握数据处收集、处理和分析的基本方法,概率论基本知识,具有运用统计方法解决实际问题的基本能力。
三、考试方式与分值(总分为150分)本科目考试题型有选择题(25个,每小题2分,共50分)简答(4个,每小题10分,共40分)分析题(2个,每小题15分,共30分)计算题(2个,每小题15分,共30分)题型与题目个数可以视情况微调。
四、考试内容第一部分统计学1. 调查的组织和实施。
2. 概率抽样与非概率抽样。
3. 数据的预处理。
4. 用图表展示定性数据。
5. 用图表展示定量数据。
6. 用统计量描述数据的水平:平均数、中位数、分位数和众数。
7. 用统计量描述数据的差异:极差、标准差、样本方差。
8. 参数估计的基本原理。
9. 一个总体和两个总体参数的区间估计。
10. 样本量的确定。
11. 假设检验的基本原理。
12. 一个总体和两个总体参数的检验。
13. 方差分析的基本原理。
14. 单因子和双因子方差分析的实现和结果解释。
15. 变量间的关系;相关关系和函数关系的差别。
16. 一元线性回归的估计和检验。
17. 用残差检验模型的假定。
18. 多元线性回归模型。
19. 多元线性回归的拟合优度和显著性检验。
20. 多重共线性现象。
21. 时间序列的组成要素。
22. 时间序列的预测方法。
第二部分概率论基础1.事件及关系和运算2.事件的概率3.条件概率和全概公式4.随机变量的定义5.离散型随机变量的分布列和分布函数;离散型均匀分布、二项分布和泊松分布6.连续型随机变量的概率密度函数和分布函数;均匀分布、正态分布和指数分布7.随机变量的期望与方差8.随机变量函数的期望与方差建议参考以下教材:1. 《统计学导论(第三版)》曾五一、肖红叶主编,科学出版社,2019.2. 《统计学(第七版)》,贾俊平主编,中国人民大学出版社,2018.3. 统计推断(翻译版,原书第2版), Casella,G. and Berger,R.L. 著;张忠占,傅莺莺译。
数学分析
一、考试的基本要求
《数学分析》考试大纲适用于报考深圳大学基础数学、应用数学专业硕士研究生的入学考试。
本考试是为招收基础数学、应用数学专业硕士生而拟设的具有选拔功能的考试。
其主要目的是测试考生对数学分析最基本内容的理解、掌握和熟练程度。
要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法, 具有较强的抽象思维能力、逻辑推理能力和运算能力。
二、考试内容和考试要求
1.极限与连续
数列极限、函数极限、函数的连续性和一致连续性、闭区间上连续函数的性质。
(1)掌握数列极限与函数极限的概念,理解无穷大(小)量的概念及基本性质;
(2)掌握极限的性质(唯一性、有界性、保号性)及四则运算性质、单调有界收敛定理、Cauchy 收敛准则、迫敛性(两边夹、夹挤)原理、两个重要极限;
(3)掌握函数的奇偶性、单调性、周期性、有界性等特殊性质;
(4)掌握连续性的概念及间断点的分类,掌握初等函数的连续性;
(5)掌握闭区间上连续函数的性质:有界性、最值性、介值性(零点定理)、一致连续性。
2.一元函数微分学
导数、微分、求导运算与法则、微分运算、微分中值定理、洛必达法则、泰勒公式、函数单调性、极值与最值、凸性与拐点。
(1)理解可导与可微、可导与连续的概念及其相互关系,理解导数的几何意义;理解函数极值点与极值、凸性、拐点等概念;
(2)掌握(高阶)导数、微分的四则运算与复合函数求导运算法则,掌握左、右导数的概念以及分段函数求导方法,掌握导函数的介值定理;
(3)会用导数研究函数的单调性与极值性,会用二阶导数研究函数的凸性与拐点;
(4)掌握微分中值定理及其在根的判定、不等式、不定式极限(洛必达法则)等方面的应用;
(5)掌握泰勒公式及其在极限、极值点判定等方面的应用;
