七中育才资料17届初三数学《第1周周测》试卷
- 格式:docx
- 大小:215.60 KB
- 文档页数:4
成都七中育才学校2020届九上第一周周练命题人:何瑜审题人:罗丹梅班级__________姓名__________学号__________A卷(100分)一、选择题(每小题3分,共30分)1.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5,22.在比例尺为1:8000000地图上,量得甲、乙两地间的距离为4厘米,则甲、乙两地的实际距离为是()千米.A.320B.32C.3200D.3200003.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°4.如果x:y=3:5,那么x:(x+y)=()A.3:5B.3:8C.2:5D.5:85.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.6.如图,在△ABC中,D是BC的中点,BC=6,∠ADC=∠BAC,则AC的长为()A.23B.4C.42D.327.如图,在锐角△ABC中,点D,E分别在AB,AC上,且AD=3.5,BD=2.5,AE=3,CE=4,则下列∠1,∠2,∠B,∠C的大小关系,一定正确的是()A.∠1>∠B B.∠2=∠C C.∠1=∠B D.∠2=∠B8.如图,在Rt△ABC中,∠A CB=90°,AB=18,AC=6,CD⊥AB于D,则AD的长为()A.1B.2C.3D.49.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为()A.2B.3C.4D.510.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=80步,NF=245步,则正方形的边长为()A.280步B.140步C.300步D.150步6题图7题图8题图9题图10题图题号 1 2 3 4 5 6 7 8 9 10答案二、填空题(每小题4分,共16分)11.已知345x y z ==,则2x y z x y z +--+= . 12.利用标杆CD 测量建筑物的高度的示意图如图所示,若标杆CD 的高为1.5米,测得DE =2米,BD =18米,则建筑物的高AB 为 米.13.如图,∠ACB =90°,CD 是Rt △ABC 斜边上的高,已知AB =25cm ,BC =15cm ,则BD = .14.如图,在矩形ABCD 中,AB=4,BC=6,点P 是线段AD 上的一动点,点E 是边AB 的中点,且∠EPC =90°,则AP 的长为 .12题图 13题图 14题图三、解答题(共54分)15.(12分)解方程:(1)(4)82x x x -=- (2)2250x +-=16.(6分)先化简,再求值:2344(1)11a a a a a -++-÷--,其中a +2.17.(8分)已知:如图,在△ABC 中,AB =AC ,∠EDF =∠B .求证:△BED ∽△CDF .18.(8分)如图,点B 、D 、E 在一条直线上,BE 与AC 相交于点F ,AB BC AC AD DE AE ==. (1)求证:∠BAD =∠CAE ;(2)若连接EC ,求证:△ABD ∽△ACE .19.(10分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.20.(10分)如图,点P是平行四边形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交AD于点F,交CD的延长线于点G,已知12 DFFA.(1)求FPBP的值.(2)若四边形ABCD是菱形.①求证:△APB≌△APD;②若DP的长为6,求GF的长.B卷(20分)一、选择题(每小题3分,共9分)1.如图,在Rt△ABC中,∠A=90°,AB=AC=,点E为AC的中点,点F在底边BC上,且FE ⊥BE,则CF长.2.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=9,若点P是边AB上的一个动点,以每秒3个单位的速度按照从A→B→A运动,同时点Q从B→C以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动.在运动过程中,设运动时间为t,若△BPQ为直角三角形,则t的值为.3.如图,已知AB∥EF∥CD,若AB=a,CD=b,EF=c,则a,b,c之间等量关系式为.二、解答题(共11分)4.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E 是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)当点E坐标为(3,0)时,试证明CE=EP;(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.。
成都七中育才2019-2019 年度九年级上第一周周测命题人刘爽陶远辉审题人薛成权班级:姓名:学号:(共120分,60分钟完成)一、选择题(每小题3分,共30分)1.下列哪个方程是一元二次方程()A.x+2y=1 B.x2﹣2x+3=0 C.x2+1x=3 D.x2﹣2xy=02.如果2是方程x2 − 3x + k = 0 的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣23.下列命题中,正确的是()A.所有的等腰三角形都相似; B.所有的直角三角形都相似C.所有的等边三角形都相似; D.所有的矩形都相似4.已知线段AB=6,点C是线段AB的黄金分割点(AC>BC),则 AC的长为()A.– 6 B. 3 –.– 3 D.5.如图,D为△ABC边AB上一点,ADAB=23,DE∥BC交AC于E,DE=6,则BC=()A.8 B.9 C.12 D.156.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,AC=2,则BD=()A.2 B.4 CD.37.如图,下列条件能使平行四边形ABCD是菱形的为() 6 题1AC ⊥BD②∠BAD = 90 ③AB =BC④AC =BDA.①或②B.①或③C.②或④D.①或③或④8. 如图,在矩形ABCD 中,E、F 分别是CD、BC 上的点.若∠AEF=90°,则一定有()A.△ADE∽△ECF B.△BAF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF9.如图,可以判定∆ACD 与∆ABC 相似的条件是()A.AC ABCD AC=CD BCAD AC= C. BC2=BD·AB D.AC2=AD·AB7 题图8 题图9 题图10.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE,过点B 作BF⊥AE 交AE 于点F,则BF 的长为()A.2B.5C.5D.5二、填空题(每小题4分,共16分)11.已知34ab=,则aa b+= .12的等腰直角△ABC 绕点A 逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积是cm213.如图,在△ABC 中,P 是AC 上一点,连接BP,若△ABP∽△ACB,AP=2,PC=6,则AB=.14.如图,在Rt∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6则AB= ,AD=(12题图)(13题图)(14题图)三、解答题15.解方程(6 分)x2 + 3 = 2x16.解方程(每小题6 分,共12 分)(1) (x− 2) 2 = 3x− 2 (2) x2 +x−1= 0(用公式法)17.(6 分)用配方法解一元二次方程:x2 −4x − 3 = 018.(8分)如图,在RT△ABC中,∠ACB=90°,CD⊥AB于D,且BD=2,请求AD的长度.19.(10分)如图,已知在△ABC 中,D 是BC 上一点,E 为AD 的中点,BE 的延长线交AC 于F,GD∥AC 交BE 于G.(1)求证:GE=FE;(2)若BD:DC=1:3,CF=12,求AF 的长.20.(12分):如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE 的交点.(1)求证:CE=BD,CE⊥BD(2)如图1 把△ADE 绕点A 旋转,当点E 落在线段BA 上且∠EAC=90°时,若AB=2,AD=1,求PB 的长度;(3)在(2)的条件下,将△ADE 绕点A 继续旋转,当点E 落在线段BA 的延长线上且∠EAC=90°,请在备用图中画出对应的图形,并求此时PB 的长度。
