数学分析教案 (华东师大版)第九章 定积分
- 格式:doc
- 大小:1016.00 KB
- 文档页数:25
第九章 定积分一、填空题 1.=-++-+-∞→_41241141(lim 22222nn n n n _________2.=+⎰⎰→x xt x dtttdtt 0sin 01sin )1(lim__________3.[]=⎰-222,1max dx x __________4.设⎰+=xdt tt x f 02sin 1cos )(,则=+⎰202)(1)('πdx x f x f ___________ 5.设)(x f 在[]4,0上连续,且⎰--=2123)(x x dt t f ,则=)2(f ___________6.=+-⎰→421ln sin limxx tdt xx _________7.=++⎰-dx x xx 2222)cos 1(sin ππ______________ 8.[]⎰-=-++-11)()(22lndx x f x f xx_________,其中)(x f 连续。
10.设0)()(21=-+⎰x x f dx x f ,则=⎰1)(dx x f _______________11.若⎰=+101sinb dx x x,则=+⎰102)1(cos dx x x _________12.设)(x f 连续,则=-⎰x dt t x tf dxd 022)(____________ 13.=⎰022cos xdt t x dx d ______________ 14.=-⎰ππ222cos sin dx x x ____________15.=+-⎰-dx x x 112cos 21sin αα____________16.[]=-⎰π2sin )(cos 'cos )(cos dx x x f x x f ____________17.设)(x f 有一个原函数x xsin ,则=⎰ππ2)('dx x xf ____________18.若1≤y ,则=-⎰-11dx e y x x ___________19.已知2)2(x xex f =,则=⎰-11)(dx x f ________20. 已知)(x f 在),(+∞-∞上连续,且2)0(=f ,且设⎰=2sin )()(x xdt t f x F ,则=')0(F21.设⎪⎩⎪⎨⎧>⋅<--=⎰-x x x x dt t x x x e x f 0322 0 sin 0 31)(则=→)(lim 0x f x 22.函数dt t t t x x⎰+--=2112)(ϕ在区间[]2 0上的最大值为 ,最小值为23.若已知)(x f 满足方程⎰--=xdx x f x x x f 022)(13)(,则=)(x f24.已知函数)1( )1()(1-≥-=⎰-x dt t x f x,则)(x f 与x 轴所围成的面积为25.函数221x x y -=在区间⎥⎦⎤⎢⎣⎡23 ,21上的平均值为二、选择填空 1.若xx x f 104)5(2-=-,则积分=+⎰40)12(dx x f ( ) A.0 B.4πC.是发散的广义积分D.是收敛的广义积分 2.若已知5)2(',3)2(,1)0(===f f f ,则=''⎰10)2(dx x f x ______________A.0B.1C.2D.-2 3.设)(x f 是以l 为周期的连续函数,则()⎰+++lk a kla dx x f )1(之值( )A.仅与a 有关B.仅与a 无关C.与a 及k 均无关D.与a 和k 均有关 4.若0→x 时,⎰''-=xdt t f t x x F 022)()()(的导数与2x 进等价无穷小,则必有( )(其中f有二阶连续导数)。
若质点以速度v =v (t ) 作变速直线运动,()d ()().ba s v t t sb s a ==-⎰注意到路程函数s (t ) 是速度函数v (t ) 的原函数, ()d bas v t t=⎰定义,质点从时该a 到b 所经过的路程为另一方面, 质点从某时刻a 到时刻b 所经过的路于是程记为s (b )-s (a ), 因此把定积分与不定积分联系起来了, 面的牛顿—莱布尼茨公式.由定积分()(),s t v t '=则后退前进目录退出这就是下定理9.1(牛顿-莱布尼茨公式)函数f 在[a , b ] 上满足条件:(i) f 在[a , b ] 上连续,(ii) f 在[a , b ] 上有原函数F ,则(1) f 在[a , b ] 上可积;).()()(d )()2(a F b F x F x x f ba ba-==⎰证因 f 在[a , b ] 上一致连续, ,[,],||,x x a b x x δ''''''∈-<当时.|)()(|ε<''-'x f x f 任取1[,],1,2,,.i i i x x i n ξ-∈= 又F 在],[1i i x x -上满足拉格朗日中值定理条件,],,[1i i i x x -∈∃ηi i i i x F x F x F ∆η)()()(1'=--于是,0>∀ε则,0>∃δ,)(i i x f ∆η=1()Δ(()())ni i i f x F b F a ξ=--∑1()Δ(()())ni i i f x F b F a ξ=--∑,()d ()()().bba af x x F b F a F x =-=⎰因此()()i ni i i x f f ∆ηξ∑=-≤1∑=≤ni i x 1∆ε111()Δ(()())n ni i i i i i f x F x F x ξ-===--∑∑11()Δ()Δnni i i ii i f x f x ξη===-∑∑().a b -=ε注1 以后将证明, 若f 在[a , b ]上连续, 注2 条件(i)不是必要条件, 例2d .bna x x ⎰求解ba n bann x x x 1d 1+=+⎰上必有原函数F (x ). 因此条件(ii) 是多余的.函数f 在[a , b ] 上有间断点, 积.则f 在[a ,b ]以后将举例说明,存在但f 在[a , b ]上仍可).(1111++-+=n n a b n例3.1d 2102⎰-xx求解解用牛顿—莱布尼茨公式还可以求一些和式的极限..38=122d 1xx-⎰06-=π.6π=120arcsin x=例4224d x x-⎰求224d x x -⎰23221(4)3x =--例5111lim .12n n n n n →∞⎛⎫++ ⎪+++⎝⎭L 求解111lim 12n n n n n →∞⎛⎫++ ⎪+++⎝⎭易见是函数 11:01,n n T n n -<<<< 分割和介点分别为1[,],1,2,,.i i i ii n n n nξ-=∈= 1()[0,1].1f x x=+在上黎曼和的极限其中111lim 12n n n n n 因此→∞⎛⎫++ ⎪+++⎝⎭ 10ln(1)ln 2.x =+=101d 1x x=+⎰例6.)1()21)(11(lim 1nn n n n n ⎪⎭⎫ ⎝⎛+++∞→ 求解令112ln (1)(1)(1)n n n a n n n ⎛⎫=+++ ⎪⎝⎭ 11ln 1,n i i n n ==+∑10lim ln(1)d n n a x x→∞=+⎰则2ln2 1.=-=++-10[(1)ln(1)]x x x 因此112lim (1)(1)(1)nn n n n n →∞⎛⎫+++ ⎪⎝⎭lim e n n a →∞=12ln 2e -=.e4=。
数学分析9.3可积条件(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第九章 定积分 3 可积条件一、可积的必要条件定理:若函数f 在[a,b]上可积,则f 在[a,b]上必定有界. 证:若f 在[a,b]上无界,则对于[a,b]的任一分割T , 必存在属于T 的某个小区间△k ,f 在△k 上无界. 在i ≠k 的各个小区间△i 上任取ξi ,并记G=|i ki i x △)ξ(f ∑≠|.对任意大的正数M ,存在ξk ∈△k ,使得|f(ξk )|>kx △GM +,于是有 |i ki i x △)ξ(f ∑≠|≥|f(ξk )△x k |-|i ki i x △)ξ(f ∑≠|>kx △GM +·△x k -G=M. 因此,对于无论多小的║T ║,按上述方法选取的点集{ξi },总能使 积分和的绝对值大于任何预先给出的正数,与f 在[a,b]上可积矛盾. ∴原命题得证.注:任何可积函数有界,但有界函数不一定可积。
