图上距离与实际距离.
- 格式:ppt
- 大小:423.00 KB
- 文档页数:20
(1):(2):(3):(4):⎧⎪⎪⎨⎪⎪⎩概念第四比例项比例中项比例基本性质 AD AE DB EC =且: AD (2) BD EC AB AC =求的长;求证:扬中树人学校06-07第二学期初二数学作业纸 10.1图上距离与实际距离 2007.4. 4 命题: 丁 佩 审查: 【知识点】 1. 叫比例线段. 2.比例的基本性质:若a:b=c:d ,则 ,若ad=bc ,则 。
3.知识结构: 注意:求线段的比时,线段的单位要统一,并注意线段的顺序性。
线段的比是一个没有单位的正数。
【例题讲解】 1.A 、B 两地的实际距离AB=250m,画在图上的距离A ′B ′=5㎝,求图上的距离与实际距离的比. 2.在R t△ABC 中,∠C=90°,∠A=30°,斜边AB=2. 3.如图:△ABC 中,AB=12,AE=6,CE=4. 4.班级学号姓名编号:21………………………………………………………………装………订………线……………………………………………………………AB AC BC AB 求:、a 3b-2c (a 0) .7252a ba b c b c +==+若、、均不为,求的值5.6.【课后练习】1. 在一幅江苏省地图上,扬州与南京的距离AB=1.25cm ,实际上扬州与南京的距离A /B/约为100km 。
请根据上述条件回答下列问题:(1)线段AB 与A /B /的比是 ;(2)地图的比例尺是 ;(3)在计算中应注意 一致。
2.已知线段a=2cm ,b=4cm ,c=5cm ,d=10cm ,它们是比例线段吗?为什么?3.等边三角形的三边之比是 ,直角三角形斜边上的中线和斜边的比是 ,线段2cm 、8cm 的比例中项为 cm 。
4.如图,已知AD DB AE EC=,AD=10,AB=30,AC=24,则AE= 。
5.下列各组长度的线段是否成比例?(1)4cm ,6cm ,8cm ,10cm ; (2)4cm ,6cm ,8cm ,12cm ;(3)11cm ,22cm ,33cm ,66cm ; (3)2cm ,4cm ,4cm ,8cm 。
苏科版数学九年级下册6.1《图上距离与实际距离》说课稿一. 教材分析《图上距离与实际距离》是苏科版数学九年级下册第6.1节的内容。
本节内容主要让学生掌握比例尺的概念,学会根据比例尺计算图上距离与实际距离的关系。
通过本节的学习,学生能够理解比例尺在实际生活中的应用,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于比例尺的概念和计算方法可能还比较陌生。
因此,在教学过程中,我将会注重引导学生理解比例尺的意义,并通过大量的实例让学生学会计算图上距离与实际距离。
三. 说教学目标1.知识与技能目标:学生能够理解比例尺的概念,掌握比例尺的计算方法,能够根据比例尺计算图上距离与实际距离。
2.过程与方法目标:通过观察实际地图,学生能够发现比例尺的应用,提高观察和思考能力。
3.情感态度与价值观目标:学生能够认识到数学在实际生活中的重要性,增强学习数学的兴趣。
四. 说教学重难点1.教学重点:比例尺的概念和计算方法的掌握。
2.教学难点:如何引导学生理解比例尺的实际意义,并能够运用比例尺解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法,通过设置实际问题引导学生思考比例尺的意义和应用。
2.教学手段:利用多媒体课件展示实际地图,引导学生观察和分析比例尺的应用。
六. 说教学过程1.导入:通过展示一张实际地图,引导学生观察地图上的距离和实际距离的关系,引发学生对比例尺的思考。
2.新课导入:介绍比例尺的概念,解释比例尺的意义。
3.实例讲解:通过具体的实例,讲解比例尺的计算方法,引导学生学会根据比例尺计算图上距离与实际距离。
4.实践操作:学生分组讨论,每组选择一个实际问题,运用比例尺进行计算和解决。
5.总结提升:引导学生总结比例尺的应用方法,并思考比例尺在实际生活中的重要性。
七. 说板书设计板书设计如下:比例尺的概念图上距离 : 实际距离 = 比例尺比例尺的应用1.计算图上距离与实际距离2.计算实际距离与图上距离八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。