重庆市双福育才中学2019-2019学年初三上数学综合测试(一)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.3-的倒数为( ▲ )A .3B .3-C .31D .31-2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是( ▲ )A .B .C .D .3.下列因式分解中,正确的是( ▲ )A .)(2a ax x ax ax -=-B .)1(222222++=++ac a b b c ab b aC .222)(y x y x -=-D .)3)(2(652--=--x x x x4.如图,直线//AB CD ,直线EF 分别交直线AB 、CD 于点E 、F , EG平分AEF ∠交CD 于点G ,若136∠=,则2∠的大小是( ▲ )A .72°B .67°C .70°D .68°5.下列调查中,最适合采用普查方式的是( ▲ )A .调查一批药品的质量问题B .调查重庆全市中小学生的课外阅读时间C .调查某航班的旅客是否携带了违禁物品D .调查全国初三学生的视力情况6.如图所示的几何体的左视图是( ▲ )A .B .C .D .7.如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE ∥BC 交AC 于点 E ,若线段DE =10,那么线段BC 的长为( ▲ )A .15B .20C .30D .408.已知x =2是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ▲ )A .2B .0或2C .0或4D .09.如果代数式225x x -+的值等于7,则代数式2361x x -- 的值为( ▲ ) A .5 B .6 C .7 D .810.已知点1(2,)A y -、2(1,)B y -、3(2,)C y 在函数2y x=的图象上,则123y y y 、、的大小关系是( ▲ ) A .312y y y >> B .321y y y >> C .132y y y >> D .123y y y >>11.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需火柴( ▲ )第1个图 第2个图 第3个图 第4个图A .90根B .91根C .92根D .93根12. 函数,的图象如图所示,则结论:① 两函数 图象的交点A 的坐标为(3 ,3 ) ;② 当时,;③ 当 时,1(0)y x x =≥x y 92=(0)x >3x >21y y >1x =9xBC = 8 ;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的是( ▲ )A .①②B .①②③C . ③④D .①③④二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据报道2019年里约奥运会羽毛球“林李之争”这场比赛,全世界收看电视直播的人数约为741000000人,把数741000000用科学记数法表示为 .14.若反比例函数1m y x-=的图象在第一、三象限,那么m 的取值范围是 . 1510(1)2)--+= .16.如图是由一些相同的小正方体构成的几何体的三视图.在这个几何体中,小正方体的个数是 个. 17.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有两个不相等的实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 . 18.如图,边长为3的正方形ABCD 中,BD 为对角线, AE ∥BD ,且DE=DB ,DE 与AB 交于F 点,则EF= . 三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.如图所示,□ABCD 中,O 为对角线AC 的中点,过点O 的直线交AD 于E 、交BC 于F .求证:DE=BF .20.北京时间2019年8月21日中国女排在里约奥运会上夺得金牌,这是继2019年雅典奥运会12年后再次夺冠,大大激发了我校同学对排球运动的热爱.在“我最喜欢的球类运动”的调查中,从双福育才初2019级2100名同学中抽取了50人进行调查,每人必选且只选一项,将调查结果绘制成如下的条形统计图.其中喜欢羽毛球的同学人数占被调查人数的10%,根据图中提供的信息回答如下问题:(1)补全条形统计图;(2)请估计该年级喜欢排球的同学的人数.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.化简:(1)()()()22a b a b a b +-+- (2)253222x x x x x+⎛⎫--÷⎪--⎝⎭22. 如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象与反比例 x 1y x 2y x 第16题图 第18题图函数()0m y m x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,-2),点C 的坐标为(3,0).(1)求该反比例函数和一次函数的解析式;(2)求△AOC 的面积.23.2019年6月18日将迎来重庆直辖20周年.巴渝大地20年直辖岁月,见证了重庆的崛起.重庆市准备在明年举办一台文艺晚会,推出了A 、B 两种门票.某售票点原计划共购票500张,并且A 种票的数量不少于B 种票的3倍.(1)求A 种至少有多少张?(2)组委会以统一价格(m +20)元出售给售票点,实际销售中售票点的票数将在原计划的基础上增加(m +10)%,售票点预计购票费用为56000元,求m 的值.24.若一个整数能表示成22b a +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22125+=.再如,2222)(22y y x y xy x M ++=++=(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知k y x y x S +-++=124422(x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.五、解答题:(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.25.如图,在任意的△ABC 中,分别以AB 和AC 为腰作等腰△ABE 和等腰△ACD ,AB =AE ,AC =AD ,且 ∠BAE +∠CAD =180°,连接DE ,延长AC 交DE 于F .(1)求证:∠CAB =∠AED +∠ADE ;(2)若∠ACB =∠BAE =∠CAD =90°,如图2,求证:BC =2AF ;(3)若在△ABC 中,如图3所示作等腰△ABE 和等腰△ACD ,AB 与DE 交于点F ,F 为DE 的中点,请问(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.图1 图2 图326.如图,在平面直角坐标系中,△ABC 为等腰三角形,AC AB =,将△AOC 沿直线AC 折叠,点O 落在直线AD 上的点E 处,直线AD 的解析式为643+-=x y .(1)AO = ;AD = ;OC = ;(2)动点P 以每秒1个单位的速度从点B 出发,沿着x 轴正方向匀速运动,点Q 是射线CE 上的点,且BAC PAQ ∠=∠,设P 运动时间为t 秒,求△POQ 的面积S 与t 之间的函数关系式;(3)在(2)的条件下,直线CE 上是否存在一点F ,使以点F 、A 、D 、P 为顶点的四边形是平行四边形?若存在,求出t 值及Q 点坐标;若不存在,说明理由.。