例1:证明狄利克雷函数D(x)=⎩⎨⎧.x 0,x 1为无理数为有理数,,在[0,1]上有界但不可积.证:∵|D(x)|≤1, x ∈[0,1],∴D(x)在[0,1]上有界.又对于[0,1]的任一分割T ,由有理数和无理数在实数中的稠密可知,在属于T 的任一小区间△i 上,当取ξi 全为有理数时,in1i ix △)ξ(D ∑==1;当取ξi 全为无理数时,i n1i i x △)ξ(D ∑==0. 即不论║T ║多么小,只要点集{ξi }取法不同(全取有理数或全取无理数),积分和有不同极限,∴D(x)在[0,1]上不可积.二、可积的充要条件设f 在[a,b]上有界,T 是[a,b]上的任一分割,则在每个△i 存在上、下确界:M i =ix sup ∆∈f(x),m i =ix inf ∆∈f(x),i=1,2,…,n. 记S(T)=∑=∆n 1i i i x M , s(T)=∑=∆n1i i i x m ,分别称为f 关于分割T 的上和与下和(或称为达布上和与达布下和,统称为达布和),则 任给ξi ∈△i , i=1,2,…,n ,有s(T)≤i n1i i x △)ξ(f ∑=≤S(T).注:达布和与点集{ξi }无关,只与分割T 有关.定理:(可积准则)函数f 在[a,b]上可积的充要条件是: 任给ε>0,总存在相应的一个分割T ,使得S(T)-s(T)<ε.注:设ωi =M i -m i ,称为f 在△i 上的振幅,可记为ωi f ,则有S(T)-s(T)=i n1i i x △ω∑=,可记作∑Ti i x △ω.定理’:函数f 在[a,b]上可积的充要条件是: 任给ε>0,总存在相应的某一分割T ,使∑Ti i x △ω<ε.可积的充要条件的几何意义:若f 在[a,b]上可积,则如图,只要分割充分地细,包围曲线y=f(x)的一系列小矩形面积之和可以达到任意小;反之亦然.三、可积函数类定理:若f 为[a,b]上的连续函数,则f 在[a,b]上可积. 证:f 在[a,b]上连续,从而一致连续. ∴任给ε>0,存在δ>0, 对[a,b]中任意两点x ’,x ”,只要|x ’-x ”|<δ,就有|f(x ’)-f(x ”)|<ab ε-. 对[a,b]作分割T 使║T ║<δ,则在T 所属的任一区间△i 上, 就能使f 的振幅满足ωi =ix ,x sup ∆∈'''|f(x ’)-f(x ”)|≤ab ε-,从而有 ∑Ti i x △ω≤ab ε-∑Tix△=ε,原命题得证.定理:若f 为[a,b]上只有有限个间断点的有界函数,则f 在[a,b]上可积.证:设端点b 是f 在[a,b]上的间断点,任给ε>0,取δ’>0,满足δ’<m)2(M ε-<b-a ,其中M 与m 分别为f 在[a,b]上的上确界与下确界.当m=M 时, f 为常量函数,可积.当m<M 时,记f 在小区间△’=[b-δ’,b]上的振幅为ω’,则 ω’δ’<(M-m)·m)2(M ε-=2ε. 又f 在[a,b-δ’]上连续,所以可积.∴对[a,b-δ’]存在某个分割T ’={△1,△2,…,△n-1},使得∑'T i i x △ω<2ε.令△n =△’,则T={△1,△2,…,△n-1,△n }是对[a,b]的一个分割, 对于T ,有∑Ti i x △ω=∑'T i i x △ω+ω’δ’<2ε+2ε=ε. ∴f 在[a,b]上可积.同理可证f 在[a,b]上存在其它间断点时,原命题仍成立.定理:若f 是[a,b]上的单调函数,则f 在[a,b]上可积.证:设f 为增函数,且f(a)<f(b). 对[a,b]的任一分割T ,由f 的增性, f 在T 所属的每个小区间△i 上的振幅为ωi =f(x i )-f(x i-1),于是有∑Tii x△ω≤∑T1-i i T )]f(x -)[f(x =[f(b)-f(a)]║T ║. 可见,任给ε>0,只要║T ║<b)(f )b f(ε-,就有∑Ti i x △ω<ε. ∴f 在[a,b]上可积.注:单调函数有无限多个间断点仍可积.例2:试用两种方法证明函数f(x)= ⎪⎩⎪⎨⎧⋯=≤+=1,2,n n 1x <1n 1n1,0x 0,,,在区间[0,1]上可积.证法一:在[0,1]上任取两点x 1<x 2.若1n 1+<x 1<x 2≤n 1,n=1,2…,则f(x 1)=f(x 2); 若2n 1+<x 1≤1n 1+<x 2≤n 1或1n 1+<x 1≤n 1<x 2≤1n 1-, n=1,2…,则 2n 1+=f(x 1)<f(x 2)=n 1或n 1=f(x 1)<f(x 2)=1n 1-. 同理可证,当x 1<x 2时,f(x 1)≤f(x 2),∴f 在[0,1]上的单调增. ∴f 在[0,1]上可积.证法二:任给ε>0,∵n1lim n∞→=0,∴当n 充分大时,有n1<2ε. 即f 在[2ε,1]上只有有限个间断点. ∴f 在[2ε,1]上可积,且 存在对[2ε,1]的某一分割T ’,使得∑'T i i x △ω<2ε.∴对[0,1]的一个分割T ,由f 在[0,2ε]的振幅ω0<0,可得∑Ti i x △ω=ω0+2ε∑'T ii x △ω<2ε+2ε=ε. ∴f 在[0,1]上可积.例3:证明黎曼函数f(x)= ⎪⎩⎪⎨⎧=>=.)1,0(0,1x 0 p.q ,q p, ,qp x q 1内的无理数以及互素,, 在区间[0,1]上可积,且⎰10f(x)dx=0.证:任给ε>0,在[0,1]内使得q 1>2ε的有理点qp 只有有限个, 设它们为r 1,r 2…,r k . 现对[0,1]作分割T={△1,△2,…,△n }, 使║T ║<2kε, 将T 中所有小区间分为{△i ’|i=1,2,…,m}和{△i ”|i=1,2,…,n-m}两类, 其中{△i ’}为含有点{r i |i=1,2,…,k}的所有小区间,其个数m ≤2k. 而{△i ”}为T 中所有其父不含{r i }的小区间.∵f 在△i ’上的振幅ωi ’≤21,∴i m1i i x △ω''∑=≤21∑='m1i ix △≤21·2k ║T ║<2ε,又f 在△i ”上的振幅ωi ”≤2ε,∴i m -n 1i i x △ω''''∑=≤2ε∑=''m-n 1i i x △<2ε. ∴i n1i i x △ω∑==i m1i i x △ω''∑=+i m -n 1i i x △ω''''∑=<2ε+2ε=ε,∴f 在区间[0,1]上可积.当取ξi 全为无理数时,使f(ξi )=0,∴⎰10f(x)dx=i n1i i 0T x △)f(ξlim ∑=→=0.习题1、证明:若T ’是T 增加若干个分点后所得的分割,则∑'''T iix △ω≤∑Tiix△ω.证:依题意s(T ’)≤s(T), S(T ’)≥S(T). ∴s(T ’)-S(T ’)≤s(T)-S(T),得证.2、证明:若f 在[a,b]上可积,[α,β]⊂[a,b],则f 在[α,β]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,总存在相应的一个分割T , 使得S(T)-s(T)<ε. 又[α,β]⊂[a,b],∴在[α,β]上存在相应的一个分割T ’,T ’是T 减少若干个分点所点后所得的分割,即有s(T ’)≥s(T), S(T ’)≤S(T). ∴S(T ’)-s(T ’)≤S(T)-s(T)<ε,得证.3、设f,g 均为定义在[a,b]上的有界函数. 证明:若仅在[a,b]中有限个点处f(x)≠g(x),则当f 在[a,b]上可积时,g 在[a,b]上也可积,且⎰baf(x)dx=⎰bag(x)dx.证:记F=g-f ,则F 在[a,b]上只有有限个点不为零,∴F 是[a,b]上可积.