(6)掌握极值与最值的求法、凸的等价定义、以及凸性在不等式等方面的应用。
3.实数的完备性
区间套、聚点、开覆盖的概念。
(1)理解聚点概念及其刻画,理解区间套、开覆盖等概念;
(2)理解关于实数完备性的六大基本定理及其证明思想;
(3)会用实数完备性定理证明闭区间上连续函数的有界性、最值性、介值性(零点定理)、一致连续性。
4.一元函数积分学
不定积分、定积分、换元法与分部积分法、牛顿莱布尼兹公式、变上限积分、积分中值定理、定积分在几何中的应用、无穷积分、瑕积分。
(1)掌握原函数、不定积分的概念及其基本性质;
(2)熟记不定积分的基本公式,掌握换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分;
(3)掌握定积分的概念、可积条件、可积函数类;
(4)掌握定积分的性质,熟练掌握微积分基本定理、定积分的换元积分法和分部积分法以及积分中值定理;
(5)掌握变上限积分的性质;
(6)能用定积分计算平面图形的面积、弧长、旋转体的体积与侧面积;
(7)理解广义积分收敛的概念、Cauchy收敛准则,掌握广义积分收敛性的比较判别法,无穷积分的狄利克雷判别法、阿贝尔判别法。
5.无穷级数
数项级数、绝对收敛和条件收敛、判别法、函数项级数、一致收敛、幂级数、收敛半径、收敛域、(幂级数)泰勒级数、傅立叶级数。
(1)理解数项级数敛散性的概念,掌握数项级数的基本性质;
(2)掌握正项级数的比较判别法和根式判别法;
(3)掌握任意项级数的狄利克雷判别法和阿贝尔判别法;
(4)掌握函数项级数(函数列)一致收敛性判别法、一致收敛函数项级数(函数列)的性质;
(5)掌握幂级数收敛半径与收敛域的概念与求法、幂级数的性质,能够将函数展开为幂级数;
(6) 掌握周期函数傅立叶级数的展开与收敛性。
6.多元函数微分学
多元函数的极限与连续、全微分、(高阶)偏导数、方向导数、泰勒公式、隐函数求导及几何应用。
(1)掌握多元函数极限、偏导数、全微分、方向导数的概念及其求法;
(2)掌握高阶偏导数的计算、低阶泰勒公式的计算;
(3) 掌握多元函数的极值、条件极值的概念及其判别;
(4)掌握隐函数求导方法及其几何应用。
7.含参变量积分
含参变量正常积分,含参变量反常积分、格马函数、贝塔函数
(1)掌握含参变量正常积分的分析性质;
(2)掌握含参变量反常积分的一致收敛性及判别法;
(3)掌握含参变量反常积分的分析性质;
(4)掌握格马函数与贝塔函数的性质与相互关系;
8.重积分、曲线积分和曲面积分
重积分、重积分计算、第一(二)型曲线积分、第一(二)型曲面积分、格林公式、高斯公式、斯托克斯公式
(1) 理解重积分、第一(二)型曲线积分、第一(二)型曲面积分的概念、基本性质与几何意义;
(2) 掌握二重积分与三重积分的常用计算方法及几何应用;
(3) 掌握第一(二)型曲线积分、第一(二)型曲面积分的计算;
(4) 掌握并能运用格林公式、高斯公式、斯托克斯公式。
三、考试的基本题型
主要题型可能有:判断题、填空题、计算题、证明题等。
试卷满分为150分。
高等代数
一、考试基本要求
本考试大纲适用于报考深圳大学应用数学专业和基础数学专业的硕士研究生《高等代数》科目的入学考试。
它的主要目的是测试考生是否系统地学习和掌握了高等代数的知识, 代数的思维方式, 以及现代数学的思想和方法. 要求考生具有一定的抽象思维能力、较强的逻辑推理能力和运算能力。
二、考试内容和考试要求
1.一元多项式
了解:数域的概念与性质、一元多项式环的概念、P[x]中n次多项式在数域P中的根不可能多于n个、多项式的因式分解.
理解:因式分解及唯一性定理、重因式的概念、余数定理、根与一次因式的关系、复系数多项式因式分解定理、实系数多项式因式分解定理.