重庆市双福育才中学2019-2019学年初三上数学综合测试(四)数 学 试 题(本试题共五个大题,满分150分,时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项. 一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1.计算23a a -⋅的结果是( ) A .5aB. 5a -C. 6aD. 6a -2x 的取值范围是( ) A .1x < B. 1x ≥ C. 1x ≤- D. 1x <-3.如果两个相似三角形面积比是1:4,则它们的周长之比是( ) A .1:2 B. 1:4 C. 1:8 D. 1:16 4.如图,AB ∥CD ,,1=34DE CE ⊥∠︒,则DCE ∠的度数为( ) A .34° B. 56° C. 66° D. 54° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查市场上老酸奶的质量情况 B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了违禁物品D .调查我市市民对里约奥运会吉祥物的知晓率 6.已知函数210(3)m y m x -=+是反比例函数,则m 的值是( )A .3B. -3C. 3±D. 13-7.函数2y x =与函数1y x=-在同一坐标系中的大致图像是( ) 8.在R t A B C∆中,090C ∠=,a 、b 、c 分别为A ∠、B ∠、C ∠的对边,下列各式成立的是( )A .tan b aB =⋅ B. cos a b B =⋅ C. tan a b B =⋅ D. sin b a B =⋅9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ) A .50 B. 64 C. 68 D. 7210.如图,某天然气公司的主输气管道从A 市的北偏东60°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市的北偏东30°方向,测绘员沿主输气道步行1000米到达点C 处,测得M 小区位于点C 的北偏西75°方向,试在主输气管AC 上寻找支管道连接点N ,使其到该小区辅设的管道最短,此时AN 的长约是( )1.414, 1.732≈≈)A .366B. 634C. 650D. 70011.如果抛物线262y x x c =-+-的顶点到x 轴的距离是3,那么c 的值等于( )A .8B. 14C. 8或14D. -8或-1412.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .-7 B. -2 C. -1 D. 0 二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上. 13.2019年重庆主城区私家车拥有量近3800000辆,将数3800000用科学记数法表示为 . 14.已知α∠是锐角,且cos α=α∠= . 15.若点A(m ,2)在反比例函数6y x=的图像上,则当函数值2≥y 时,x 的取值范围是___________. 16.二次函数22(1)y x m =--图像上有三点123(2,),(4,),(2,)A y B y C y --,则123,,y y y 的大小关系按从小到大排列为 .17.在一个不透明的盒子中装有4个分别标有数字-1,0,1,2的小球,它们除数字不同外其余完全相同,现从中随机摸出两个小球,则两个小球上所标数字的乘积记为k ,则反比例函数ky x=的图像在第一,三象限的概率是 . 18.已知,在正方形ABCD 中,点G 、F 在AD 上,E 为AB 的中点,CG EF⊥于点H ,若AD = 4AG,BH =,则DH = . 三、解答题: (本大题共2个小题,每小题7分,共14分) 19.重庆市教育部门对部分学校的九年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生,并将图①补充完整; (2)图②中C 级所占的圆心角的度数为 ;(3)根据抽样调查结果,请你估计我市近80000名九年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?在△ABC 中,∠C =90°,sin A =25,D 为AC 上一点,∠BDC20.如图,=45°,DC =6,求AB .四、解答题:(本大题共4个小题,每小题10分,共40分) 21.计算:(1) 2(1)(1)1a a a -++-(2))252(23--+÷--x x x x 22.如图,在平面直角坐标系xOy 中,直线AB :b kx y +=与反比例函数xa y =图象交于点A (1,m )B (-2,-1),连结BO . (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与x 轴的交点为C ,求△A OB 的面积.23. 某商场有A ,B 两种商品,若买2件A 商品和1件B 商品,共需80元;若买3件A 商品和2件B 商品,共需135元. (1)求A ,B 两种商品的每件售价;(2)B 商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若销售单价每上涨1元,B 商品每天的销售量就减少5件.求销售单价为多少元时,B 商品每天的销售利润最大,最大利润是多少?24.进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制。
2023-2024学年四川省成都七中育才学校九年级(上)期末数学试卷一、选择题(每小题4分,共32分)1.如图所示的几何体,其主视图是( )A.B.C.D.2.反比例函数的图象经过点A(3,2),下列各点在此反比例函数图象上的是( )A. (−3,2)B. (3,−2)C. (−6,−1)D. (−1,6)3.若关于x的方程x2+mx−10=0有一个根为2,则m的值为( )A. 0B. 1C. 2D. 34.如图,在△ABC中,D,E分别是AB,AC上的点,DE//BC,若AD=DE=2,DB=3,则BC等于( )A. 4B. 5C. 6D. 75.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,BD=4,则矩形ABCD的周长为( )A. 12B. 16C. 23+2D. 43+46.如图是李老师制作的一个可以自由转动的转盘,如表是某同学收集的一组统计数据:转动转盘的次数1002003004005006007008009001000落在“蓝色”的次数306192118151182207242269302蓝色部分的圆心角最有可能是( )A. 100°B. 110°C. 120°D. 130°7.12月18日23时59分,甘肃临夏州积石山县发生6.2级地震.面对突发灾情,某公司积极募捐资金,支持当地开展灾害救援救助及灾后重建工作.第1天募捐到资金2.5万元,第2天、第3天募捐资金连续增长,第3天募捐到的资金为3.2万元.设该公司这两天募捐资金平均每天的增长率为x ,则所列方程正确的是( )A. 2.5(1+x )2=3.2 B. 2.5+2.5(1+x )2=3.2C. 3.2(1+x )2=2.5D. 2.5(1+2x)=3.28.数学课本上有这样一段表述:“在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k ≠0),所对应的图形与原图形….”请利用这一规律解答下面问题:已知M(a,b),N(x,y),且MN =6,若P(23a,23b),Q(23x,23y),则PQ 的长为( )A. 4B. 6C. 9D. 12二、非选择题(共118分)9.若2a =3b ,则a +ba−b = ______.10.关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是 .11.七巧板是一种古老的中国传统智力游戏.在如图所示的七巧板中,若正方形ABCD 的边长为4,则正方形EFGH 的边长为______.12.若点A(x 1,2),B(x 2,−1)都在反比例函数y =−1x 的图象上,则x 1,x 2的大小关系为______.13.如图,已知线段AB=8cm,分别以点A,B为圆心,以5cm为半径画弧,两弧相交于点C,D,连接AC,BC,AD,BD,则四边形ACBD的面积为______.)−1;14.(1)计算:|18−2|+(2024−π)0−8+(12(2)解方程:x(x−3)=2(x−3).15.科学实验是获取经验事实和检验科学假说、理论真理性的重要途径.某校为进一步培养学生实践创新能力,提高学生科学素养,营造爱科学、学科学、用科学的浓厚氛围,将开展“崇尚科学科技月”主题教育活动,计划演示以下四项科学小实验:A.自动升高的水;B.不会湿的纸;C.漂浮的硬币;D.生气的瓶子.