NO-17发动机辅助控制系统-排放控制系统
- 格式:ppt
- 大小:1.14 MB
- 文档页数:40
汽车电子控制系统英文缩写AFM 空气流量计AIC 空气喷射控制AIS 空气喷射系统ALT 海拔开关A/M 自动—手动ASC 自动稳定性控制AT(A/T) 自动变速器ATS 空气温度传感器B+ 蓄电池正极BPA 旁通空气BPS 大气压力传感器BTSC 上止点前CCS 巡航控制系统CFI 中央燃油喷射CFI 连续燃油喷射CID 判缸传感器CIS (燃油)连续喷射系统CIS气缸识别传感器(判缸传感器) CNG 天然气CNGV 天然气汽车CPS 轮轴位置传感器CPS 曲轴位置传感器CPU 中央处理器CTP 节气门关闭位置CTS 冷却液温度传感器CYL 气缸(传感器)DC 直流电DI 分电器点火DIS 无分电器点火系统DIAGN 诊断DLC 数据线接DLI 无分电器点火DTC 诊断故障码ECA 电子控制点火提前ECCA发动机集中控制系统ECD 电子控制柴油机ECM 发动机控制模块ECT 电控变速器ECT 发动机机冷却液温度ECU 电子控制单元(电脑) EDS 柴油机电控系EEC 发动机电子控制EFI 电控燃油喷射EGI 电控汽油喷射EGR 废气再循环EIS 电子点火系统EPA 环保机构ER 发动机运转ESA 电子点火提前EST 电子点火正时EUT 电子控制燃油喷射系统EVAP燃油蒸气排放控制装置FP 燃油泵FTMP 燃油温度FFM 热膜式空气质量流量计HAC 海拔(高度)补偿阀HEI 高能点火HEUI液压电子控制燃油喷射系统HIC 热怠速空气补偿阀HO2S 加热型氧传感器HZ 故障灯IAA 怠速空气调整IAB 进气旁通控制系统IAC 进气控制IACV 进气控制阀常用汽车英文缩写含义全攻略Quattro-全时四轮驱动系统Tiptronic-轻触子-自动变速器Multitronic-多极子-无级自动变速器控制系统ABC-车身主动控制系统DSC-车身稳定控制系统VSC-车身稳定控制系统TRC-牵引力控制系统TCS-牵引力控制系统ABS-防抱死制动系统ASR-加速防滑系统BAS-制动辅助系统DCS-车身动态控制系统EBA-紧急制动辅助系统EBD-电子制动力分配系统EDS-电子差速锁ESP-电子稳定程序系统HBA-液压刹车辅助系统HDC-坡道控制系统HAC-坡道起车控制系统DAC-下坡行车辅助控制系统A-TRC--车身主动循迹控制系统SRS-双安全气囊SAHR-主动性头枕GPS-车载卫星定位导航系统i-Drive--智能集成化操作系统Dynamic.Drive-主动式稳定杆发动机R-直列多缸排列发动机V-V型汽缸排列发动机B-水平对置式排列多缸发动机WA-汪克尔转子发动机W-W型汽缸排列发动机Fi-前置发动机(纵向)Fq-前置发动机(横向)Mi-中置发动机(纵向)Mq-中置发动机(横向)Hi-后置发动机(纵向)Hq-后置发动机(横向)气门OHV-顶置气门,侧置凸轮轴OHC-顶置气门,上置凸轮轴DOHC-顶置气门,双上置凸轮轴CVT C-连续可变气门正时机构VVT-i--气门正时机构VVTL-i--气门正时机构V-化油器ES-单点喷射汽油发动机EM-多点喷射汽油发动机SDi-自然吸气式超柴油发动机TDi-Turbo直喷式柴油发动机ED-缸内直喷式汽油发动机PD-泵喷嘴D-柴油发动机(共轨)DD-缸内直喷式柴油发动机缸内直喷式发动机(分层燃烧/均质燃烧)TA-Turbo(涡轮增压)NOS-氧化氮气增压系统MA-机械增压FF-前轮驱动FR-后轮驱动Ap-恒时全轮驱动Az-接通式全轮驱动ASM 动态稳定系统AYC主动偏行系统ST-无级自动变速器AS-转向臂QL-横向摆臂DQL-双横向摆臂LL-纵向摆臂SL-斜置摆臂ML-多导向轴SA-整体式车桥DD-德迪戎式独立悬架后桥 