对[a,b]上任何分割T ,取每个△i 上的介点ξi ,使F(ξi )=0,就有iix △)f(ξ∑=0,∴⎰baF =i n1i i 0T x △)F(ξlim ∑=→=0.又对任意T ,和每个△i 上的任意一点ξi ’,有iix △)ξg(∑'=iiix △)]ξf(-)ξ[g(∑''+iix △)ξf(∑'=iix △)ξF(∑'+iix △)ξf(∑'.由F,f 在[a,b]上可积,令║T ║→0,等式右边两式极限都存在, ∴等式左边的极限也存在,即g 在[a,b]上可积,且⎰ba g =⎰ba F +⎰ba f =⎰ba f .4、设f 在[a,b]上有界,{a n }⊂[a,b],∞→n lim a n =c. 证明: 若f 在[a,b]上只有a n (n=1,2,…)为其间断点,则f 在[a,b]上可积. 证:设c ∈(a,b),f 在[a,b]上的振幅为ω,任给ε>0(4ωε<min{c-a,b-c}),由∞→n lim a n =c 知存在N ,使得n>N 时,a n ∈U(c,4ωε),从而 在[a,c-4ωε]∪[c+4ωε,b]上至多只有有限个间断点,即 存在[a,c-4ωε],[c+4ωε,b]上的分割T ’, T ”使得∑'''T i i x △ω<4ε, ∑''''''T i i x △ω<4ε. 记T 为T ’, T ”的所有分点并添上点c-4ωε, c+4ωε作为[a,b]上的分割,则∑Ti i x △ω≤∑'''T i i x △ω+ω(c+4ωε-c+4ωε)+∑''''''T i i x △ω<4ε+2ε+4ε=ε. 得证。
§5 微积分基本定理.定积分计算(续)教学要求:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 引入当函数的可积性问题告一段落,并对定积分的性质有了足够的认识之后,接着要来解决一个以前多次提到过的问题—在定积分形式下证明连续函数必定存在原函数.一. 变限积分与原函数的存在性设f(x)在[a,b]上可积,根据定积分的性质4,对任何x ∈[a,b],f(x)在[a,x]上也可积,于是由()()xax f t dt Φ=⎰,x ∈[a,b]定义了一个以积分上限x 为自变量的函数,称为变上限的定积分,类似地又可定义变下限的定积分,()()bxx f t dt ψ=⎰,x ∈[a,b],统称为变限积分。
注意在变限积分中不可再把积分变量写成x ,以免与积分上下限的x 相混淆。
变限积分所定义的函数有着重要性质,由于()()bxxbf t dt f t dt =-⎰⎰,因此只讨论变上限积分的情形。
定理9.9 若f(x)在[a,b]上可积,则()()xax f t dt Φ=⎰,x ∈[a,b]是连续函数。
证明 对[a,b]上任一确定的点x ,只要x+∆x ∈[a,b],则()()()x xx x xaaxf t dt f t dt f t dt +∆+∆∆Φ=-=⎰⎰⎰,因f(x)在[a,b]上有界,可设|f(t)|≤M ,t ∈[a,b],于是当∆x>0时有|||()||()|x xx xxxM f t dt f t dt x +∆+∆∆Φ=∆⎰⎰≤≤,当∆x<0时有||||M x ∆Φ∆≤,由此得到lim 0x ∆→∆Φ=,即证得在点x 处连续。
由x 得任意性,Φ(x)在[a,b]上处处连续。
定理9.10原函数存在定理 若f(x)在[a,b]上连续,则Φ(x)在[a,b]上处处可导,且Φ'(x)=f(x),即()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰ 证明 对[a,b]上任一确定的x ,当∆x ≠0且x+∆x ∈[a,b]时,根据积分第一中值定理得,1()(),01x xx f t dt f x x x xθθ+∆∆Φ==+∆∆∆⎰≤≤,由于f(x)在点x 处连续,故有00()lim lim ()()x x x f x x f x x θ∆→∆→∆Φ'Φ==+∆=∆,由于x 在[a,b]上的任意性,证得Φ(x)是f(x)在[a,b]上的一个原函数。
第九章定积分教学要求:1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分;3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;4.理解并熟练地应用定积分的性质;5.熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学重点:1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分;2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;3.理解并熟练地应用定积分的性质;4.熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学时数:14学时§ 1 定积分概念(2学时)教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;教学重点:深刻理解并掌握定积分的思想.一、问题背景:1. 曲边梯形的面积:2. 变力所作的功:二、不积分的定义:三、举例:例1已知函数在区间上可积 .用定义求积分.解取等分区间作为分法, . 取.=.由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 .例2已知函数在区间上可积 ,用定义求积分.解分法与介点集选法如例1 , 有.上式最后的极限求不出来 , 但却表明该极限值就是积分.例3讨论Dirichlet函数在区间上的可积性 .四、小结:指出本讲要点§ 2 Newton — Leibniz公式(2学时)教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分.教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分.Th9.1 (N — L公式)( 证 )例1求ⅰ> ; ⅱ> ;例2 求.§3可积条件(4学时)教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题.教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;一、必要条件:Th 9.2 ,在区间上有界.二、充要条件:1.思路与方案:思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和 , 即用极限的双逼原理考查积分和有极限, 且与分法及介点无关的条件 .方案: 定义上和和下和. 研究它们的性质和当时有相同极限的充要条件 .2. Darboux和: 以下总设函数在区间上有界. 并设,其中和分别是函数在区间上的下确界和上确界 .定义Darboux和, 指出Darboux和未必是积分和 . 但Darboux和由分法唯一确定.分别用、和记相应于分法的上(大)和、下(小)和与积分和.积分和是数集(多值) . 但总有, 因此有. 和的几何意义 .3. Darboux和的性质: 本段研究Darboux和的性质, 目的是建立Darboux 定理.先用分点集定义分法和精细分法: 表示是的加细 .性质1 若, 则, . 即 : 分法加细,大和不增,小和不减 . ( 证 )性质2 对任何, 有, . 即 : 大和有下界,小和有上界. ( 证 )性质3 对任何和 , 总有. 即: 小和不会超过大和 .证.性质4 设是添加个新分点的加细. 则有+ ,.证设是只在中第个区间内加上一个新分点所成的分法, 分别设, , . 显然有和. 于是. 添加个新分点可视为依次添加一个分点进行次. 即证得第二式.可类证第一式.系设分法有个分点,则对任何分法,有,.证..4. 上积分和下积分:设函数在区间上有界. 由以上性质2 ,有上界,有下界 . 因此它们分别有上确界和下确界.