6.1 图上距离与实际距离(教材分析)教学目标:1.结合现实情境了解线段的比和成比例的线段;2.理解并掌握比例的性质;3.通过对实际问题的研究,发展从数学的角度提出问题,分析问题和解决问题的能力,增强用数学的意识.教学重点:了解线段的比和成比例的线段.教学难点:比例的性质、运算及应用.教材分析:1.情境创设展示课本中两幅不同比例尺的江苏省地图,引导学生完成活动,通过实践活动,使学生体会到:(1)这两幅地图的形状相同,但比例不同。
因此,研究形状相同的图形,首先要从研究比例线段入手;(2)研究相似图形与研究全等图形一样,是现实生活和生产实际的需要。
2.探索活动活动一通过“自学与交流”活动,引入两条线段的比与成比例线段的概念。
学生在小学里学习过两个数的比,知道比例的意义。
在教学中,要注意用两条线段的比、成比例的线段类比两个数的比和比例的意义,这对理解两条线段的比和成比例线段的概念骑着巩固、深化的作用。
对线段的比的教学要强调:(1)线段a、b,有a:b=k,说明a是b的k 倍,由于线段的长度是正数,因此k>0;(2)求两条线段的比时,其单位长度要一致,两条线段的比值与采用的长度单位无关.活动二通过操作交流与一组练习,引导学生进一步理解成比例线段的概念,并探究比例的一些性质.课本在小学的基础上,通过“回忆”,引入比例的基本性质。
在教学中,要注意向学生说明如下几点:(1)在小学里,比例基本性质中的字母a、b 、c、d仅限于正数,而这里的字母a、b 、c、d不仅可以是任意的实数(b、d不能为0),而且可以是线段.(2)根据比例的基本性质,一个比例可以写成8种不同的形式。
(3)比例的外项、内项、中项,是根据它们在比例式中的位置来定义的,因此,说“a、b、c、d四条线段成比例”时,a、b、c、d四条线段是有顺序的,不能随便颠倒。
3.例题教学例1教学的主要目的是引导学生感知线段比的应用:第1步根据题设条件,求得这幅地图的比例尺;第二步应用比例尺,求得另外两条边的实际长度.例2教学的目的是:在不利用“等比定理”的条件下,给出一类问题的一般解法(简称为“设K法”),为后续的学习做好铺垫.4.小结(1)距离说明线段的比、成比例线段的意义.(2)根据比例的基本性质,一个比例可以写成哪几种不同的形式.。
苏科版数学九年级下册6.1《图上距离与实际距离》教学设计一. 教材分析《图上距离与实际距离》是苏科版数学九年级下册第六章第一节的内容。
本节课主要让学生学会在实际问题中,将图上的距离转换为实际距离,并理解比例尺的概念及其应用。
教材通过具体的例题和练习,帮助学生掌握图上距离与实际距离的转换方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似多边形的性质和坐标与图形的变换等知识。
但是,对于比例尺的概念及其应用,部分学生可能还比较陌生。
因此,在教学过程中,教师需要关注学生的知识基础,针对性地进行教学。
三. 教学目标1.知识与技能目标:让学生理解比例尺的概念,学会将图上的距离转换为实际距离,并能运用比例尺解决实际问题。
2.过程与方法目标:通过合作交流、探究学习,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:比例尺的概念及其应用。
2.难点:如何将图上的距离转换为实际距离,以及如何运用比例尺解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究,发现规律。
2.利用多媒体辅助教学,直观展示比例尺的应用。
3.学生进行小组讨论,培养学生的团队合作精神。
4.注重启发式教学,让学生在思考中掌握知识。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备比例尺为1:1000的地图和尺子。
3.准备一些实际问题,让学生进行练习。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与比例尺相关的图片,如地图、设计图等,引导学生思考:这些图上的距离与实际距离之间有什么关系?进而引入本节课的主题——图上距离与实际距离。
2.呈现(10分钟)教师展示比例尺为1:1000的地图和尺子,向学生讲解比例尺的概念,并演示如何将地图上的距离转换为实际距离。
同时,让学生进行实际操作,加深对比例尺的理解。
3.操练(10分钟)教师提出一些实际问题,让学生运用比例尺进行解答。