学校科技部随机对该校部分学生进行了“最希望演示的一项实验”问卷调查,得到下列不完整的统计图.请结合统计图,回答下列问题:(1)求此次调查中接受调查的人数;(2)请补全条形统计图;(3)已知最希望演示A项实验的4名学生,有1名来自九年级一班,1名来自九年级二班,2名来自九年级三班,现需从这四人中随机抽取2名作为实验“自动升高的水”的演示员,请用列表或画树状图的方法,求抽到的2名学生来自不同班级的概率.16.如图,在某学校的明德楼和启智楼之间有一条文化长廊AB,文化长廊上伫立着三座名人塑像CD,EF,GH,点A,D,F,H,B在同一直线上,且AD=DF=FH=HB.在明德楼的楼顶有一照明灯P,塑像CD的影子为DM,塑像EF的影子为FN.该校“探数学”兴趣小组的同学测得文化长廊AB=24米,塑像高CD=EF=GH=3米,塑像CD的影长DM=2米.(1)求明德楼的高PA;(2)求塑像EF 的影长FN .17.如图1,在▱ABCD 中,E ,F 分别为AB ,CD 的中点,连接AF ,CE .(1)求证:AF//CE ;(2)如图2,连接AC ,且AC =BC ,O 为AC 的中点.①BC 的中点为M ,连接EO ,EM ,试判断四边形EMCO 的形状,并说明理由;②如图3,AG 平分∠BAC 交CE 于点G ,连接GO ,若∠AGO =90°,AB =8,求AC 的长.18.已知直线y =kx +b 与x 轴、y 轴交于点A ,B ,与反比例函数y =3x的图象交于C ,D 两点,点C 的横坐标为3,点D 的横坐标为1.(1)求直线y =kx +b 的表达式;(2)M 是线段CD 的中点,点N 为反比例函数图象在第一象限上一点,连接OM ,ON ,MN ,若S △OMN =6,求点N 的坐标;(3)点P 为反比例函数图象在第三象限上一点,连接DP ,过点D 作DQ ⊥DP ,交反比例函数图象于点Q ,连接PQ.若直线PQ 经过点(0,−83),求DPDQ 的值.19.已知a ,b 是方程x 2−5x−3=0的两根,则a 2−5a +ab = ______.20.如图,在正方形ABCD 中,点E 是AB 边上一点,且AE =2BE ,连接CE 交对角线BD 于点F.若AB =8,则BF 的长为______.21.如图,点A 在反比例函数y =6x 的图象上,点B 在反比例函数y =k x的图象上,连接AB ,且AB//x 轴.点P(23,0)是x 轴上一点,连接PA ,PB ,若PA =PB ,S △PAB =4,则PB 与y 轴交点C 的坐标为______.22.如图1,在△ABC 中,∠BAC =90°,点D 在BC 上,沿直线AD 翻折△ABD 使点B 落在AC 上的B′处;如图2,折叠∠A ,使点A 与点D 重合,折痕为EF.若B′D CD=23,则EFB′C的值为______.23.已知,数轴上从左到右有三点A ,B ,C ,它们在数轴上对应的数分别为a ,b ,c(a,b,c 均不为整数),且6<c−a <7,k <b <k +1(k 为正整数).在点A 与点B 之间的所有整数依次记为p 1,p 2,p 3…,p m ;在点B 与点C 之间的所有整数分别记为q 1,q 2,q 3,…,q n .若p 21+p 22+p 23+⋯+p 2n =q 21+q 22+q 23+⋯+q 2n ,则k 的值为______.24.三星堆遗址被称为20世纪人类最伟大的考古发现之一,昭示了长江流域与黄河流域一样,同属中华文明的母体,被誉为“长江文明之源”.为更好的传承和宣传三星堆文化,三星堆文创馆一次次打破了自身限定,让文创产品充满创意.已知文创产品“青铜鸟文创水杯”有A ,B 两个系列,A 系列产品比B 系列产品的售价低5元,100元购买A 系列产品的数量与150元购买B 系列产品的数量相等.按定价销售一段时间后发现:B 系列产品按定价销售,每天可以卖50件,若B 系列产品每降1元,则每天可以多卖10件.(1)A 系列产品和B 系列产品的单价各是多少?(2)为了使B 系列产品每天的销售额为960元,而且尽可能让顾客得到实惠,求B 系列产品的实际售价应定为多少元/件?25.如图1,已知一次函数y =x +2的图象与反比例函数y =k x的图象交于A(2,a),B 两点,与x 轴、y 轴分别交于C ,D 两点.(1)求反比例函数y =k x的表达式及点B 的坐标;(2)在x 轴上有一点E ,反比例函数y =k x的图象上有一点F ,连接EF ,若EF//AD 且EF =12AD ,求点E 的坐标;(3)如图2,点D 关于x 轴的对称点为M ,连接BM ,P 是y 轴上一动点(不与点M 重合),N 是平面内一点,连接BN ,DN ,在点P 的运动过程中始终有△BMP ∽△BDN ,且∠PBN =∠MBD.点Q 在反比例函数y =kx图象上,连接QN,请直接写出QN的最小值及当QN为最小值时点P的坐标.26.如图,在△ABD中,AB=AD,∠BAD=α.点C是BD延长线上一动点,连接AC,将AC绕点A顺时针旋转α得到AE,连接DE交AC于点F.(1)求证:∠C=∠E;(2)如图1,若DE//AB,DF=2,FE=7,求BD的大小;(3)如图2,若点F为AC中点,S△ADFS△ABC =1n+2,CD=4,求AB的长(用含n的代数式表示).答案和解析1.【答案】A【解析】解:这个几何体的主视图是:故选:A.根据解答几何体的三视图的画法画出其主视图即可.本题考查简单几何体的三视图,理解视图的定义,掌握简单几何体的三视图的形状是正确判断的前提.2.【答案】C,【解析】解:设反比例函数解析式为y=kx∵反比例函数的图象经过点(3,2),∴k=3×2=6,∵−6×(−1)=6,∴点(−6,−1)在此反比例函数图象上,故选:C.根据反比例函数的图象经过点(3,2),求出反比例函数解析式,只要各点坐标乘积等于比例系数即为函数图象上的点.本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.3.【答案】D【解析】解:把x=2代入方程x2+mx−10=0得:22+2m−10=0,解得m=3,故选:D.根据题意把x=2代入原方程,再进行求解,即可得出m的值.本题考查了一元二次方程的解,解题的关键是把方程的根代入原方程,求出m的值.4.【答案】B【解析】解:∵AD=DE=2,DB=3,∴AB=AD+DB=2+3=5,∵DE//BC,∴△ADE∽△ABC,∴DE BC =ADAB,∴BC=DE⋅ABAD =2×52=5,故选:B.由AD=DE=2,DB=3,求得AB=AD+DB=5,由DE//BC,证明△ADE∽△ABC,得DEBC =ADAB,则BC=DE⋅ABAD=5,于是得到问题的答案.此题重点考查相似三角形的判定与性质,证明△ADE∽△ABC是解题的关键.5.【答案】D【解析】解:∵四边形ABCD是矩形,BD=4,∴AC=BD=4,∠ABC=90°,∵∠ACB=30°,∴AB=2,∴BC=AC2−AB2=42−22=23,∴矩形ABCD的周长为2(AB+BC)=2×(2+23)=4+43.故选:D.根据题意和矩形的性质,可以得到AC的长,然后根据直角三角形30°角所对的直角边是斜边的一半和勾股定理,可以得到AB和BC的长,从而可以求得矩形ABCD的周长.本题考查了矩形的性质、勾股定理,解答本题的关键是熟练掌握矩形的性质.6.【答案】B【解析】解:30÷100=0.3;61÷200=0.305;92÷300≈0.307;118÷400=0.295;151÷500=0.302;182÷600≈0.303;207÷700≈0.296;242÷800≈0.303;269÷900≈0.299;302÷100=0.302;∴落在“蓝色”的概率约是0.3012,∴蓝色部分的圆心角最有可能是0.3012×360°=108.432°≈108°,故选:B.用360°×指针落在“蓝色”的概率进行计算即可.本题考查的是扇形统计图的综合运用.熟练掌握大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就是事件概率的估计值是解题的关键.7.【答案】A【解析】解:由题意可得,2.5(1+x )2=3.2,故选:A .根据第1天募捐到资金2.5万元,第2天、第3天募捐资金连续增长,第3天募捐到的资金为3.2万元,可以列出相应的方程.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.8.【答案】A【解析】解:∵M(a,b),P(23a,23b),∴线段MN 与线段PQ 的相似比为3:2,∵MN =6,∴PQ =4,故选:A .根据题意求出线段MN 与线段PQ 的相似比,计算即可.