2017年华东师大数学分析考研真题
- 格式:doc
- 大小:183.91 KB
- 文档页数:4
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1Λ==εn n n 相应地S a n ∈∃,使得Λ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取Λ,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a ΛΛΛ.由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有Λ,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因Λ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点Λ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈Θ为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 Λ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到Λ,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点Λ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~Λ,其中每个邻域N i b a U ii n n i ,,2,1,],[Λ=∅=⋂.若令{}N n n n K ,,,max 21Λ=,则N i b a b a i i n n K K ,,2,1,],[],[Λ=⊂,从而N i U b a i K K ,,2,1,],[Λ=∅=⋂. (Ж) 但是Y Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在Λ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111ο.一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,Λο,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:Λ,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{}Λ,3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ是{}n a 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a . (5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→n n n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □。
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(一(1212分)设f(x)f(x)是区间是区间I 上的连续函数。
证明:若f(x)f(x)为一一映射,则为一一映射,则f(x)在区间I 上严格单调。
二(二(1212分)设1,()0x D x x ì=íî为有理数,为无理数证明:若f(x), D(x)f(x) f(x), D(x)f(x) 在点在点x=0处都可导,且f(0)=0,f(0)=0,则则'(0)0f =三(三(1616分)考察函数f(x)=xlnx f(x)=xlnx 的凸性,并由此证明不等式:的凸性,并由此证明不等式:2()(0,0)a b a ba b ab a b +³>>四(四(1616分)设级数1nn an ¥=å收敛,试就1n n d ¥=å为正项级数和一般项级数两种情况分别证明1nn an n¥=+å也收敛。
五(五(2020分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)y=f(x)。
又设。
又设(,)Fx y 具有连续的二阶偏导数。
(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)f(x)的一个极值,试证明:的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。
(3) 对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(的极值,并用(22)的结论判别极大或极小。
六(六(1212分)改变累次积分4204842(4)x x xI dxy dy --=-òò的积分次序,并求其值。
2017年华东师大华东师范大学考研真题、研究生招生简章、招生目录及考试大纲汇总华东师范大学考研真题、考研答案及考研资料,由布丁考研网东师大在读学长收集整理,真题都是来自官方原版,权威可靠,内部资料都是我们当年考东师大时用的,考上后针对新的大纲重新进行了整理,参考价值极高。
此外,我们还有很多备考东师大的经验,学弟学妹们有任何报考的疑问均可以咨询我们。
我们还提供一对一VIP辅导,除了传授报考东师大的内部信息、备考方法及经验外,把专业课的所有重点、难点、考点全部道出,在最短的时间内快速提升成绩,特别适合二战、在职、本科不是985和211、基础比较差的同学。
华东师范大学2016年硕士研究生招生简章一、培养目标培养热爱祖国,拥护中国共产党的领导,拥护社会主义制度,遵纪守法,品德良好,具有服务国家服务人民的社会责任感,德、智、体全面发展,掌握本学科坚实的基础理论和系统的专业知识,具有创新精神、创新能力和从事科学研究、教学、管理等工作能力的高层次学术型专门人才以及具有较强解决实际问题的能力、能够承担专业技术或管理工作、具有良好职业素养的高层次应用型专门人才。
二、招生专业(领域)和招生计划我校招生计划详见我校研究生招生信息网“硕士研究生招生专业目录”,包括学术型硕士生和专业学位硕士生两种类型。
招生专业目录中公布的招生计划是根据2015年招生计划以及招生院系2016年需求拟定的,供考生参考。
2016年最终的招生计划将根据教育部下达的招生计划以及生源状况,综合学校发展需要适当调整,并在复试前公布。