定义记, . 分别称和为函数在区间上的上积分和下积分.对区间上的有界函数, 和存在且有限 , . 并且对任何分法, 有. 上、下积分的几何意义.例1求和. 其中是Dirichlet函数 .5. Darboux定理 :Th 1 设函数在区间上有界, 是区间的分法 .则有=, =.证( 只证第一式 . 要证 : 对使当时有. 是显然的. 因此只证. ), 对, 使<设有个分点, 对任何分法, 由性质4的系, 有,由*式, 得<即<亦即<.于是取, ( 可设, 否则为常值函数, = 对任何分法成立. ) 对任何分法, 只要, 就有.此即=.6. 可积的充要条件:Th 2 (充要条件1 )设函数在区间上有界.= .证设=, 则有=. 即对使当时有| | < 对成立.在每个上取, 使, 于是,| | = < .因此, 时有| | | | + | | < + = . 此即=. 由Darboux定理 , = .同理可证= . = .对任何分法, 有, 而== = .令和的共值为, 由双逼原理=.Th 9.3 有界.对.证( ) = 0. 即对时, ., 由,–, = .定义称为函数在区间上的振幅或幅度.易见有0 . 可证=Th 9.3’(充要条件2 ) 有界.对.Th 3’的几何意义及应用Th 3’的一般方法: 为应用Th 3’, 通常用下法构造分法:当函数在区间上含某些点的小区间上作不到任意小时, 可试用在区间上的振幅作的估计 , 有. 此时, 倘能用总长小于, 否则为常值函数 )的有限个小区间复盖这些点,以这有限个小区间的端点作为分法的一部分分点,在区间的其余部分作分割,使在每个小区间上有<, 对如此构造的分法, 有 <.Th 4 ( (R)可积函数的特征 ) 设在区间上有界.对和, 使对任何分法, 只要, 对应于的那些小区间的长度之和.证在区间上可积, 对和, 使对任何分法, 只要, 就有.对的区间总长小于此时有==三.可积函数类:1.闭区间上的连续函数必可积:Th 5 (证)2.闭区间上有界且仅有有限个间断点的函数可积 .Th 6 (证)推论1 闭区间上按段连续函数必可积 .推论2 设函数在区间上有界且其间断点仅有有限个聚点, 则函数在区间上可积.例2 判断题 : 闭区间上仅有一个间断点的函数必可积 . ( )闭区间上有无穷多个间断点的函数必不可积 .( )3. 闭区间上的单调函数必可积:Th 7 (证)例3证明在上可积.§ 4 定积分的性质(2学时)教学要求:理解并熟练地应用定积分的性质;教学重点:理解并熟练地应用定积分的性质;一.定积分的性质:1.线性性质:Th 1 —Const , 且. (证)Th 2 , , 且.(证)综上 , 定积分是线性运算 .2. 乘积可积性:Th 3 ,.证和有界. 设, 且可设.( 否则或恒为零 ). 插项估计, 有. ……但一般.3. 关于区间可加性:Th 4 有界函数在区间和上可积,,并有. ( 证明并解释几何意义 )规定, .系设函数在区间上可积 . 则对, 有. (证)4. 积分关于函数的单调性:Th 5设函数, 且, .(证)(反之确否?)积分的基本估计: . 其中和分别为函数在区间上的下确界与上确界.5. 绝对可积性:Th 6设函数,,且(注意.) 证以证明; 以证明不等式.该定理之逆不真. 以例做说明.6. 积分第一中值定理:Th 7 ( 积分第一中值定理 ) , 使=. (证)Th 8 ( 推广的积分第一中值定理 ) 且不变号. 则, 使=. (证).二. 举例:例1设. 试证明:.其中和是内的任二点, {}, .例2 比较积分与的大小.例3 设但. 证明>0.例4 证明不等式.证明分析所证不等式为只要证明在上成立不等式, 且等号不恒成立, 则由性质4和上例得所证不等式.例5 证明 .§5 微积分基本定理.定积分计算(续)(2学时)教学要求:熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学重点:熟练地掌握换元积分法和分部积分法,并能解决计算问题.一. 变限积分与原函数的存在性引入:由定积分计算引出 .1.变限积分: 定义上限函数,(以及函数)其中函数. 指出这是一种新的函数, 也叫做面积函数.Th 9 ( 面积函数的连续性 )思路:表达面积函数.2.微积分学基本定理:Th 10 微积分学基本定理(原函数存在定理)若函数则面积函数在上可导,且=.即当时, 面积函数可导且在点的导数恰为被积函数在上限的值. 亦即是的一个原函数 .证系连续函数必有原函数.3.积分第二中值定理Th11 (积分第二中值定理)设函数在上可积,(i)若函数在上减,且,则存在,使得(ii)若函数在上增,且,则存在,使得推论函数在上可积,若为单调函数,则存在,使得二.换元积分法与分部积分法:1.换元积分法Th 12 设函数满足条件:ⅰ> , 且;ⅱ> 在上有连续的导函数.则. (证)例1. ( P225 )例2 . ( P225 )例3 计算. ( P225—226 ) 该例为技巧积分.例4 . 该例亦为技巧积分.例5 已知 , 求例6 设函数连续且有求积分例7设是区间上连续的奇(或偶函数)函数,则,(. )例8 ..2. 分部积分法Th13 ( 分部积分公式 )例9例10计算.解=;解得直接求得,. 于是,当为偶数时, 有;当为奇数时, 有.三. Taylor公式的积分型余项: P227—229.习题课(2学时)一.积分不等式:1.利用积分关于被积函数的单调性证明积分不等式:例1 证明不等式.证注意在区间 [ 0 , 1 ]上有 , ……例2证明不等式.证考虑函数, . 易见对任何, 在区间上和均单调, 因此可积,且有 , 注意到 , 就有. 而,.因此有.取, .在区间仿以上讨论, 有. 而,.综上 , 有不等式.2.某些不等式的积分推广:原理: 设函数和在区间上可积. 为区间的等分分法, . 若对任何和, 均有, 即得.令, 注意到函数和在区间上可积, 即得积分不等式.倘若函数和连续 , 还可由.例3证明Schwarz 不等式 ( 亦称为Cauchy–Буняковский不等式 ): 设函数和在区间上连续 ( 其实只要可积就可 ). 则有不等式.证法一( 由Cauchy 不等式Schwarz不等式 . Cauchy 不等式参阅上册 : 设和为两组实数, 则有. )设为区间的等分分法. 由Cauchy 不等式 , 有,两端同乘以, 有,令, 注意到函数、和在区间上的可积性以及函数的连续性,就有积分不等式.证法二(用判别式法)对任何实数,有,,即对任何实数成立.即上述关于的二次不等式的解集为全体实数, 于是就有,即.例4 且. 证明不等式.证取. 对函数和应用Schwarz不等式, 即得所证 .例5 设函数在区间 [ 0 , 1 ]上可积 . 试证明有不等式.证先用Jensen不等式法证明不等式 : 对, 有不等式.设为区间的等分分法. 由上述不等式 , 有.令, 注意到函数和在区间 [ 0 , 1 ]上的可积性以及函数和的连续性,就有积分不等式.仿该例, 可得到均值不等式、用Jensen不等式法证明的某些不等式的积分形式 .二. 面积函数的导数 :例6 求和例7 求和例8 求 .例9 设时函数连续且.求.(=) 例10 设函数连续且. 求和.解令. 两端求导, = .例11设. =.试证明 :=.证=,=.例12设函数在区间上连续且>0. .试证明: 函数在区间内严格递增.证= , 而.>0 , 在内,又连续,,在区间内>0 . 因此在区间内严格递增.三. 含有变限积分的未定型极限:例13求极限. ( 2 )四. 定积分的计算 :例 14 计算积分.例15计算积分=.解时, =;时, =;时, =.因此,例16利用积分的值 , 计算积分.解.,而 ,.因此,例17 , 求 ( 2)例18 设是区间上连续的偶函数 . 试证明 : 是上的奇函数 .证法一.证法二注意到, 有==.五. 利用定积分求和式极限 :原理: 用定积分定义,在函数可积时,能用特殊的分割及介点取法,计算定积分.例19 求极限. [3] P163 E13 . 与§1例2连系.例20 求极限.解==.由函数在区间 [ 0 , 1 ]上可积 , 有=..例21 求极限.解==.,.因此 , .例22 试证明: 对任何,有不等式< .证=是函数=在区间[ 0 , 1 ]上相应于等分分法的小和. 由函数=在区间[ 0 , 1 ]上可积, 有时, ↗. 又易见↗↗.对任何, 有< , 即 < .友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
