第四篇 水淹层分析
- 格式:ppt
- 大小:3.22 MB
- 文档页数:21
54随着油田的深入开发,石油开采进入后期阶段,储层高含水已成为普遍现象,采油的难度日益加大,水淹层的解释分析日益受到重视,有效的评价水淹层,搞清地下油水分布,对于提高产能具有十分重要的意义。
油层水淹后,储层的流体比例、泥质含量、地层水矿化度及岩性的亲油水性等均会发生不同程度的变化,因此储层的岩性、物性、油性、电性声学性特征也会出现比较明显的变化,水淹程度较高,当储层被水淹时,自然伽马发生畸变,自然电位基线漂移,电阻率数值和形态、地层压力和原始油层相比均发生不同程度的变化。
因此,测井曲线对水淹层的判别比较直观,准确。
目前常用的测井判别水淹层的方法主要有裸眼井的自然电位基线偏移法、电阻率变化法、地层压力指示综合研究法和一些新方法以及开发测井中的生产动态监测,碳氧比测井等。
本文主要以裸眼井资料的一些常用测井方法为例,通过介绍水淹层对常规测井中的曲线的影响来确定判别水淹层。
水淹层的基本特征级常用分级,如表1所示。
产水率范围水淹级别F :≤10%油层10%<FW ≤40%4级(弱)水淹层40%<FW ≤60%3级(中)水淹层60%<FW ≤80%2级(较强)水淹层FW >80%1级(强)水淹层1 水淹层评价方法应用实例(1)自然电位基线偏移法:水淹层处自然电位曲线会发生基线偏移。
3োሖ图1 自然电位曲线发生偏移3号层自然电位基线发生明显偏移(见图1),为水淹层特征,解释为2级水淹层。
投产日产液30t,日产水15t,含水率50%。
(2)电阻率变化法通常情况下,油层电阻率较高,水淹后,油层电阻率会下降,通过与原始地层电阻率对比可判断是否水淹。
油层电阻率下降的越多,水淹越严重。
53号层对应邻井强吸水层,该层物性好,自然电位异常幅度较大,基线有偏移,且电阻率与原始地层电阻率(5Ω·m)比明显下降,解释为2级水淹层。
投产日产液37.2方,油10.8t,含水71%。
如果油层强淡水水淹时,部分储层也会出现电阻率异常高,甚至高于原始地层电阻率的情况,这种情况通常要认真分析后判别油层是否水淹。
水淹层特征分析及测井解释方法简介作者:王遂华来源:《中国新技术新产品》2016年第01期摘要:经济的快速发展加大了对于能源的需求,在我国的石油能源中,国外进口石油所占的比重在逐年加大,为提高我国的石油开采能力,需要在开采、勘探以及测井技术等方面进行研究,提高我国的石油开采能力。
本文将在分析水淹层地质特征及其影响因素的基础上总结出一套切实可行的水淹层测井解释方法,使用混合地层水电阻率法来定量的对水淹层进行解释。
关键词:混合地层水电阻率法;水淹层;测井解释中图分类号:P631 文献标识码:A1 前言随着我国大规模以及长时间的开采,国内的各大油田都相继进入了勘探开发的后期,使用水驱油田测井解释的方法逐渐被各大油田所重视,但是由于各地油田在地质结构以及开发条件、进程以及资源条件等方面的不同,无法建立起一套通用的水淹层测井解释方法来为后续的油田开采保驾护航,从而为油田的开采提出了较大的困难。
本文将在分析水淹层特征结构的基础上对水淹层测井解释方法进行分析阐述。
2 水淹层测井解释方法在油田的开采过程中,注水开发的早期多使用的是淡水,随着开采的持续进行,为提高采油效率采用的是淡水与污水相混合的模式,随着时间的进行,到了油田开采到了后期,随着地下水由于压力等进入到开采中,此时所注入的水多为污水。
不同的阶段注入水的性质不同会使得地层的水性质发生了较大的改变,从而为水淹层的解释到了不小的挑战。
在水淹层测井解释的解释方法中分为定性和定量解释两种。
2.1 水淹层测井定性解释水淹层测井解释的定性解释方法是一些开采时间较长的油田加密、调整过程中现场解释的重要技术,水淹层测井定性解释主要是对水淹层进行定性解释,其主要是根据测井所得出的曲线来对地下油层进行定性解释,主要判断地下油层是否被水淹,通过对水淹层的特征进行分析后发现,判断油层是否为水淹的重要依据是判断地层水的电阻率和地层中的含水饱和度的相关变化,依据地层中的孔隙度泥质含量以及地层渗透率等的所带来的变化均不如以上两个变化明显。
双河油田下层系Ⅶ油组精细分层与精细评价摘要:双河油田属于注聚区块,文章以聚合物介质驱替下水淹机理研究成果为依据,以常规测井资料为基础,以测井新技术、新方法为指导,总结一套特高含水开发后期不同介质驱替下不同水淹级别水淹层测井曲线特征,建立一套特高含水开发后期聚驱方式下水淹层精细分层与精细评价标准、以及强水淹潜力层评价标准,为双河油田油藏精细描述和精细挖潜提供可靠的技术支持;同时也可满足双河油田特高含水开发后期多种驱替方式下水淹层今后进一步开发的需求。
关键词:聚驱强水淹潜力层精细分层精细评价引言Ⅶ油组是双河油田主力开发单元,自1977年12月全面投入开发以来注采井网先后经历了基础井网阶段、层系细分调整阶段(细分为Ⅶ上、Ⅶ下两套层系)、井网一、二次加密阶段、井网局部完善调整阶段、井网综合调整阶段,目前已进入特高含水开发后期。
进入特高含水期开采以来,各种增产措施余地逐渐减小,效果越来越差,平面、层间矛盾越来越突出,原注采井网工艺条件下继续提高储量动用的难度越来越大。
为确保稀油老油田“十一五”期间油田的持续发展,一方面需要勘探上有新的突破增加后备储量,另一方面仍需要对老油田精雕细刻。
因此,千方百计挖掘老油田剩余资源潜力,增加稀油老油田稳产基础已成为油田开发中十分紧迫任务。
一、水淹层导电机理从图1可以看出聚驱和二元驱替时,地层电阻率的变化主要受到注入水电阻率的影响,所以岩心电阻率随含水饱和度的变化度呈现出单调递减的趋势。
又由于不同浓度聚合物和复合物影响不明显,所以三条电阻率曲线变化差别不是特别明显。
图1、聚驱实验岩心电阻率随含水饱和度的变化规律二、双河油田下层系水淹层特征第一节水淹后储层变化特征分析油层被水淹后水淹程度在纵向上主要受沉积韵律的控制,双河油田主力油层主要受以下三种韵律的控制:(1)正韵律油层正韵律油层下部或底部物性较上部好,粒度也较上部粗,纵向渗透率级差大,下部常存在高渗或特高渗段,油层下部水驱油推进速度快,水洗充分。