VL-复合稳定杆式悬架后桥FB-弹性支柱DB-减震器支柱BF-钢板弹簧悬挂SF-螺旋弹簧悬挂DS-扭力杆GF-橡胶弹簧悬挂LF-空气弹簧悬挂HP-液气悬架阻尼HF-液压悬架QS-横向稳定杆S-盘式制动Si-内通风盘式制动T-鼓式制动SFI-连续多点燃油喷射发动机FSI-直喷式汽油发动机PCM - 动力控制模块~EGR -废气循环再利用BCM - 车身控制模块~ICM - 点火控制模块~MAP - 空气流量计ST-无级自动变速器FF-“前置引擎前轮驱动”FR-“前置引擎后轮驱动”RR-“后置引擎后轮驱动”CDI-common-rail diesel injection 共轨柴油直喷 GDI-gasoline direct injection 汽油直喷IAR 进气谐振器IAT 进气温度IC 点火控制IC 集成电路ICM 点火控制模块IDL 怠速IDM 点火诊断监控器IDM 喷油器驱动模块IGD点火检测信号(缸序判别)IGF 点火反馈信号IGN 点火IGSW 点火开关IGT 点火正时信号IMV 进气歧管真空度INJ 喷油器ISA 怠速执行器ISC 怠速控制ISCA 怠速控制执行器ISCV 怠速控制阀KC 爆燃控制KS 爆燃传感器LED 发光二极管LH 热线式空气流量计LPGV 液化石油气LPGV 液化石油气汽车MAF 空气质量流量MAP 进气管绝对压力传感器MAT 进气管空气温度MFI 多点燃油喷射MIL 故障指示灯MPI 多点喷射N/C空档起动开关/离合器开关NPS 空档/驻车开关NSW 空档起动开关O2氧传感器OBD 随车电脑诊断系统OC 氧化催化O2S 氧传感器OX、OXS 氧传感器PCV 曲轴箱强制通风PFI 进气口燃油喷射P/N 停车/空档PNP 停车/空档位置RAM 随机存储器ROM 只读存储器SABV 二次空气旁通阀SAE 汽车工程学会(美国) SAMC 一次空气控制系统SEFI 顺序电子燃油喷射SFI 顺序燃油喷射SPI 单点喷射SPD 速度传感器SSD 专用维修工具STA 起动STJ 冷起动喷油器TAP 节气门转角(开度)位置TBI 节气门体燃油喷射TC 涡轮增压器TDC 上止点TDCL 丰田诊断插座THA 进气温度THW 冷却液温度TP 节气门位置TPI 进气口喷射TPS 节气门位置传感器TWC 三元催化转化器TRC 驱动力控制(牵引)系统VAF 叶片式空气流量计VAF 体积式空气剂量计VAT 进气温度AAS 怠速空气调节螺丝ABV 空气旁通阀ABS 制动防抱死系统AC 交流电A/C 空调ACC 活性炭罐ACIS 声控进气系统ACT 进气温度ACU空调怠速提升真空开关阀ACV 二次空气喷射阀A/F 空燃比AFS 空气流量传感器ASR 加速防滑控制系统TCS 循迹控制系统ETS 电子循迹支援系统ESP 电子稳定系统EBD 电子制动力分布EBA 电子控制制动EPS 电子方向助力系统PCM 动力控制单元汽车英文缩写字母代表的含义不同规格的汽车有许多不同的代号、字母和数字,现将汽车规格表的内容介绍如下:一、车型二、传动系统三、发动机系统四、底盘系统目前多数中高档车的悬挂系统一般采用四轮独立式设计,制动系统分为四轮盘式和前轮后鼓式两种。
简述发动机控制系统工作过程
发动机控制系统是通过管理燃油和空气供应、点火和排放系统来控制发动机的电子系统。
它的工作过程通常包括以下几个步骤:
1. 传感器收集数据:发动机控制系统中有多种传感器,它们可以监测发动机的各个指标,如温度、压力、转速等,并将这些数据传递给控制器。
2. 控制器计算和反馈:控制器接收传感器的数据,并使用内置的算法和模型计算出适当的操作指令。
3. 操作执行:控制器通过传递电信号来控制附加到发动机的一系列执行器和执行部件,例如节气门、喷油器、点火线圈等,让发动机在最佳的情况下运转。