第九章 定积分§1 定积分的概念(教材上册P204)1. 按定积分定义证明:()bakdx k b a =-⎰知识点窍 定积分的定义. 逻辑推理 按定积分定义证明.解 0ε∀>,对[,]a b 作任意分割T ,并在其上任意选取点集{i ε},因为111(),[,],()()n n ni i i i i i i f x k x a b f x k x k x k b a ε===≡∈∆∆=∆=-∑∑∑任意取定0δ>,当T δ<时 所以k 在[,]a b 上可积,且()bakdx k b a =-⎰.2. 通过对积分区间作等分分割,并取适当的点集,把定积分看作是对应的积分和的极限,求计算下列定积分. (1)130x dx ⎰ (2)1x e dx ⎰(3)bx ae dx ⎰(4)2(0)badxa b x<<⎰知识点窍 定积分的定义.逻辑推理 利用定积分的定义计算定积分,关键是()f x 在区间[,]a b 上是否可积,若可积,则由定积分的定义,()baf x dx ⎰的值就应与区间[,]a b 的分法及点i ξ的取法无关.解 (1)将[0,1]n 等分,分点为,k =0,1,…,n . 在区间1[,]k k n n -上取kn作为k ε 而13311lim()nn k kx dx n n →+∞==⋅∑⎰3411lim nn k kn→+∞==∑224111lim(1)44n n n n →+∞=⋅+=.(2)将[0,1]n 等分,分点为,k =0,1,…,n .在区间1[,]k k n n -上取kn作为k ξ,则 101111lim lim kk nn xnn n n k k e dx e e n n →+∞→+∞===⋅=∑∑⎰ 111(1)lim111[1()](1)1lim 1.111[1()]nn nn e e ne e n n e n n nοο→+∞→+∞-=⋅-++-==--++ (3)将[,]a b n 等分,分点为()ka b a n+-,k =0,1,…,n . 在区间1[(),()]k k a b a a b a n n -+-+-上取()ka b a n+-作为k ξ,则()1lim kna b a bxn a n k b a e dx e n +-→+∞=-=⋅∑⎰()1lim (1)lim 11[1()()](1)lim 11[1()()].k b a n a n n k b ab a na b a n nb a a n b a b a e e n b a e e e ne b a b a e b a n n e b a n b a n ne e οο-→+∞=---→+∞-→+∞-=⋅--=--+-+--=--+-+=-∑ (4)取i ξ后211110111111()()nni i i i ij i n x x x x x x a b -==--=-=-=-∑∑ 将[,]a b n 等分,分点为()ka b a n+-,k =0,1,…,n .在区间1[]k k x x -k ξ则212111lim ()nbk k an k dx x x x a b-→∞==-=-∑⎰. §2 牛顿—莱布尼茨公式(教材上册P206)1. 计算下列定积分.(1)10(23)x dx +⎰ (2)212011x dx x -+⎰ (3)2ln e edxx x⎰(4)102x xe e dx --⎰ (5)23tan xdx π⎰(6)94dx ⎰ (7)4⎰ (8)211(ln )e e x dx x⎰知识点窍 牛顿—莱布尼茨公式. 解(1)1012(23)34x dx xx+=+=⎰.(2)110211220012(1)2arctan 1112x dx dx x x x x π-=-=-=-++⎰⎰.(3)2221(ln )ln ln ln 2ln ln e ee e e e dx d x x x x x===⎰⎰.(4)10110111()12222x x x x e e dx e e e e ----=+=+-⎰. (5)22233322000sin 1cos tan cos cos x x xdx dx dx x xπππ-==⎰⎰⎰30(tan )3x x ππ=-=.(6)9439242144(2)323dx x x =+=⎰. (7)4441)]42ln3==-=-⎰⎰.(8)122311112(ln )(ln )(ln )(ln )33e eee eex dx x d x x x ===⎰⎰. 2. 利用定积分求极限. (1)3341lim(12)n n n→∞+++(2)222111lim (1)(2)()n n n n n n →∞⎡⎤+++⎢⎥+++⎣⎦(3)2222111lim ()122n n n n n →∞+++++(4)121lim (sin sin sin )n n n n n nπππ→∞-+++知识点窍 定积分求极限.逻辑推理 由定积分的定义知,若()f x 在[,]a b 上可积,则可对[,]a b 用某种特定的分法,并取特殊的点,所得积分和的极限就是()f x 在[,]a b 上的定积分.因此,本题可将和式化为某个可积函数的积分和,然后用定积分求此极限. 解(1)记3()f x x =,则()f x 在[0,1]上连续且可积,取 12{0,,,}n T n nn =,,1,2,,i i i ix i n nε==∈∆=则313111lim ()lim nn i i T n i i i x dx f x n nξ→→∞===∆=∑∑⎰33341lim (123)n n n →∞=++++101144==.(2)记21()(1)f x x =+,[0,1]x ∈,则f 在[0,1]上连续,所以可积,取 12{0,,,,}n T n nn =,,1,2,,i i i ix i n nε==∈∆=.则120021111lim ()lim (1)(1)nn i i T n i i ex f x i x n nξ→→∞===∆=++∑∑⎰ 222111lim [](1)(2)()n n n n n n →∞=++++++10111()(1)122x =-=---=+.(3)记21()1f x x=+,[0,1]x ∈,则f 在[0,1]上连续,所以可积.取 12{0,,,,}n T n n n =,,1,2,,i i i ix i n nε==∈∆=.则120021111lim ()lim 11()n n i i T n i i dx f x i x n nξ→→∞===∆=++∑∑⎰2222111lim ()12nn n n n n n →∞=++++++10arctan 4π==.(4)记()sin f x x =,[0,]x π∈,则f 在[0,]π上连续,所以可积,取2(1){0,,,,,}n T n nn ππππ-=,1(1)i i i i xx nξ--==∈∆,1,2,,.i n =则11(1)sin lim ()limsinni i T n i i n xdx f x nnπππξ→→∞==-=∆=∑∑⎰12(1)lim(sin sin sin)n n n n nnππππ→∞-=+++ 0cos 2.x π=-=12()2lim (sin sin sin).n n n n n nn ππππ→∞-⇒+++= §3 可积条件(教材上册P212)1. 