本题考查的是位似变换,解题的关键是理解将一个图形各顶点的横坐标和纵坐标都乘k(或1k ,k >1),所得图形的形状不变,各边扩大到原来的k 倍(或缩小为原来1k ),且连接各对应顶点的直线相交于一点.9.【答案】−5【解析】解:∵2a =3b ,∴3a =2b ,∴ab =23,∴设a =2k ,b =3k ,∴a +b a−b =2k +3k 2k−3k =5k−k =−5,故答案为:−5.利用设k 法进行计算,即可解答.本题考查了比例的性质,熟练掌握设k 法是解题的关键.10.【答案】k<1【解析】解:由已知得:△=4−4k>0,解得:k<1.故答案为:k<1.由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.11.【答案】2【解析】解:∵点G是CD的中点,CD=4,∴CG=12CD=2,∵△CHG是等腰直角三角形,∴CH=HG=22CG=2,∴正方形EFGH的边长为2,故答案为:2.根据正方形的性质和等腰直角三角形的性质即可得到结论.本题考查了七巧板,正方形的性质,等腰直角三角形的性质,正确地识别图形是解题的关键.12.【答案】x1<x2【解析】解:∵点A(x1,2),B(x2,−1)都在反比例函数y=−1x的图象上,∴2=−1x1,−1=−1x2解得:x1=−12;x2=1,∴x1<x2.故答案为:x1<x2.利用反比例函数图象上点的坐标特征可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征,求出x1,x2的值是解题的关键.13.【答案】48cm2【解析】解:由作法AC=BC=AD=BD=5cm,∴四边形ACBD为菱形,AB=4cm,OC=OD,∴AB⊥CD,OA=OB=12连接CD交AB于点O,如图,在Rt△AOC中,OC=52−42=3(cm),∴CD=2OC=6cm,∴四边形ACBD的面积=8×6=48(cm2).故答案为:48cm2.利用基本作图得到AC=BC=AD=BD=5cm,则可判断四边形ACBD为菱形,根据菱形的性质得到AB⊥CD,OA=OB=1AB=4cm,OC=OD,接着利用勾股定理计算出OC的长,然后根据菱形的面积2公式计算.本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了菱形的判定与性质.14.【答案】解:(1)原式=32−2+1−22+2=2+1;(2)x(x−3)=2(x−3),x(x−3)−2(x−3)=0,(x−3)(x−2)=0,∴x−3=0或x−2=0,∴x1=3,x2=2.【解析】(1)先根据零指数幂,二次根式的化简,绝对值,负整数指数幂进行计算,再算加减即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.本题考查了解一元二次方程,实数的运算,能正确根据实数的运算法则进行计算是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.15.【答案】解:(1)此次调查中接受调查的人数为18÷36%=50(人).(2)最希望演示C项实验的人数为50−4−8−18=20(人).补全条形统计图如图所示.(3)将来自九年级一班的1名学生记为甲,来自九年级二班的1名学生记为乙,来自九年级三班的2名学生记为丙,丁,画树状图如下:共有12种等可能的结果,其中抽到的2名学生来自不同班级的结果有:(甲,乙),(甲,丙),(甲,丁),(乙,甲),(乙,丙),(乙,丁),(丙,甲),(丙,乙),(丁,甲),(丁,乙),共10种,∴抽到的2名学生来自不同班级的概率为1012=56.【解析】(1)用条形统计图中D的人数除以扇形统计图中D的百分比可得此次调查中接受调查的人数.(2)求出最希望演示C项实验的人数,补全条形统计图即可.(3)画树状图得出所有等可能的结果数以及抽到的2名学生来自不同班级的结果数,再利用概率公式可得出答案.本题考查列表法与树状图法、条形统计图、扇形统计图,能够读懂统计图,掌握列表法与树状图法是解答本题的关键.16.【答案】解:(1)∵AD=DF=FH=HB,AB=24米,∴AD=DF=FH=HB=14AB=6米,由题意得:∠CDM=∠PAM=90°,∵∠CMD=∠PMA,∴△CDM∽△PAM,∴CD PA =DM AM ,∴3AP =22+6,解得:AP =12,∴明德楼的高PA 为12米;(2)由题意得:∠PAN =∠EFN =90°,∵∠ENF =∠PNA ,∴△EFN ∽△PAN ,∴EF PA =FN AN ,∴312=FN FN +6+6,解得:FN =4,∴塑像EF 的影长FN 为4米.【解析】(1)根据已知易得:AD =DF =FH =HB =14AB =6米,再根据题意可得:∠CDM =∠PAM =90°,然后证明A 字模型相似△CDM ∽△PAM ,从而利用相似三角形的性质进行计算,即可解答;(2)根据题意可得:∠PAN =∠EFN =90°,然后证明A 字模型相似△EFN ∽△PAN ,从而利用相似三角形的性质进行计算即可解答.本题考查了相似三角形的应用,中心投影,熟练掌握相似三角形的判定与性质是解题的关键.17.【答案】(1)证明:∵四边形ABCD 为平行四边形,∴AB =CD ,AB//CD ,∵E ,F 分别为AB ,CD 的中点,∴AE =12AB ,CF =12CD ,∴AE =CF ,∴四边形AECF 为平行四边形,∴AF//CE ;(2)解:①四边形EMCO 为菱形.理由:∵O 为AC 的中点,E 为AB 的中点,∴OE 为△ABC 的中位线,∴OE//BC,OE=1BC.2∵E为AB的中点,BC的中点为M,AC,∴EM//AC,EM=12∴四边形EMCO为平行四边形.∵AC=BC,∴EO=EM,∴四边形EMCO为菱形.②过点O作OH⊥EC于点H,过点G作GM⊥AC于点M,如图,∵AC=BC,E为AB的中点,AB=4.∴CE⊥AB,AE=12∵AG平分∠BAC交CE于点G,∴∠GAE=∠GAC,∵GM⊥AC,GE⊥AB,∴GE=GM.在Rt△AEG和Rt△AMG中,{AG=AGGE=GM,∴Rt△AEG≌Rt△AMG(HL),∴AE=AM=4.∵CE⊥AE,OH⊥EC,∴OH//AE,∵O为AC的中点,∴OH=1AE=2.2∵∠AGO=90°,∴∠AGE+∠OGC=90°,∠AGM+∠OGM=90°,∵Rt△AEG≌Rt△AMG,∴∠AGE=∠AGM,∴∠OGM=∠OGH,∵OM⊥GM,OH⊥GH,∴OM=OH=2,∴OA=AM+OM=6,∵O为AC的中点,∴AC=2OA=12.【解析】(1)利用平行四边形的对边平行且相等的性质,线段中点的定义和平行四边形的判定与性质解答即可;(2)①利用三角形的中位线的性质得到四边形EMCO为平行四边形,证明得到EO=EM,利用菱形的判定定理解答即可;②过点O作OH⊥EC于点H,过点G作GM⊥AC于点M,利用角平分线的性质和全等三角形的判定定理与性质定理得到AM=AE=4,再利用直角三角形的性质,角平分线的性质得到OM=OH,利用三角形的中位线的性质和中点的意义解答即可.本题主要考查了平行四边形的判定与性质,三角形的中位线,全等三角形的判定与性质,菱形的判定定理,直角三角形的性质,角平分线的性质,等腰三角形的性质,恰当的添加辅助线构造全等三角形是解题关键.18.【答案】解:(1)由反比例函数y=3经过点C,D两点,且点C的横坐标为3,点D的横坐标为1,x得点C的坐标为(3,1),点D的坐标为(1,3),把C(3,1),D(1,3)代入y=kx+b,得{3k+b=1k+b=3,解得{k=−1b=4,∴直线的表达式为y=−x+4;),过点M作MH⊥x轴于点H,过点N作NG⊥x轴于点G,(2)设N(b,3b∵M是C(3,1),D(1,3)的中点,∴M(2,2),∵S△OMN=6,∴S△NOG+S梯形MNGH−S△OMH=32+12(2+3b)(2−b)−12×2×2=6,解得:b=23−3或b=−23−3(舍去),∴N(23−3,23+3);同理可求N(23+3,23−3)(3)如图,过点D作EF//x轴,过点P作PE⊥EF于E,过点Q作QF⊥EF于F,过点Q作QH⊥PE于点H,则∠E=∠F=90°,∴∠FDQ+∠FQD=90°,∵DQ⊥DP,∴∠FDQ+∠PDE=90°,∴∠FQD =∠PDE ,∴△DQF ∽△PDE ,∴DF PE =FQ DE,设P(m,3m ),Q(n,3n ),又D(1,3),则E(m,3),F(n,3),L(0,3n ),H(m,3n ),∴EF =n−m ,PE =3−3m ,DE =1−m ,DF =n−1,FQ =3−3n ,QL =n ,∴n−13−3m =3−3n 1−m ①,∵∠E =∠F =∠EHQ =90°,∴四边形EFQH 是矩形,∴HQ =EF =n−m ,LG =3n +83,PH =3n −3m,∵PE//GL ,∴LG PH =QL HQ ,即3n +833n −3m =n n−m ②,联立①②,得{n−13−3m =3−3n 1−m 3n +833n −3m =n n−m,解得:{m 1=−1n 1=9,{m 2=9n 2=−1(舍去),∴P(−1,−3),Q(9,13),∴PE =3−3m =3−3−1=6,DF =9−1=8,∵△DQF ∽△PDE ,∴DP DQ =PE DF =68=34,故DP DQ 的值为34.