掌握:多项式的概念、多项式的运算及性质、整除的概念与性质、带余除法定理及证明、最大公因式的概念与求法(欧几里德算法)、多项式互素的概念与性质、多项式互素的概念与性质、判别多项式f(x)有无重因式的方法、本原多项式的概念及性整系数多项式有理根的理论与方法、 Eisenstein判别法.
2.行列式
了解:行列式概念的引出及应用、排列、排列的逆序数、偶排列与奇排列的概念与性质排列、排列的逆序数、偶排列与奇排列的概念与性质、拉普拉斯定理.
理解:对角形行列式的性质、子式和代数余子式、行列式的乘法定理.
掌握:n级行列式的定义、行列式的性质、简化行列式的计算、行列式按一行(列)展开定理、Cramer法则及应用.
3. 线性方程组
了解:线性方程组初等变换的概念及性质.
理解:线性组合和线性表出以及两个向量组等价的概念、矩阵秩的概念、矩阵k级子式的概念及矩阵秩为r的充分必要条件、向量组线性相关性与齐次线性方程组解的关系.
掌握:利用初等变换(消元法)解线性方程组的方法、矩阵的初等变换、数域P上的n维
向量的概念及运算规则、向量组线性相关、线性无关的概念及基本性质、求向量组的极大线性无关组与秩、计算矩阵秩的方法、线性方程组有解判别定理、齐次线性方程组解的性质及基础解系的概念、齐次线性方程组基础解系的方法、非齐次线性方程组解的结构定理.
4. 矩阵
了解:矩阵乘积(为方阵时)的行列式与秩和它的因子的行列式与秩的关系、可逆矩阵与矩阵乘积的逆与秩的关系、分块矩阵及分块矩阵的运算规律及应用.
理解:矩阵A可逆及逆矩阵的概念、初等矩阵的概念与性质、矩阵等价的概念、任一矩阵都与其标准形等价.
掌握:矩阵的加法、乘法、数量乘法及矩阵的转置定义及性质、伴随矩阵与逆矩阵的关系、初等变换与初等矩阵的关系及矩阵A与B等价的充要条件、判定可逆性和求逆矩阵的方法.
5. 二次型
了解:二次型、二次型矩阵的概念及二次型的矩阵表示、复二次型、实二次型的规范形及规范形的唯一性(惯性定理).
理解:矩阵合同的概念及性质、二次型的标准形概念、任一对称矩阵都合同于一对角矩阵.
掌握:用非退化线性替换化二次型为标准形的方法、正定二次型及正定矩阵的概念、二次型为正定的充分必要条件及正定矩阵的性质.
6. 线性空间
了解:集合,映射的概念、线性空间的定义与简单性质、子空间的概念、直和的概念.
理解:线性空间维数、基与坐标的概念、子空间交与和的概念、维数公式、数域P上两个有限维线性空间同构的充分必要条件.
掌握:过渡矩阵的概念及坐标变换公式、线性空间V的非空子集W成为子空间的条件、生成的子空间概念及性质、掌握V1+V2是直和的充分必要条件、同构概念及性质.
7. 线性变换
了解:线性变换的简单性质;线性变换的乘法、加法、数乘、逆变换的概念与性质、特征子空间概念、Hamilton-Caylay定理.
理解:相似矩阵的概念与性质、线性变换的值域与核的概念及主要性质、不变子空间的概念及主要性质.
掌握:线性变换的概念、恒等变换、数乘变换、线性变换在某基下的矩阵的概念、在取定一
组基后,线性变换与n×n矩阵1—1对应、用线性变换矩阵计算向量的象的坐标的公式、线性变换在两组基下的矩阵之间的关系、特征值与特征向量的概念以及求特征值与特征向量的方法、n维线性空间的一个线性变换在某基下的矩阵为对角矩阵的充分必要条件及判别办法、矩阵相似于一个对角矩阵的条件.
8.欧几里得空间
了解:欧氏空间同构的概念及条件.
理解:欧几里得空间的定义及基本性质、向量长度的概念、单位向量、柯西-布涅柯夫斯基不等式、夹角的概念.
掌握:正交向量及性质、度量矩阵的概念;标准正交基定义、熟练掌握施密特正交化过程以及正交对角化实对称矩阵
三、考试基本题型
主要题型可能有:选择题、填空题、判断题、计算题、证明题等。
试卷满分为150分。