证明:若T '是T 增加若干个分点后所得的分割,则 iiiiT Tw x w x '''∆≤∆∑∑解 设T 的分点为:121,,,n x x x -,且012n a x x x x b =<<<<=设T '比T 只多一个分点x ',且1.k k x x x -'<<设()f x 在1[,],[,]k k x x x x -''和1[,]k k x x -的振幅分别为,kk w w '''与k w ,因为函数在子区间上的振幅总大于其在大区间上的振幅,即有,kk k w w w w '''≤≤ 11()()()()kk k k k k k k w x x w x x w x x w x x --'''''''-+-≤-+- 1()k k k w x x -=-除第k 个区间外,()f x 在这些区间上T 和T '的振幅相等.于是iiiiT Tw x w x '''∆≤∆∑∑若T '比T 多若干个分点,则在T 基础上逐次增加一个的办法,则上述结论也成立. 2. 证明:若f 在[,]a b 上可积,[,][,]a b αβ<,则f 在[,]αβ上也可积.知识点窍 可积准则.解 f 在[,]a b 上可积0ε⇔∀>,总存在相应的某一分割T ,使得i iTw xε∆<∑设T 的分点为012n a x x x x b =<<<<=若1[,](,)t t x x αβ-⊂则取T '0:n x x αβ=<=()()iiitT w x w w βαβαε''''∆=-≤-<∑f 在[,]αβ上可积若11t t s s x x x x αβ--≤<≤<≤ 则取0111:t t s T x x x x x αβ+-''''''=<<<<<<1iikkiiT k t Tw x w x w xε''=-''''∆≤∆<∆<∑∑∑f 在[,]αβ上可积,综上得f 在[,]αβ上可积.3. 设f ,g 均为定义在[,]a b 上的有界函数.证明:若仅在[,]a b 中有限个点处()()f x g x ≠,则当f 在[,]a b 上可积时,g 在[,]a b 上也可积,且()()bbaaf x dxg x dx =⎰⎰知识点窍 可积准则.解 不妨设f 和g 仅在一点0[,]x a b ∈处, ()()f x g x ≠.在给分法T ,()k w f 和()k w g 分别为f 和g 在第k 个区间的振幅,()w f 和()w g 为f 和g 在[,]a b 上振幅,则由f ,g 有界M ⇒∃ ()()k w f w f M ≤< ()()w g w g M ≤<0x 最多属于两个相邻小区间1[,]t t x x -和1[,]t t x x +则111()[()()]()n n nkikkikik k k w g x w g w f x w f x===∆=-∆+∆∑∑∑111[()()][()()]t t t t t t w g w f x w g w f x +++=-∆+-∆+1()nkik w f x=∆∑其中111|[()()][()()]|2(t t t t t t t w g w f x w g w f x M x +++-∆+-∆≤∆+1)0(0)t x T +∆→→1()0(0)nkik w f xT =∆→→∑∴1()0(0)nkik w g xT =∆→→∑∴ g 在[,]a b 上也可积任给[,]a b 分法T ',取特殊0,0,1,,.k x k n ξ≠=则11()()nn kkk k k k f x g x ξξ'==''∆=∆∑∑ 011lim ()lim ()n n k kk k T T k k f x g x ξξ'→→==''∆=∆∑∑ ∴()()bbaaf x dxg x dx =⎰⎰4. 设f 在[,]a b 上有界,{}[,]n a a b <,lim n n a c →∞=,证明:若f 在[,]a b 上只有(1,2,)n a n =为其间断点,则f 在[,]a b 上可积.知识点窍 可积准则.逻辑推理 设lim n n a c a →∞==,取合适的0δ>,使0ωδ>,再利用()f x在[,]a b δ+上可积,存在[,]a b δ+上的分割T '使2i i Tx εω∆<∑,最后将[,]a a δ+与T '合并,得[,]a b 上的分割T ,有i iTxωε∆<∑,即得证f 在[,]a b 上可积.解 不妨设lim n n a c a →∞==,()f x 在[,]a b 上的振幅为ω.0ε∀>,取02εδω<<, 因lim n n a a →∞=,所以存在N ,使当n N >时,[,]n a a a δ∈+,从而()f x在[,]a b δ+上至多只有有限个间断点,由定理9.5知()f x 在[,]a b δ+上可积,再有可积准则知,存在[,]a b δ+上的分割T ',使2i i T x εω'∆<∑.把[,]a a δ+与T '合并,就构成[,]a b 的一个分割T ,设0ω为()f x 在[,]a a δ+上的振幅,则**0.22i ii i i i TT T xx x εεωωδωωδωε∆=+∆≤+∆<+=∑∑∑故由可积准则知,()f x 在[,]a b 上可积. 5. 证明:若f 在区间∆上有界,则知识点窍 确界的定义.逻辑推理 对两个上确界和一个下确界,不便同时处理,可选定两个看作常数,而对第三个用确界定义证明.解 记sup ().inf ()x x A f x B f x ∈∆∈∆==(1) 如果()A B f x A =⇒≡,x ∈∆.上述等式两边为零,成立. (2) 如A B >,则对10()2A B ε∀<<-,及x '∀,x ''∈∆,有 ()()f x f x A B '''-≤-,()()f x f x A B '''-≤-|()()|f x f x A B '''⇒-≤-同时x '∃,x ''∈∆,使()2f x A ε'>-,()2f x B ε''<+|()()|()()().22f x f x A B A B εεε'''⇒->--+=--,sup |()()|sup ()inf ().x x x x f x f x A B f x f x ∈∆'''∈∆∈∆'''⇒-=-=-§4 定积分的性质(教材上册P219)1. 证明:若f 与g 都在[,]a b 上可积,则 01lim()()()()nbi i i aT i f g x f x g x dx ξη→=∆=∑⎰其中i ξ,i η是T 所属小区间i ∆中的任意两点, 1,2,,.i n =知识点窍 定积分的性质. 逻辑推理 设01()()lim ()()nbi i i aT i I f x g x dx f g x εε→===∆∑⎰,则只需证0,0εδ∀>∃>,当T δ→时11||()()|[()()()()]|n ni i i i i i i i i i f g x I f g f g x εηεηεε==∆-≤-∆+∑∑1|()()|niiii f g x I εηε=∆-<∑ 即可.解 f 在[,]a b 上可积,则f 有界,即0M ∃>,有||f M <设1()()()()nbi i i ai I f x g x dx f g x ξη===∆∑⎰11()()()[()()]nniiiiiiii i f g x f g g x ξξξηξ===∆+-∆∑∑f ,g 在[,]a b 上可积()()f x g x ⇒在[,]a b 上可积.1lim()()()()nbi i i aT i f g x f x g x dx ξξ→=∆=∑⎰以k w 表示()g x 在1[,]k k x x -上振幅. 因为g 可积,所以01lim0ni iT i w x→=∆=∑11|()[()()]|0(0)nniiiiii i f g g M w xT ξηξ==-≤∆→→∑∑11lim()()lim ()()()()nnbi i i i i i aT T i i f g x f g x f x g x dx ξηξξ→→==∴∆=∆=∑∑⎰2. 不求出定积分的值,比较下列各对定积分的大小. (1)1xdx ⎰与12x dx ⎰ (2)20xdx π⎰与20sin xdx π⎰知识点窍 积分不等式性. 逻辑推理 根据积分不等式,要比较两个积分区间相同的积分的大小,只要比较在该积分区间上两个被积函数的大小.解 (1)在[0,1]上2x x ≥, 112200xdx x dx ∴≥⎰⎰(2)在[0,]2π上, sin x x ≥, 220sin xdx xdx ππ∴≥⎰⎰3. 