除工商管理硕士、公共管理硕士、旅游管理硕士和部分只招生免费师范生的教育硕士领域外,我校各招生专业均可接收推免生,各专业推免生接收人数视招生计划和生源情况而定,各专业接收推免生人数一般不超过该专业招生专业目上公布的招生计划的70%。
我校一般实行在招生单位内按专业(领域)统一招生。
我校历史学系中国史、世界史、美术学系美术学、美术、艺术研究所美术等专业(领域)按研究方向招生,我校数学系按学科统一招生,即按学科(不按专业)确定复试和录取名单的排序。
2017年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f xf z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n …为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx x x x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=. (2)构造()()'F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
华东师范大学2017年教育综合考研真题
一、名词解释(每小题5分,共30分)
1、致良知
2、以吏为师
3、实科中学
4、学科课程
5、发现学习
6、要素主义
二、简答题(每小题10分,共40分)
1、简述朱子读书法及其当代价值
2、简述“形成性评价”在教育中的作用;
3、简述颜元的六斋及实学教育内容;
4、简述安德森的心理技能形成的三阶段;
三、论述题(每小题20分,共80分)
1、论述《朗之万瓦隆教育改革法》的内容及对教育民主化的影响;
2、论述班主任工作对班集体发展和学生品德发展的影响;
3、论述课程内容组织中“横向组织”和“纵向组织”的关系;
4、论述奥苏泊尔的有意义学习的实质与条件。
2017年全国硕士研究生入学统一考试数学一真题及答案解析一、选择题(1~8小题,每小题4分,共32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
(3)函数22),,(z y x z y x f +=在点)0,2,1(处沿向量}2,2,1{=的方向导数为( ))(A 12。
)(B 6。
)(C 4。
)(D 2。
【答案】)(D【解】xy x f 2=∂∂,2x y f=∂∂,z zf 2=∂∂, 4|)0,2,1(=∂∂x f ,1|)0,2,1(=∂∂y f,0|)0,2,1(=∂∂zf , 32cos ,32cos ,31cos ===γβα,所求的方向导数为2321314|)0,2,1(=⨯+⨯=∂n,应选)(D 。
(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线)(1t v v =(单位:s m /),虚线表示乙的速度曲线)(2t v v=,三块阴影部分面积的数值依次为3,20,10,计时开始后乙追甲的时刻为0t (单位:s ),则( ))(A 100=t 。
2017年考研数学三真题及解析一、选择题一、选择题 1—8小题.每小题4分,共32分.分.1.若函数1cos ,0(),0xx f x ax b x ì->ï=íï£î在0x =处连续,则处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0011cos12lim ()lim lim 2x x x x x f x ax ax a +++®®®-===,0lim ()(0)x f x b f -®==,要使函数在0x =处连续,必须满足1122b ab a =Þ=.所以应该选(A ) 2.二元函数(3)z xy x y =--的极值点是(的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32z y x y xy y xy y x ¶=---=--¶,232z x x xy y¶=--¶,2222222,2,32z z z z y x x xyx yy x¶¶¶¶=-=-==-¶¶¶¶¶¶解方程组22320320z y xy y x z x x xy y¶ì=--=ï¶ïí¶ï=--=¶ïî,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x ¢>,则,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ¢¢=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-Þ>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ¥=éù--êúëûå收敛,则k =( )(A )1 (B )2 (C )1- (D )2-【详解】iv n ®¥时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n æöæöæöæö--=---+=++ç÷ç÷ç÷ç÷èøèøèøèø 显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设a 为n 单位列向量,E 为n 阶单位矩阵,则阶单位矩阵,则(A )TE aa -不可逆不可逆 (B )TE aa +不可逆不可逆(C )2TE aa +不可逆不可逆 (D )2TE aa -不可逆不可逆【详解】矩阵Taa 的特征值为1和1n -个0,从而,,2,2T T T T E E E E aa aa aa aa -+-+的特征值分别为0,1,1,1 ;2,1,1,,1 ;1,1,1,1,1,1,,,1- ;3,1,1,,1 .显然只有TE aa -存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A æöç÷=ç÷ç÷èø,210020001B æöç÷=ç÷ç÷èø,100020002C æöç÷=ç÷ç÷èø,则,则(A ),A C 相似,,B C 相似相似 (B ),A C 相似,,B C 不相似不相似(C ),A C 不相似,,B C 相似相似 (D ),A C 不相似,,B C 不相似不相似【详解】矩阵,A B 的特征值都是1232,1l l l ===.是否可对解化,只需要关心2l =的情况.的情况.