七年级数学无理数课件(2019年8月整理)
- 格式:ppt
- 大小:251.00 KB
- 文档页数:7
七年级无理数的概念与运算无理数是指既不能表示为两个整数的比值,也不能表示为有限小数或循环小数的实数。
它们是无限不循环小数的一种特殊形式。
在七年级数学中,我们将学习无理数的概念和运算。
一、无理数的概念无理数是指不能写成两个整数的比值的实数,也不是有限小数或循环小数的实数。
无理数的表示一般用根号形式表示,如√2,√5等。
无理数可以是正数也可以是负数。
二、无理数的运算2.1 无理数的加减运算无理数的加减运算与有理数的加减运算类似,只需要将无理数的根号部分进行合并即可。
例如,√2 + √2 = 2√2。
2.2 无理数的乘法运算无理数的乘法运算也是将根号部分进行合并。
例如,√2 × √3 = √6。
2.3 无理数的除法运算无理数的除法运算需要用到有理化的方法,将无理数分母的根号部分有理化。
例如,√2 ÷ √3 = (√2 × √3) ÷ (√3 × √3) = √6/3 = (√6)/3。
三、无理数的应用无理数在数学和实际生活中都有广泛的应用。
在几何中,无理数常用于描述无法精确表示的长度,如正方形的对角线长度等。
在物理学中,无理数也常用于科学计算中,例如计算圆的面积、体积等。
四、无理数的性质4.1 无理数与有理数的关系无理数和有理数是实数的两个主要子集,它们之间没有交集。
无理数和有理数的并集构成了实数的全体。
4.2 无理数的无穷性和稀疏性无理数存在无限多个,并且无理数的任意两个数之间都存在有理数。
这个性质被称为无理数的无穷性和稀疏性。
4.3 无理数的数轴表示无理数可以在数轴上表示,位于有理数之间。
例如,√2位于1和2之间,√3位于1和2之间。
五、无理数的近似值无理数通常无法精确表示,但可以使用有理数来近似表示。
例如,我们通常将√2近似为1.414,将√3近似为1.732。
六、总结无理数是既不能表示为两个整数的比值,也不能表示为有限小数或循环小数的实数。
我们学习了无理数的概念和运算方法,包括加减运算、乘法运算和除法运算。
一起走近无理数在前面的学习中,我们认识了负数,使数的范围扩展到有理数.现在我们又开始学习无理数,把数的范围扩展到了实数.刚开始学习无理数,认为无理数不像有理数那样直观易懂,总有一种虚幻的感觉.那么该怎样学习无理数呢?一、明确无理数的存在无理数并不是“无理”,也不是人们臆想出来的,而是实实在在的存在.如:(1)两条直角边都为1的等腰直角三角形,它的斜边为2;(2)任何一个圆,它的周长和直径之比为常数π.像2、π这样的数在我们的身边还有很多.二、弄清无理数的定义及常见无理数无理数是指无限不循环小数,这说明无理数可以化为具有两个特征的小数:一是小数的位数时无限的,二是不循环的.我们比较常见的无理数往往具备以下几种表现形式:1.某些含有π的数,如:π,π3等;2.开方开不尽得到的数,如:3、5等;3.依某种规律构造的无限不循环小数,如0.1010010001…(两个1之间依次多一个0).三、了解无理数的性质1.所有的无理数都可以用数轴上唯一的一个点来表示,并且右边的无理数总比左边的大;2.在有理数中的互为相反数的定义、绝对值得定义、大小比较法则及运算法则、运算律等,对于无理数仍然适用,如52-的相反数是25-,因为052<-,所以52-的绝对值是25-.四、澄清一些模糊认识1.无理数包括正无理数、0、负无理数0是一个整数,故它是有理数,因此无理数只能分为正无理数和负无理数两类.2.带根号的数就是无理数由于像4、38-这样的数通过计算可以化为2和-2,因此它们是有理数,可见带根号的不一定是无理数.特别是π,它是无理数但并不是用根号形式表示的.3.无理数的数量比有理数少有些同学认为1、2、3、4、5这五个数,它们都是有理数,而开平方后得到的无理数只有2、3、5三个,因此得出无理数的数量要比有理数少.其实,我们对1、2、3、4、5开立方时还会产生32、33、34、35等无理数,如果再开四次方、五次方……还可以产生更多的无理数.因此无理数并不比有理数少.4.有些无理数是分数因为分数属于有理数,且无理数与有理数是两类不同的数,所以无理数不可能写成分数.当然,有些无理数可以借助分数线来表示,如32,但不能因为它具备了分数的形式就认为它是分数.。