证明下列不等式(1)202ππ<<⎰(2)2101x e dx e <<⎰ (3)10sin 12x dx x π<<⎰ (4)46e e <<⎰ 解 (1)原式化为22200011dx πππ<<⎰⎰⎰(0,)2x π∈时, 1>>11∴<<22ππ∴<<⎰ (2) 原式可化为211110x e dx edx e dx <<⎰⎰⎰(0,1)x ∈时, 201x << 2111010x e dx e dx e dx ∴<<⎰⎰⎰211x e dx e ∴<<⎰(3)(0,1]x ∈时, sin x x ≤,sin 1xx≤ 10sin 1xdx x∴≤⎰,原题有误. 此题应改为在(0,)2x π∈上.在此区间上2sin 1xxπ<<,所以有 222002sin 12x dx dx dx x πππππ=<<=⎰⎰⎰(4<44ee ee=<⎰⎰44442ln 2eeee eeeex==-⎰⎰⎰4426e e eex =-=-<46ee∴<<⎰4. 设f 在[,]a b 上连续,且()f x 不恒等于零,证明2(())0baf x dx >⎰知识点窍 函数连续的性质,定积分基础性质中的性质4. 逻辑推理 只要证明2()f x 在[,]a b 上连续即可解 因为f 在[,]a b 是连续2f ⇒在[,]a b 上连续,且2(())0f x ≥, [,]x a b ∈.又因为()f x 不恒等于零,即0[,]x a b ∃∈,使20()0()0f x f x ≠⇒>.可得2(())0baf x dx >⎰5. 设f 与g 都在[,]a b 上可积,证明[,]()max{(),()}x a b M x f x g x ∈=,[,]()min{(),()}x a b m x f x g x ∈=在[,]a b 上也都可积.知识点窍 定积分基本性质中的性质6,性质2. 逻辑推理 借助||min{,}2A B A B A B +--=,||max{,}2A B A B A B ++-=,然后利用定积分性质即可得证.解 [,]1()max{(),()}(||)2x a b M x f x g x f g f g ∈==++-2[,]1()min{(),()}(||)2x a b m x f x g x f g f g ∈==+--由f ,g 在[,]a b 上可积||f g ⇒-在[,]a b 上可积()M x ⇒, ()m x 在[,]a b 上也都可积.6. 试求心形线(1cos )r a θ=+, 02θπ≤≤上各点,极径的平均值. 知识点窍 积分中值定理的几何意义.解 极径的平均值为202011(1cos )(sin )22a d a a ππθθθθππ+=⋅+=⎰.§5 微积分基本定理定积分计算(续)(教材上册P229)1. 设f 为连续函数,u ,v 均为可导函数,且可实行复合f u 与f v ,证明:()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=-⎰ 知识点窍 原函数存在定理,符合函数求导法则. 逻辑推理 0()()yG y f t dt ∆⎰,由原函数存在定理,()G y 可导,且()()G y f y '=解 由复合函数求导法则()(()){[()]}v x f t dt G v x '=⎰[()]()[()]()G v x v x f v x v x '''==()()()()00()()()v x v x u x u x d d d f t dt f t dt f t dt dx dx dx ∴=-⎰⎰⎰ (())()(())()f v x v x f u x u x ''=- 2. 设f 在[,]a b 上连续, ()()()xaF x f t x t dt =-⎰.证明()()F x f x ''=,[,]x a b ∈.知识点窍 分部积分法. 逻辑推理 积分()()xaf t x t dt -⎰是以t 为积分变量的定积分,在积分过程中x 是常量。
第九章定积分教学要求:1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分;3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;4.理解并熟练地应用定积分的性质;5.熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学重点:1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分;2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;3.理解并熟练地应用定积分的性质;4.熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学时数:14学时§ 1 定积分概念(2学时)教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;教学重点:深刻理解并掌握定积分的思想.一、问题背景:1.曲边梯形的面积:2. 变力所作的功:二、不积分的定义:三、举例:已知函数在区间上可积 .用定义求积分例1.解取等分区间作为分法, . 取.=.由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 .已知函数在区间上可积 ,用定义求积分.例2.上式最后的极限求不出来 , 但却表明该极限值就是积分.例3讨论Dirichlet函数在区间上的可积性 .四、小结:指出本讲要点§ 2 Newton — Leibniz公式(2学时)教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分.教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分.Th9.1 (N — L公式)( 证 )例1求ⅰ> ; ⅱ> ;例2 求.§3可积条件(4学时)教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题.教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题;一、必要条件:Th 9.2 ,在区间上有界.二、充要条件:1.思路与方案:思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和 , 即用极限的双逼原理考查积分和有极限, 且与分法及介点无关的条件 .方案: 定义上和和下和. 研究它们的性质和当时有相同极限的充要条件 .2. Darboux和: 以下总设函数在区间上有界. 并设,其中和分别是函数在区间上的下确界和上确界 .定义Darboux和, 指出Darboux和未必是积分和 . 但Darboux和由分法唯一确定.分别用、和记相应于分法的上(大)和、下(小)和与积分和.积分和是数集(多值) . 但总有, 因此有. 和的几何意义 .3. Darboux和的性质: 本段研究Darboux和的性质, 目的是建立Darboux定理.先用分点集定义分法和精细分法: 表示是的加细 .性质1 若, 则, . 即 : 分法加细, 大和不增,小和不减 . ( 证 )性质2 对任何, 有, . 即 : 大和有下界,小和有上界. ( 证 )性质3 对任何和 , 总有. 即: 小和不会超过大和 .证.性质4 设是添加个新分点的加细. 则有+ ,.证设是只在中第个区间内加上一个新分点所成的分法, 分别设, , .显然有和. 于是.添加个新分点可视为依次添加一个分点进行次. 即证得第二式.可类证第一式.系设分法有个分点,则对任何分法,有,.证..4. 上积分和下积分:设函数在区间上有界. 由以上性质2 ,有上界,有下界 . 因此它们分别有上确界和下确界.定义记, . 分别称和为函数在区间上的上积分和下积分.对区间上的有界函数, 和存在且有限 , .并且对任何分法, 有. 上、下积分的几何意义.例1求和. 