【解析】(1)利用待定系数法即可得出答案;(2)设N(b,3b ),过点M 作MH ⊥x 轴于点H ,过点N 作NG ⊥x 轴于点G ,根据三角形面积可得S △NOG +S 梯形MNGH −S △OMH =32+12(2+3b )(2−b)−12×2×2=6,即可求得答案;(3)过点D 作EF//x 轴,过点P 作PE ⊥EF 于E ,过点Q 作QF ⊥EF 于F ,过点Q 作QH ⊥PE 于点H ,由△DQF∽△PDE ,可得DF PE =FQ DE ,设P(m,3m ),Q(n,3n ),根据四边形EFQH 是矩形,可得HQ =EF =n−m ,LG =3n +83,PH =3n −3m ,得出n−13−3m =3−3n 1−m ①,可得由PE//GL ,可得LG PH =QL HQ ,得出3n +833n −3m =n n−m ②,联立方程组求解即可求得答案.本题是反比例函数综合题,考查了待定系数法,一次函数和反比例函数的图象和性质,三角形面积,相似三角形的判定和性质等,解题关键是添加辅助线构造相似三角形.19.【答案】0【解析】解:∵a ,b 是方程x 2−5x−3=0的两根,∴a 2−5a−3=0,ab =−3,∴a 2−5a =3,∴a 2−5a +ab =3−3=0,故答案为:0.由a ,b 是方程x 2−5x−3=0的两根,推出a 2−5a−3=0,ab =−3,可得结论.本题考查根与系数关系,解题的关键是掌握一元二次方程的根与系数的关系.20.【答案】2 2【解析】解:∵AE =2BE ,∴AB =AE +BE =2BE +BE =3BE ,∵四边形ABCD 是正方形,AB =8,∴DC =BC =AB =8,∠BCD =90°,AB//DC ,∴BD = DC 2+BC 2= 82+82=8 2,BE DC =BE AB =13,∵BE//DC ,∴△BEF ∽△DCF ,∴BF DF =BE DC =13,∴BF =11+3BD =14BD =14×8 2=2 2,故答案为:2 2.由AE =2BE ,得AB =3BE ,由正方形的性质得DC =BC =AB =8,∠BCD =90°,AB//DC ,则BD = DC 2+BC 2=8 2,BE DC =BE AB =13,由BE//DC 证明△BEF ∽△DCF ,得BF DF =BE DC =13,则BF =14BD =22,于是得到问题的答案.此题重点考查正方形的性质、等腰直角三角形的性质、勾股定理、相似三角形的判定与性质等知识,证明△BEF ∽△DCF 是解题的关键.21.【答案】(0,32)【解析】解:∵点A 在反比例函数y =6x 的图象上,∴可设点A 的坐标为(t,6t ),∵AB//x 轴,∴点B 的纵坐标为6t ,∵点B 在反比例函数y =k x的图象上,∴6t =k x,解得:x =kt 6,∴点B 的坐标为(kt 6,6t ),∴AB =t−kt 6=(6−k)t 6,∵S △PAB =4,∴12⋅(6−k)t 6⋅6t =4,解得:k =−2,∴点B 的坐标为(−t 3,6t ),∵点P 的坐标为(32,0),∴PA 2=(t−23)2+(6t )2,PB 2=(−t 3−23)2+(6t )2,∵PA =PB ,∴(t−23)2+(6t )2=(−t 3−23)2+(6t )2,整理得:(t−23)2=(t 3+23)2,∴t−23=±(t 3+23),由t−23=t 3+23,解得t =2,由t−23=−(t 3+23),解得:t =0,不合题意舍去;当t =2时,点A 的坐标为(2,3),点B 的坐标为(−23,0),设直线PB 的表达式为:y =ax +b ,将B(−23,0),P(23,0)代入得:{23a +b =0−23a +b =3,解得:{a =−94b =32,∴直线PB 的表达式为:y =−94+32,对于y =−94+32,当x =0时,y =32,∴点C 的坐标为(0,32).故答案为:(0,32).设点A(t,6t ),由AB//x 轴得点B(kt 6,6t ),根据S △PAB =4,得12⋅(6−k)t 6⋅6t =4,由此解出k =−2,进而得点B(−t 3,6t ),再根据PA =PB ,得(t−23)2+(6t )2=(−t 3−23)2+(6t )2,由此解出t =2,进而得点B(−23,0),然后利用待定系数法求出直线PB 的表达式为y =−94+32,据此可得点C 的坐标.此题主要考查了反比例函数图象上点的坐标,待定系数法求一次函数的表达式,解决问题的关键是理解反比例函数图象上点满足反比例函数的表达式,熟练掌握待定系数法求一次函数的表达式.22.【答案】325【解析】解:如图:∵翻折△ABD 使点B 落在AC 上的B′处,∴AD 平分∠BAC ,BD =B′D ,∴∠DAC =45°,∵B′D CD =23,即BD CD =23,∴CD BC =35,∵EF 是折痕,∴EF 垂直平分AD ,∴∠ADE =45°,∠AED =90°,AE =DE ,∴DE//AB ,∴△EDC ∽△ABC ,∴DE AB =CE AC =CD BC =35,设AE =x ,则DE =x ,EF =22x ,∴x AB =CE CE +x =35,解得AB =53x ,CE =32x ,∵AB =AB′=53x ,∴B′E =23x ,∴B′C =32x−23x =56x ,∴EF B′C = 22x 56x =3 25.故答案为:3 25.在图1根据折叠画出折痕,易得△ADE 是等腰直角三角形,EF 垂直平分AD ,得出△EDC ∽△ABC ,设AE =x ,根据相似比分别表示出EF ,B′C 即可求解.本题考查折叠的性质,相似三角形的性质,理清图中线段之间的关系是解题关键.23.【答案】24【解析】解:∵6<c−a <7∴AC 之间共有6个或7个整数,∵6个连续的整数满足p 21+p 22+p 23+⋯+p 2n =q 21+q 22+q 23+⋯+q 2n ,∴m ≥3.当m =3时,AC 间有7个整数,则A,B之间的3个整数设为x−2,x−1,x,B,C之间的4个整数为x+1,x+2,x+3,x+4,∴(x−2)2+(x−1)2+x2=(x+1)2+(x+2)2+(x+3)2+(x+4)2,∴x=−25或r=−1.当AC上有6个整数,(x−2)2+(x−1)2+x2=(x+1)2+(x+2)2+(x+3)2,无整数解.当m=4时,AC间有7个整数,则A,B之间的4个整数设为x−2,x−1,x,x+1,B,C之间的3个整数为x+2,x+3,x+4,∴(x−2)2+(x−1)2+x2+(x+1)2=(x+2)2+(x+3)2+(x+4)2,∴x=23或r=−1,当m=4,AC间有6个整数时,则A,B之间的4个整数设为x−2,x−1,x,x+1,B,C之间的2个整数为x+2,x+3,∴(x−2)2+(x−1)2+x2+(x+1)2=(x+2)2+(x+3)2,无整数解;当m=5时,则A,B之间的5个整数设为x−2,x−1,x,x+1,x+2,B,C之间的2个整数为x+3,x+4,∴(x−2)2+(x−1)2+x2+(x+1)2=(x+2)2+(x+3)2,无整数解或(x−2)2+(x−1)2+x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,无整数解当m=6时,则A,B之间的5个整数设为x−2,x−1,x,x+1,x+2,x+3,B,C之间的2个整数为x+4,∴(x−2)2+(x−1)2+x2+(x+1)2+(x+2)2+(x+3)2=(x+4)2,无解.综上所述,x=−25或23或−1,则−25<b<−24或24<b<25或0<b<1.∴k=−25,k=24或k=0∵k是正整数.∴k=24故答案为:24.根据题意得出AC之间共有6个或7个整数,进而可得m23,设AC之间的数分别为x−2,x−1,x,x+1,x +2,x +3,x +4,根据题意列出一元二次方程,再计算即可..