4. 监测和反馈:控制器继续监视传感器的数据,以确保发动机的运行状态在可接受范围内,同时还会在需要的情况下自动调整和修正。
控制器也可以提供警告或反馈信息,以便车辆操作员进行必要的调整和维护。
总之,发动机控制系统是一种高级的电子系统,可以自动控制发动机的各种操作和维护,从而提高车辆的性能和燃油经济性。
简述汽车发动机主要的控制系统汽车发动机主要的控制系统包括:1.电子控制燃油喷射系统(EFI):该系统通过各种传感器,采集控制系统所需的信号,如空气流量、冷却液温度等,然后将信号转化为电信号并输送给ECU(电子控制单元)。
ECU根据这些信号确定基本的喷油量,再根据其他传感器(如节气门位置传感器)信号对喷油量进行修正,以实现最佳的混合气浓度,从而优化发动机的燃烧过程,提高功率、降低油耗、减少排气污染等。
2.电控点火系统(ESA):该系统通过点火提前角控制和通电时间(闭角)控制与恒流控制,使发动机在不同转速、不同负荷条件下,根据各相关传感器信号,选择最理想的点火提前角点燃混合气,并根据蓄电池电压及转速等信号控制点火线圈初级电路的通电时间,从而改善发动机的燃烧过程,使发动机输出最大的功率和转矩,而将油耗和排放降低到最低限度。
3.废气再循环控制系统(EGR):该系统将一部分废气引入到进气系统中,通过降低气缸内的温度,来减少氮氧化物的排放。
4.怠速控制系统(ISC):该系统根据发动机冷却液温度、空调压缩机是否工作、变速器是否挂入挡位等,通过怠速控制阀对发动机的进气量进行控制,使发动机随时以最佳怠速转速运转。
5.进气控制系统:根据发动机转速和负荷的变化,对发动机的进气进行控制,以提高发动机的充气效率,从而改善发动机动力性。
具体包括谐波进气增压系统(ACIS)、废气涡轮增压系统、可变气门正时系统、电子控制节气门系统(ETCS)等。
6.排放控制系统:对发动机排放控制装置的工作实行电子控制。
具体包括汽油蒸汽排放(EVAP)控制系统、废气再循环(EGR)控制系统、氧传感器及三元催化转化(TWC)控制系统、二次空气喷射控制系统等。
以上是汽车发动机主要的控制系统的简介,仅供参考。
1、汽油机电控系统,属于按喷油器数量分的是()。
A、单点喷射系统B、D型系统C、L型系统D、LH型系统2、下列属于非怠速工况信号是()。
A、MAFB、IDLC、NeD、P/N3、有爆燃按每次点火()。
推迟点火提前角,直至消除爆燃。
A、0.1至1B、2C、5D、5至104、关闭点火开关,热线式空气流量计5秒完成()。
C自洁功能。
A、IOOB、300C、400D x10005、独立点火方式:点火线圈的数量与气缸数()倍。
A x1B.2C x5D、0.56、汽油机电控系统,按空气流量检测方式系统分的是()。
A、单点喷射系统B、D型系统C、顺序喷射系统D、多点喷射系统7、便于驾驶人和维修人员发现和排除故障的辅助控制系统是()。
A、进气控制系统B、怠速控制系统C、排放控制系统D、故障自诊断系统8、喷油器在()指令下喷射燃油。
A、ECUB、ABSC、EVAP.D x TPS9、油泵安装在()。
A、油轨B、油箱C、回油管∙D、缸体上10、ESA点火电路中,驱动转速表的是()信号。
A、NeB、IGTC、IGFD、-11、下列属于怠速工况信号是()。
A、MAFB、IDLC、THWD、P/N12、顺序喷射正时控制每循环()次。
A、1B、2C、3D、413、常用信号开关端子AC是()信号。
A、起动开关B、空调开关C、档位开关D、制动开关14、用以检测发动机负荷信号的传感器是()。
A、曲轴转速与位置传感器B、空气流量传感器C、节气门位置传感器D、氧传感器15、燃油箱汽油蒸汽控制系统英文缩写是()。
A、ECUB、ABSC、EVAPD、TPS1 6、爆燃控制在()秒内,检测无爆燃,按一定量增加点火提前角,无限接近理想控制线,直至下一次爆燃发生。