其中是Dirichlet函数 .5. Darboux定理 :Th 1 设函数在区间上有界, 是区间的分法 .则有=, =.证( 只证第一式 . 要证 : 对使当时有. 是显然的. 因此只证. ), 对, 使<设有个分点, 对任何分法, 由性质4的系, 有,由*式, 得<即<亦即<.于是取, ( 可设, 否则为常值函数, =对任何分法成立. ) 对任何分法, 只要, 就有.此即=.6. 可积的充要条件:Th 2 (充要条件1 )设函数在区间上有界.= .证设=, 则有=. 即对使当时有| | < 对成立.在每个上取, 使, 于是,| | = < .因此, 时有| | | | + | | < + = .此即=. 由Darboux定理 , = .同理可证= . = .对任何分法, 有, 而== = .令和的共值为, 由双逼原理=.Th 9.3 有界.对.证( ) = 0. 即对时, ., 由,–, = .定义称为函数在区间上的振幅或幅度.易见有0 . 可证=Th 9.3’(充要条件2 ) 有界.对.Th 3’的几何意义及应用Th 3’的一般方法: 为应用Th 3’, 通常用下法构造分法:当函数在区间上含某些点的小区间上作不到任意小时, 可试用在区间上的振幅作的估计 , 有. 此时, 倘能用总长小于, 否则为常值函数 )的有限个小区间复盖这些点,以这有限个小区间的端点作为分法的一部分分点,在区间的其余部分作分割,使在每个小区间上有<, 对如此构造的分法, 有<.Th 4 ( (R)可积函数的特征 ) 设在区间上有界.对和, 使对任何分法, 只要, 对应于的那些小区间的长度之和.证在区间上可积, 对和, 使对任何分法, 只要, 就有.对的区间总长小于此时有==三.可积函数类:1.闭区间上的连续函数必可积:Th 5 (证)2.闭区间上有界且仅有有限个间断点的函数可积 .Th 6 (证)推论1 闭区间上按段连续函数必可积 .推论2 设函数在区间上有界且其间断点仅有有限个聚点, 则函数在区间上可积.例2 判断题 : 闭区间上仅有一个间断点的函数必可积 . ( )闭区间上有无穷多个间断点的函数必不可积 .( )3. 闭区间上的单调函数必可积:Th 7 (证)例3证明在上可积.§ 4 定积分的性质(2学时)教学要求:理解并熟练地应用定积分的性质;教学重点:理解并熟练地应用定积分的性质;一.定积分的性质:1.线性性质:Th 1 —Const , 且. (证)Th 2 , , 且.(证)综上 , 定积分是线性运算 .2. 乘积可积性:Th 3 ,.证和有界. 设, 且可设.( 否则或恒为零 ). 插项估计, 有.……但一般.3. 关于区间可加性:Th 4 有界函数在区间和上可积,,并有. ( 证明并解释几何意义 )规定, .系设函数在区间上可积 . 则对, 有. (证)4. 积分关于函数的单调性:Th 5设函数, 且, .(证)(反之确否?)积分的基本估计: . 其中和分别为函数在区间上的下确界与上确界.5. 绝对可积性:Th 6设函数,,且(注意.)证以证明; 以证明不等式.该定理之逆不真. 以例做说明.6. 积分第一中值定理:Th 7 ( 积分第一中值定理 ) , 使=. (证)Th 8 ( 推广的积分第一中值定理 ) 且不变号. 则, 使=. (证).二. 举例:例1设. 试证明:.其中和是内的任二点, {}, .例2 比较积分与的大小.例3 设但. 证明>0.例4 证明不等式.证明分析所证不等式为只要证明在上成立不等式, 且等号不恒成立, 则由性质4和上例得所证不等式.例5 证明 .§5 微积分基本定理.定积分计算(续)(2学时)教学要求:熟练地掌握换元积分法和分部积分法,并能解决计算问题.教学重点:熟练地掌握换元积分法和分部积分法,并能解决计算问题.一. 变限积分与原函数的存在性引入:由定积分计算引出 .1.变限积分: 定义上限函数,(以及函数)其中函数. 指出这是一种新的函数, 也叫做面积函数.Th 9 ( 面积函数的连续性 )思路:表达面积函数.2.微积分学基本定理:Th 10 微积分学基本定理(原函数存在定理)若函数则面积函数在上可导,且=.即当时, 面积函数可导且在点的导数恰为被积函数在上限的值. 亦即是的一个原函数 .证系连续函数必有原函数.3.积分第二中值定理Th11 (积分第二中值定理)设函数在上可积,(i)若函数在上减,且,则存在,使得(ii)若函数在上增,且,则存在,使得推论函数在上可积,若为单调函数,则存在,使得二.换元积分法与分部积分法:1.换元积分法Th 12 设函数满足条件:ⅰ> , 且;ⅱ> 在上有连续的导函数.则. (证)例1. ( P225 )例2 . ( P225 )例3 计算. ( P225—226 ) 该例为技巧积分.例4 . 该例亦为技巧积分.例5 已知 , 求例6 设函数连续且有求积分例7设是区间上连续的奇(或偶函数)函数,则,(. )例8 ..2. 分部积分法Th13 ( 分部积分公式 )例9例10计算.解=;解得直接求得,. 于是,当为偶数时, 有;当为奇数时, 有.三. Taylor公式的积分型余项: P227—229.习题课(2学时)一.积分不等式:1.利用积分关于被积函数的单调性证明积分不等式:例1 证明不等式.证注意在区间 [ 0 , 1 ]上有 , ……例2证明不等式.证考虑函数, . 易见对任何, 在区间上和均单调, 因此可积,且有, 注意到 , 就有. 而,.因此有 .取, .在区间仿以上讨论, 有. 而,.综上 , 有不等式.2. 某些不等式的积分推广: 原理: 设函数和在区间上可积. 为区间 的等分分法,. 若对任何和, 均有, 即得.令, 注意到函数和在区间 上可积, 即得积分不等式.倘若函数和连续 , 还可由.例3证明Schwarz 不等式 ( 亦称为Cauchy–Буняковский不等式 ): 设函数和在区间上连续 ( 其实只要可积就可 ).则有不等式.证法一( 由Cauchy 不等式Schwarz不等式 . Cauchy 不等式参阅上册 : 设和为两组实数, 则有. )设为区间的等分分法. 由Cauchy 不等式 , 有,两端同乘以, 有,令, 注意到函数、和在区间上的可积性以及函数的连续性,就有积分不等式.证法二(用判别式法)对任何实数,有,, 即对任何实数成立.即上述关于的二次不等式的解集为全体实数, 于是就有,即.例4 且. 证明不等式.证取. 对函数和应用Schwarz不等式, 即得所证 .例5 设函数在区间 [ 0 , 1 ]上可积 . 试证明有不等式.证先用Jensen不等式法证明不等式 : 对, 有不等式.设为区间的等分分法. 由上述不等式 , 有.令, 注意到函数和在区间 [ 0 , 1 ]上的可积性以及函数和的连续性,就有积分不等式.仿该例, 可得到均值不等式、用Jensen不等式法证明的某些不等式的积分形式 .二. 面积函数的导数 :例6 求和例7 求和例8 求 .例9 设时函数连续且.求.(=)例10 设函数连续且. 求和.解令. 两端求导, = .例11设. =.试证明 :=.证=,=.例12设函数在区间上连续且>0. .试证明: 函数在区间内严格递增.证= , 而.>0 , 在内,又连续,,在区间内>0 . 因此在区间内严格递增.三. 含有变限积分的未定型极限:例13求极限. ( 2 )四. 定积分的计算 :例 14 计算积分.例15计算积分=.解时, =;时, =;时, =.因此,例16利用积分的值 , 计算积分.解.,而 , .因此,例17 , 求 ( 2)例18 设是区间上连续的偶函数 . 试证明 :是上的奇函数 .证法一.证法二注意到, 有==.五. 利用定积分求和式极限 :原理: 用定积分定义,在函数可积时,能用特殊的分割及介点取法,计算定积分.例19 求极限. [3] P163 E13 . 与§1例2连系.例20 求极限.解==.由函数在区间 [ 0 , 1 ]上可积 , 有=..例21 求极限.解==.,.因此 , .例22 试证明: 对任何,有不等式< .证=是函数=在区间[ 0 , 1 ]上相应于等分分法的小和. 由函数=在区间[ 0 , 1 ]上可积, 有时, ↗. 又易见↗↗. 对任何, 有< , 即 < .。