本题考查了数字的变化知识,根据数轴上两点距离列出一元二次方程是解题关键..24.【答案】解:(1)设A 系列产品的单价是x 元/件,则B 系列产品的单价是(x +5)元/件,根据题意得:100x =150x +5,解得:x =10,经检验,x =10是所列方程的解,且符合题意,∴x +5=10+5=15(元).答:A 系列产品的单价是10元/件,B 系列产品的单价是15元/件;(2)设B 系列产品的实际售价应定为y 元/件,则每天可以卖50+10(15−y)=(200−10y)件,根据题意得:y(200−10y)=960,整理得:y 2−20y +96=0,解得:y 1=8,y 2=12,又∵要尽可能让顾客得到实惠,∴y =8.答:B 系列产品的实际售价应定为8元/件.【解析】(1)设A 系列产品的单价是x 元/件,则B 系列产品的单价是(x +5)元/件,利用数量=总价÷单价,结合100元购买A 系列产品的数量与150元购买B 系列产品的数量相等,可列出关于x 的分式方程,解之经检验后可得出A 系列产品的单价,再将其代入(x +5)中,即可求出B 系列产品的单价;(2)设B 系列产品的实际售价应定为y 元/件,则每天可以卖(200−10y)件,利用销售总额=销售单价×销售数量,可列出关于y 的一元二次方程,解之可得出y 的值,再结合要尽可能让顾客得到实惠,即可确定结论.本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元二次方程.25.【答案】解:(1)将A(2,a)代入y =x +2,得a =2+2=4,∴A(2,4),将A(2,4)代入y =k x ,得:4=k 2,解得:k =8,∴反比例函数解析式为y =8x ,联立得:{y =x +2y =8x ,解得:{x 1=2y 1=4,{x 2=−4y 2=−2,∴B(−4,−2);(2)设F(t,8t ),过点F 作FH ⊥x 轴于点H ,过点A 作AG ⊥y 轴于点G ,∵A(2,4),D(0,2),∠AGD =90°,∴AG =2,DG =4−2=2,∴tan ∠ADG =AG DG =22=1,∴∠ADG =45°,AD = 2AG =2 2,∴∠CDO =∠ADG =45°,∵∠COD =90°,∴∠DCO =45°,∵EF//AD ,EF =12AD ,∴∠FEH =∠DCO =45°,∴FH =EF ⋅sin45°=12AD ⋅ 22= 24×2 2=1,∴|8t |=1,解得:t =±8,当t =8时,F 1(8,1),E 1(7,0);当t =−8时,F 2(−8,−1),E 2(−7,0);综上所述,点E的坐标为(7,0)或(−7,0);(3)∵点D(0,2)关于x轴的对称点为M,∴M(0,−2),∵B(−4,−2),∴BM⊥y轴,∴∠BMP=90°,BM=4,设P(0,m),则PM=m−(−2)=m+2,如图2,∵∠PBN=∠MBD,∴∠PBN−∠PBD=∠MBD−∠PBD,即∠NBD=∠PBM,∵△BMP∽△BDN,∴∠BDN=∠BMP=90°,∴点N在经过点D,且垂直AB的直线上,∴直线DN的解析式为y=−x+2,设经过点Q平行DN的直线解析式为y=−x+b,相切,当QN最小时,直线y=−x+b与y=8x=−x+b,联立得:8x整理得:x2−bx+8=0,∴Δ=b2−32=0,∴b=±42(负值舍去),∴y=−x+42,联立得8x =−x +4 2,解得:x 1=x 2=2 2,∴Q(2 2,2 2),令x =0,得y =4 2,∴L(0,4 2),∴DL =4 2−2,∵∠LDK =45°,∴△DLK 是等腰直角三角形,∴DK = 22DL = 22×(4 2−2)=4− 2,∵∠DKQ =∠KQN =∠KDN =90°,∴四边形DKQN 是矩形,∴QN =DK =4− 2,DN =KQ ,∴QN 的最小值为4− 2,此时QL = 2×2 2=4,LK =DK =4− 2,∴DN =KQ =QL−LK =4−(4− 2)= 2,∵△BMP ∽△BDN ,∴PM DN =BM BD ,即PM 2=442,∴PM =1,∴P(0,−3),综上所述,QN 的最小值为4− 2,点P 的坐标为(0,−3).【解析】(1)运用待定系数法即可解决问题;(2)设F(t,8t ),过点F 作FH ⊥x 轴于点H ,过点A 作AG ⊥y 轴于点G ,利用解直角三角形可得tan ∠ADG =AG DG =22=1,求得∠ADG =45°,AD = 2AG =2 2,进而求得FH =EF ⋅sin45°=12AD ⋅ 22=24×2 2=1,建立方程求解即可得出答案;(3)根据对称性可得M(0,−2),设P(0,m),则PM =m−(−2)=m +2,由△BMP ∽△BDN ,可得∠BDN =∠BMP =90°,判断得出点N 在经过点D ,且垂直AB 的直线上,可得直线DN 的解析式为y =−x +2,设经过点Q 平行DN 的直线解析式为y =−x +b ,当QN 最小时,直线y =−x +b 与y =8x 相切,可求得Q(2 2,2 2),再证得△DLK 是等腰直角三角形,四边形DKQN 是矩形,可求得QN 的最小值为4−2,再利用相似三角形性质即可求得点P的坐标.本题是反比例函数综合题,考查了待定系数法,一次函数和反比例函数的图象和性质,相似三角形的判定和性质,直角三角形的性质,解直角三角形等,添加辅助线构造相似三角形是解题关键.26.【答案】(1)证明:∵将AC绕点A顺时针旋转α得到AE,∴∠CAE=α,AC=AE,∵∠BAD=α,∴∠BAD=∠CAE,∴∠BAC=DAE.在△BAC和△DAE中,{BA=DA∠BAC=∠DAEAC=AE,∴△BAC≌△DAE(SAS),∴∠C=∠E;(2)解:∵△BAC≌△DAE,∴∠ABC=∠ADE,BC=DE=DF+FE=9,∵AB=AD,∴∠B=∠ADB,∴∠ADB=∠ADE.∵DE//AB,∴∠ADE=∠BAD,∴∠B=∠ADB=∠DAB,∴AB=AD=BD,设AB=AD=BD=x,则CD=9−x,∵DE//AB,∴△CDF∽△CBA,∴DF AB =CDCB,∴2 x =9−x9,解得:x=3或6.∴BD的长为3或6;(3)解:∵S△ADFS△ABC =1n+2,△BAC≌△DAE,∴S△ADF S△ADE =1n+2,∴S△ADF S△AFE =1n+1,∵点F为AC中点,∴S△ADF=S△DCF,∴S△DCF S△AEF =1n+1,由(1)知:∠C=∠E,∵∠DFC=∠AFE,∴△DFC∽△AFE,∴DC AE =CFFE=DFAF=S△DFCS△AFE=1n+1,∴4 AE =1n+1,∴AE=4n+1.∴AC=AE=4n+1,∴AF=FC=12AC=2n+1,∴2n+1FE =DF2n+1=1n+1,∴FE=2n+2,DF=2.∴DE=DF+FE=2n+4,∵△BAC≌△DAE,∴BC=DE=2n+4,∵BC=BD+CD,∴BD=2n.过点A作AM⊥BD于点M,AN⊥DE于点N,如图,∵AB=AD,∴BM=DM=12BD=n,由(2)知:∠ADB=∠ADE,∴AM=AN,在Rt△ADM和Rt△ADN中,{AD=ADAM=AN,∴Rt△ADM≌Rt△ADN(HL),∴DM=DN=n,∴EN=DE−DN=n+4,∴AN2=AE2−EN2=(4n+1)2−(n+4)2,∴AM2=AN2=AE2−EN2=(4n+1)2−(n+4)2=8n−n2,在Rt△ADM中,AB=BM2+AM2=n2+8n−n2=8n=22n.【解析】(1)利用旋转的性质和全等三角形的判定与性质解答即可;(2)利用平行线的性质,角平分线的性质,等边三角形的判定与性质和相似三角形的判定与性质解答即可;(3)利用全等三角形的判定与性质,等高的三角形的面积比等于底的比的性质,相似三角形的判定与性质,角平分线的性质,等腰三角形的性质和勾股定理解答即可.本题主要考查了几何的变换,旋转的性质,全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质,平行线的性质,相似三角形的判定与性质,角平分线的性质,直角三角形的性质,勾股定理,熟练掌握旋转的性质和全等三角形的判定与性质是解题的关键.。