初中数学八年级下册10.1图上距离与实际距离教学目标:知识与技能:结合现实情境,了解线段的比和成比例的线段; 理解并掌握比例的性质及运算.过程与方法:学生在探究的过程中了解线段的比,能判断四条线段是否成比例。
情感态度与价值观:通过对实际问题的研究,学生提高从数学的角度提出问题、分析问题和解决问题的能力,增强用数学的意识。
教学重点与难点:重点:比例的性质及运算。
难点:比例的性质、运算及应用。
教学过程:一、自主探究:在一幅江苏省的地图上,南京与徐州的距离是3.4cm ,而实际南京与徐州的距离是272km 。
根据上述条件你能回答下列问题吗?①图上距离与实际距离的比是多少?答: 。
②地图的比例尺是多少?答: 。
③你知道比例尺的含义吗?答: 。
④如果继续测得在这张地图上,徐州与连云港间的距离是1.2cm ,你知道徐州与连云港的实际距离吗?答: 。
⑤如果在另一张地图上测得南京与徐州的距离是1.7cm ,你知道在第二张地图上,徐州与连云港间的距离上测量的结果吗?答: 。
⑥如果在第一张地图上测得的南京与徐州的距离,徐州与连云港间的距离分别记为a ,b ;在第二张地图上测得的南京与徐州的距离,徐州与连云港间的距离分别记为c ,d ,请你分别求出a 与b 的比,即 a b (或a :b ),以及c 与d 的比,即 c d (或c :d ),观察a b 与cd 的值,你发现了什么?答: 。
概念引入:在四条线段中,如果两条线段的比等于另两条线段的比,那么称这四条线段成比例。
比例的基本性质①:如果a :b=c :d ,那么 = ;反过来,如果ad=bc (b ≠0,d ≠0),那么 = ,或 = 。
思考:由ad =bc 得到 a b =cd。
还可以得到哪些不同的比例式?推广:根据分式的性质,我们可以推导出下面两个结论 ∵a b =c d , ∵a b =c d , ∴a b + 1=cd+ 1 ∴a b - 1=cd- 1 而a b + 1 =a+b b ,c d + 1=c+d d 而a b - 1 =a-b b ,c d - 1=c-dd ∴a+b b = c+d d ∴a-b b = c-dd于是,我们得到比例的另外两个性质:比例的基本性质②:如果a b =c d ,那么a+b b =c+d d 比例的基本性质③:如果a b =c d ,a-b b =c-d d有时,在a b =c d 中,b=c ,即a b =bd ,我们则把b 叫做a 与c 的比例中项。
比例尺的名词解释比例尺是指图上距离与实际距离之比,或者叫图上距离的缩小程度。
也称缩尺或放大尺,以前也曾叫地图上的比例,简称比例。
比例尺是根据图纸上的线段长度与实地相应线段长度的比值来测定的。
比例尺通常有三种:长度比例尺、面积比例尺和两者同时用的混合比例尺。
1、地图上的距离与实际距离之间的比例关系叫做比例尺,即地图上1厘米的长度相当于地面实际距离1千米,或相当于在真空中1厘米的长度所代表的距离的多少。
2、图上距离与实地距离的比值,叫做这个图的比例尺。
在比例尺的基础上,进一步扩展出了我们所熟悉的方向比例尺,它可以用来确定地图上表示的方向的长短;地图上1厘米代表实地1000米的长度,这样的比例尺叫做1: 100000,也叫做地图上1厘米代表实地1000米,它可以用来确定地图上表示的方向的长短。
在比例尺的基础上,进一步扩展出了我们所熟悉的距离比例尺,它可以用来确定地图上表示的点的位置的远近。
由此还可以推算出平面直角坐标系统中两点间的实际距离,等等。
比例尺是图上距离与实际距离之比,或者叫图上距离的缩小程度。
也称缩尺或放大尺,以前也曾叫地图上的比例,简称比例。
比例尺是根据图纸上的线段长度与实地相应线段长度的比值来测定的。
比例尺通常有三种:长度比例尺、面积比例尺和两者同时用的混合比例尺。
长度比例尺又称线段比例尺或间接比例尺,它只表示地图上两点间线段的长度与实地相应线段长度的比例,不能反映线段本身的实际长度。
面积比例尺又称地图比例尺,它只表示地图上两个地物的面积之比与实地地形面积的比例,不能反映面积的实际大小。
两者同时使用的混合比例尺兼有上述两种比例尺的特点。
长度比例尺是一种表示地图内容范围的比例尺,在表示陆地面积或海洋面积时,又称为体积比例尺。
面积比例尺是一种表示地图内容量的比例尺,在表示水体或其他要素的范围时,又称为容积比例尺。
混合比例尺则是在长度比例尺和面积比例尺的基础上同时使用的一种比例尺,它综合反映了各种地理事物的特征及其相互关系。