对于矩阵A ,0002001001E A æöç÷-=-ç÷ç÷èø,秩等于1 ,也就是矩阵A 属于特征值2l =存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -æöç÷-=ç÷ç÷èø,秩等于2 ,也就是矩阵A 属于特征值2l =只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是(条件是( )(A ),A B 相互独立相互独立 (B ),A B 互不相容互不相容 (C ),AB C 相互独立相互独立 (D ),AB C 互不相容互不相容【详解】【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,A B 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ³ 为来自正态总体(,1)N m 的简单随机样本,若11ni i X X n==å,则下列结论中不正确的是(正确的是( )(A )21()ni i X m =-å服从2c 分布分布 (B )()2212n X X -服从2c 分布分布(C )21()nii XX =-å服从2c 分布分布(D )2()n X m -服从2c 分布分布 解:(1)显然22()~(0,1(0,1))()~1(1),),1,2,i i X N X i n m m c -Þ-= 且相互独立,所以21()nii X m =-å服从2()n c 分布,也就是(A )结论是正确的;)结论是正确的;(2)222221(1)()(1)~(1)nii n SXXn S n c s=--=-=-å,所以(C )结论也是正确的;)结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N n X N n X nm m m c Þ-Þ-,所以(D )结论也是正确的;)结论也是正确的;(4)对于选项(B ):221111()~(0,2)~(0,1)()~(1)22nn n X XX X N N X X c --ÞÞ-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上) 9.322(sin)x x dx pp p -+-=ò .解:由对称性知332222(sin)22x x dx x dx ppp pp p -+-=-=òò. 10.差分方程122tt tyy+-=的通解为的通解为. 【详解】齐次差分方程120t tyy+-=的通解为2xy C =;设122t t tyy+-=的特解为2tt y at =,代入方程,得12a =;启航考研启航考研 只为一次考上研只为一次考上研所以差分方程122t t ty y+-=的通解为12 2.2tty C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为,则边际成本为 . 【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为,从而边际成本为()1(1).Q C Q Q e -¢=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y ydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()y y y df x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A æöç÷=ç÷ç÷èø,123,,a a a 为线性无关的三维列向量,则向量组123,,A A A a a a 的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A æöæöæöç÷ç÷ç÷=®®ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø,知矩阵A 的秩为2,由于123,,a a a 为线性无关,所以向量组123,,A A A a a a 的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-´+´+´=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题三、解答题15.(本题满分10分)分) 求极限03lim xt x x te dt x+®-ò启航考研启航考研 只为一次考上研只为一次考上研【详解】令x t u -=,则,t x u dt du =-=-,xxtx ux te dt uedu --=òò33300002lim lim limlim 332xxxtxuu x x x x x x te dt eue du ue du xe xx x x ++++---®®®®-====òòò 16.(本题满分10分)分) 计算积分3242(1)Dy dxdy x y ++òò,其中D 是第一象限中以曲线y x =与x 轴为边界的无界区域.轴为边界的无界区域.【详解】【详解】332422422424200220(1)(1)1(1)4(1)11121411282xDx y y dxdy dxdyxy x y d x y dx x y dxx x p +¥+¥+¥=++++++=++æöæö=-=-ç÷ç÷ç÷++èøèøòòòòòòò 17.(本题满分10分)分)求21lim ln 1nnk k k n n ®¥=æö+ç÷èøå 【详解】由定积分的定义【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx ®¥®¥==æöæö+=+=+ç÷ç÷èøèø=+=ååòò 18.(本题满分10分)分) 已知方程11ln(1)k x x -=+在区间(0,1)内有实根,确定常数k 的取值范围.的取值范围.【详解】设11(),(0,1)ln(1)f x x x x =-Î+,则,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x xf x x x x x x x ++-¢=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ¢¢=+-+-=启航考研启航考研 只为一次考上研只为一次考上研2(ln(1))()0,(0,1)1x x g x x x+-¢¢=<Î+,所以()g x ¢在(0,1)上单调减少,上单调减少,由于(0)0g ¢=,所以当(0,1)x Î时,()0)0g x g ¢¢<=,也就是()g x ()g x ¢在(0,1)上单调减少,当(0,1)x Î时,()(0)0g x g <=,进一步得到当(0,1)x Î时,()0f x ¢<,也就是()f x 在(0,1)上单调减少.