A、0.1至1B、2C.5D x5至1017、低阻喷油器电阻为()QA、1B、2至3C、10D、13至1618、分组喷射正时控制:每循环()次。
A、1B、2C x3D、4A、电子控制系统B、燃油供给系统C、空气供给系统D、电源系统20、关闭点火开关,热线式空气流量计()秒完成IoOOoC自洁功能。
发动机冒烟限制工作原理发动机冒烟限制是指发动机在运行过程中产生大量黑烟或白烟时,系统会自动限制发动机的工作状态,以防止进一步损坏发动机和环境。
这一系统的工作原理涉及到发动机控制系统和排放控制系统。
首先,发动机冒烟限制的工作原理与发动机控制系统有关。
现代发动机通常配备了电子控制单元(ECU),它监测着发动机的各种参数,包括燃料供给、空气流量、进气压力等。
当发动机产生异常的燃烧情况导致冒烟时,ECU会接收到相关传感器的信号,并根据预设的程序进行处理。
其次,排放控制系统也是发动机冒烟限制的重要组成部分。
现代柴油发动机通常配备了颗粒捕集器(DPF)和选择性催化还原系统(SCR)等排放控制设备。
当发动机产生大量黑烟时,DPF和SCR系统会尝试清除颗粒物和减少氮氧化物的排放,以减少对环境的污染。
综合来看,发动机冒烟限制的工作原理是通过监测发动机状态、调整燃油供给和空气流量,以及利用排放控制系统减少有害物质的排放来限制发动机的工作状态。
这一系统的实施可以保护发动机免受损坏,减少对环境的污染,提高车辆的可靠性和环保性能。
除了上述基本原理外,发动机冒烟限制还涉及到具体的传感器、执行器和控制策略等方面的技术细节。
例如,传感器可以包括氧气传感器、颗粒物传感器等,用于监测发动机排放情况;执行器则可以包括喷油器、进气阀等,用于调整燃油供给和空气流量;控制策略则是指ECU根据传感器信号采取的具体控制措施,例如调整喷油时机、增加再循环废气等。
总的来说,发动机冒烟限制的工作原理是一个复杂的系统工程,涉及到发动机控制、排放控制和传感器执行器等多个方面的技术。
通过这一系统的实施,可以有效地保护发动机和环境,提高车辆的可靠性和环保性能。
电控发动机排放控制系统简介电控发动机排放控制系统是现代汽车中的重要部件之一,它通过监测和控制发动机的燃烧过程,以减少有害物质的排放,保护环境并提高车辆的燃油效率。
本文将详细介绍电控发动机排放控制系统的工作原理、组成部分和未来发展方向。
工作原理电控发动机排放控制系统通过一系列传感器和执行器实时监测和控制发动机运行过程中的关键参数,主要包括空气流量、进气温度、进气压力、曲轴转速、汽缸压力等。
系统根据这些参数的变化,调整燃料喷射量、点火时机、进气气门开合时间等,从而优化燃烧过程,减少有害物质的排放。
组成部分1.传感器部分:包括进气压力传感器、进气温度传感器、氧气传感器、曲轴位置传感器等,用于检测发动机运行过程中的各项参数。
2.控制单元:负责接收传感器信号、进行数据处理,并控制执行器调整发动机的工作状态,通常采用电脑控制单元(ECU)。
3.执行器部分:包括喷油器、点火系统、进气气门执行器等,根据控制单元的指令进行相应的操作,调整燃烧过程。
未来发展方向随着汽车工业的发展和环保意识的提升,电控发动机排放控制系统在未来将继续向以下方向进行改进和发展: 1. 智能化:引入人工智能和大数据技术,提高系统的自适应性和预测能力,进一步优化燃烧过程。
2. 综合控制:综合考虑驾驶行为、环境条件等因素,实现更精准的排放控制和燃油效率提升。
3. 新能源整合:结合电动化和混合动力技术,将电控发动机排放控制系统与电气系统进行整合,实现更低排放、更高效率的驱动方式。
结语电控发动机排放控制系统是现代汽车的重要组成部分,它通过监测和调整发动机的工作状态,实现环保和能效的双重目标。
未来随着技术的不断革新和发展,电控发动机排放控制系统将进一步提升其性能和功能,为汽车行业的可持续发展做出更大贡献。