上单调减少.0011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++®®®æö-+=-==ç÷++èø,1(1)1ln 2f =-,也就是得到111ln 22k -<<. 19.(本题满分10分)分) 设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+ ,()S x 为幂级数0n n n a x ¥=å的和函数的和函数(1)证明nn n a x ¥=å的收敛半径不小于1. (2)证明(1)()()0((1,1))x S x xS x x ¢--=Î-,并求出和函数的表达式.,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+Þ+=++ 也就得到11(1)()()n n n n n aa a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+ 1112110112101(1)(1)!n n n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=´´´=-----+也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+111121121()()()(1)!n k n n n n n k a a a a a a a a k +++-==-+-++-+=-å111lim lim lim 12!3!!nn nn n nna e n r ®¥®¥®¥=£+++£= ,所以收敛半径1R ³ (2)所以对于幂级数nn n a x ¥=å, 由和函数的性质,可得11()n n n S x na x ¥-=¢=å,所以,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n n nn n n n nnn n n nn nn n n n n n x S x x na xna xna xn a x na x a n a na x a x a xx a x xS x ¥¥¥--===¥¥+==¥+=¥¥¥+-===¢-=-=-=+-=++-====ååååååååå也就是有(1)()()0((1,1))x S x xS x x ¢--=Î-.解微分方程(1)()()0x S x xS x ¢--=,得()1xCe S x x-=-,由于0(0)1S a ==,得1C =所以()1x e S x x-=-.20.(本题满分11分)分)设三阶矩阵()123,,A a a a =有三个不同的特征值,且3122.a a a =+ (1)证明:()2r A =;(2)若123,b a a a =+,求方程组Ax b =的通解.的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ³.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ³,又因为31220a a a -+=,也就是123,,a a a 线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220a a a -+=,所以基础解系为121x æöç÷=ç÷ç÷-èø; 又由123,b a a a =+,得非齐次方程组Ax b =的特解可取为111æöç÷ç÷ç÷èø;方程组Ax b =的通解为112111x k æöæöç÷ç÷=+ç÷ç÷ç÷ç÷-èøèø,其中k 为任意常数.为任意常数.21.(本题满分11分)分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Q y =下的标准形为221122y y l l +,求a 的值及一个正交矩阵Q . 【详解】二次型矩阵21411141A a -æöç÷=-ç÷ç÷-èø因为二次型的标准形为221122y y l l +.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A l l l l l l l ---=+=+---令0E A l -=得矩阵的特征值为1233,6,0l l l =-==.通过分别解方程组()0i E A x l -=得矩阵的属于特征值13l =-的特征向量111131x æöç÷=-ç÷ç÷èø,属于特征值特征值26l =的特征向量211021x -æöç÷=ç÷ç÷èø,30l =的特征向量311261x æöç÷=ç÷ç÷èø, 所以()12311132612,,036111326Q x x x æö-ç÷ç÷ç÷==-ç÷ç÷ç÷ç÷èø为所求正交矩阵.为所求正交矩阵. 22.(本题满分11分)分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<ì=íî其他.(1)求概率P Y EY £();(2)求Z X Y =+的概率密度.的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +¥-¥===òò所以{}23024239P Y EY P Y ydy ìü£=£==íýîþò(2)Z X Y =+的分布函数为的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =£=+£=+£=++£===£+=£-=£+£-=+-故Z X Y =+的概率密度为的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z ¢==+-££ìï=-£<íïî其他23.(本题满分11分)分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量m 是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N m s 该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n m =-= ,利用12,,,n Z Z Z 估计参数s . (1)求i Z 的概率密度;的概率密度;(2)利用一阶矩求s 的矩估计量;的矩估计量; (3)求参数s 最大似然估计量.最大似然估计量. 【详解】(1)先求i Z 的分布函数为的分布函数为{}{}()i Z i i X z F z P Z z P X z P m m ss ì-ü=£=-£=£íýîþ 当0z <时,显然()0ZF z =; 当0z ³时,{}{}()21iZ i i X zz F z P Z z P X z P mm sssì-üæö=£=-£=£=F -íýç÷èøîþ;所以i Z 的概率密度为2222,0()()20,0z Z Z e z f z F z z s ps-ì³ï¢==íï<î.(2)数学期望222022()z i EZ z f z dz zedz s s -+¥+¥===òò,22p p12(2)ne ps å=21ln(222n s--å令3ln ()1d L n d s s s s =-+å211n i i z n ==å.。
华东师范大学2004数学分析一、〔30分〕计算题。
1、求2120)2(cos lim x x x x -→ 2、假设)),sin(arctan 2ln x x e y x +=-求'y .3、求⎰--dx x xe x 2)1(. 4、求幂级数∑∞=1n n nx 的和函数)(x f .5、L 为过)0,0(O 和)0,2(πA 的曲线)0(sin >=a x a y ,求⎰+++L dy y dx y x .)2()(3xdx a x da dy x a y cos sin ,sin ===6、求曲面积分⎰⎰++S zdxdy dydz z x )2(,其中)10(,22≤≤+=z y x z ,取上侧..二、〔30分〕判断题〔正确的证明,错误的举出反例〕1、假设},,2,1,{ =n x n 是互不相等的非无穷大数列,则}{n x 至少存在一个聚点).,(0+∞-∞∈x2、假设)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连续.3、假设)(x f ,)(x g 在]1,0[上可积,则∑⎰=∞→=-n i n dx x g x f n i g n i f n 110)()()1()(1lim . 4、假设∑∞=1n n a 收敛,则∑∞=12n n a 收敛.5、假设在2R 上定义的函数),(y x f 存在偏导数),(y x f x ,),(y x f y 且),(y x f x ,),(y x f y 在(0,0)上连续,则),(y x f 在(0,0)上可微.6、),(y x f 在2R 上连续,})()(|),{(),(2202000r y y x x y x y x D r ≤-+-= 假设⎰⎰=>∀∀r D dxdy y x f r y x ,0),(,0),,(00 则.),(,0),(2R y x y x f ∈= 三、〔15分〕函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞→ 求证:)(x f 在).,(+∞-∞上有最大值或最小值。
第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有xy1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1x Z ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x xF x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0)证明:(1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x xf x +()z ,y ,x kyf y +()z ,y ,x mzf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n kn k21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 2e t a 21--π(a,b 为常数)满足热传导方程:t u ∂∂=222xu a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x. 2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctg x y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求x dZ α; (2) 设Z=xy y x 2222e xy y x ++,求x Z ∂∂,yZ ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1. 21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度.22.设r=222z y r ++,试求:(1)grad r; (2)grad r1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤;(2) Z=22y xy x +-,(){}1y x y ,x ≤+;(3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数 ⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1n n1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n 1k k0;x u (2)∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f (a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求x k z h y g y f x e z d zc y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z )h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin x y ,试证 my y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。