九年级数学第一周周清一、选择题(每小题3分,共30分) 1. -2的倒数是( )A. -2B. 2C. -12D. 122. 柳絮纤维的直径约是0.00000105 m .数据“0.00000105”用科学记数法表示为( )A. 1.05×106B. 0.105×10-6C. 1.05×10-6D. 105×10-83. 下列图形中,既是轴对称图形又是中心对称图形的是( )4. 下列运算准确的是( ) A. a 2+a 2=a 4 B. a 3·a 2=a 6 C. (3a )2=6a 2 D. 2a 4÷a 2=2a 25. 如图是正方体的一种展开图,其每个面上都标有一个汉字,那么在原正方体中,与汉字“智”相对的面上的汉字是( )第5题图A. 义B. 仁C. 信D. 礼6. 不等式组⎩⎨⎧2x >3x -114x ≤1的解集在数轴上表示准确的是( )7. 如图,在平面直角坐标系中,第二象限内的点P 是反比例函数y =kx (k ≠0)图象上的一点,过点P 作P A ⊥x 轴于点A ,点B 为AO 的中点,若△P AB 的面积为3,则k 的值为( )第7题图A. 6B. -6C. 12D. -128. 某校有47名同学参加学校举行的科技创新比赛,预赛分数各不相同,取前24名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,还需要知道这47名同学分数的( )A. 平均数B. 中位数C. 众数D. 方差9. 如图,四边形OABC 是矩形,A (2,1),B (0,5),点C 在第二象限,则点C 的坐标是( )A. (-1,3)B. (-1,2)C. (-2,3)D. (-2,4)第9题图10.如图,边长为2的正方形ABCD绕AD的中点O顺时针旋转后得到正方形A′B′C′D′,当点A的对应点A′落在对角线BD上时,点B所经过的路径与A′B,A′B′围成的阴影部分的面积是( )第10题图A. 73 B.52C. 54π-32 D.52π-23二、填空题(每小题3分,共15分)11.-|-2|+9=________.12.化简2mm2-n2-1m-n的结果是________.13.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆,背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张,请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是________.14.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用以下步骤作图:①以点A为圆心,适当长为半径画弧交射线AN于点C,交线段AB于点D;②以点C为圆心,适当长为半径画弧;然后再以点D为圆心,同样长为半径画弧,前后两弧在∠NAB内交于点E;③作射线AE,交PQ于点F,若AF=23,∠F AN=30°,则线段BF的长为________.第14题图15.如图,在四边形纸片ABCD中,AB=12,CD=2,AD=BC =6,∠A=∠B.现将纸片沿EF折叠,使点A的对应点A′落在AB边上,连接A′C.若△A′BC恰好是以A′C为腰的等腰三角形,则AE的长为________.第15题图三、解答题(8分)16. (8分)先化简,再求值:2x-y -x+yx2-2xy+y2÷x+yx-y,其中x=5-2,y=5+2.答案1. C2. C 【解析】0.00000105=1.05×10-6. 3. D4. D 【解析】5. A6. A 【解析】由2x >3x -1,解得x <1,由14x ≤1,解得x ≤4,∴不等式组的解集为x <1.在数轴上表示为选项A .7. D 【解析】如解图,连接PO ,第7题解图∵点B 为AO 的中点,△P AB 的面积为3,S △OAP =2S △P AB =2×3=6.又∵S △OAP =12|k |.∴12|k |=6,|k |=12.∵双曲线的一支位于第二象限,∴k <0.∴k =-12.8. B9. D 【解析】如解图,过点C 作CE ⊥y 轴于点E ,过点A 作AF ⊥y 轴于点F ,∴∠CEO =∠AFB =90°.∵四边形OABC 是矩形,∴AB =OC ,AB ∥OC .∴∠ABF =∠COE .∴△OCE ≌△BAF (AAS ).同理△BCE ≌△OAF ,∴CE =AF ,OE =BF ,BE =OF .∵A (2,1),B (0,5),∴AF =CE =2,BE =OF =1,OB =5.∴OE =4.∴点C 的坐标是(-2,4).第9题解图10. C 【解析】如解图,连接OB ,OB ′.∵四边形ABCD 是正方形,∴∠ADB =45°.∵点O 是AD 的中点,∴OA =OD .由旋转的性质可知OA ′=OA ,∵∠OA ′D =∠ODA ′=45°,∴∠AOA ′=90°.∴∠BOB ′=90°.在Rt △AOB 中,AO =1,AB =2,∴OB =12+22= 5.∴S 扇形BOB ′=90π×(5)2360=54π.∵S △OBA ′=12×1×1=12,S △OB ′A ′=12×1×2=1,S 阴影=S 扇形BOB ′-S △OBA ′-S △OB ′A ′,∴S阴影=54π-12-1=54π-32.故选C .第10题解图11. 1 【解析】原式=-2+3=1. 12.1m +n 【解析】原式=2m(m +n )(m -n )-m +n (m +n )(m -n )=m -n (m +n )(m -n )=1m +n.13. 916【解析】记矩形、菱形、等边三角形、圆分别为A 、B 、C 、D .列表如下:从表中能够得到,所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,∴两次都抽到既是中心对称图形又是轴对称图形的概率是916.14. 2 【解析】如解图,过点B 作BG ⊥AF 于点G ,∵MN ∥PQ ,∴∠F AN =∠3=30°.由题意得AF 平分∠NAB ,∴∠1=∠2=30°.∴∠1=∠3=30°.∴AB =BF .又∵BG ⊥AF ,∴AG =GF =12AF = 3.∴Rt △BFG 中,BF =GF cos30°=332=2.第14题解图15. 1或215 【解析】如解图,过点C 作CM ⊥AB 于点M ,过点D 作DN ⊥AB 于点N ,∵AD =BC =6,∠A =∠B ,∠DNA =∠CMB =90°,∴△ADN ≌△BCM (AAS ).∴AN =BM ,DN =CM ,且DN ∥CM ,DN ⊥AB .∴四边形DCMN 是矩形,.∴CD =MN =2.∴AN =BM =AB -MN2=5.∵将纸片沿EF 折叠,使点A 的对应点A ′落在AB 边上,∴AE =A ′E .如解图①,若A ′C =BC ,且CM ⊥AB ,∴BM =A ′M =5.∴AA ′=AB -A ′B =12-10=2.∴AE =1;如解图②,若A ′C =A ′B ,过点A ′作A ′H ⊥BC ,于点H ,∵CM 2=BC 2-BM 2=A ′C 2-A ′M 2,∴36-25=A ′B 2-(5-A ′B )2,解得A ′B =185.∴AA ′=AB -A ′B =12-185=425.∴AE =215.综上所述,AE 的长为1或215.图①图②第15题解图16. 解:原式=2x -y -x +y (x -y )2·x -y x +y=2x -y -1x -y =1x -y, 当x =5-2,y =5+2时,原式=15-2-(5+2)=-14.。
重庆市双福育才中学初2017级初三上数学综合测试(三)数 学 试 题(本试题共五个大题,满分150分,时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在实数﹣2,2,0,﹣1中,最小的数是( )A .﹣2B .2C .0D .﹣12、下列图形是中心对称图形的是( )A 、B 、C 、D 、3、下列计算结果正确的是( )A 、632824x x x ÷=B 、235x x x +=C 、2363(3)9x y x y -=-;D 、23x x x ∙= 4.下列调查中,最适合采用全面调查(普查)方式的是( )A .对重庆市辖区内长江流域水质情况的调查B .对乘坐飞机的旅客是否携带违禁物品的调查C .对一个社区每天丢弃塑料袋数量的调查D .对重庆电视台“天天630”栏目收视率的调查4.已知a 2+2a -1=0,则代数式2a 2+4a ﹣1的值为( ▲)A .0B .1C .﹣1D .﹣26.函数12+=x y 中,x 的取值范围是( ) A .x ≠0 B .x >﹣1 C .x <﹣1D .x ≠﹣1 7、如图,1l ∥2l ,3l ⊥4l ,∠1=42°,那么∠2的度数为( )A 、48°B 、42°C 、38°D 、21°8.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:169.已知反比例函数k y x=的图象在第二、四象限内,函数图象上有两1(27)A y ,,2(5)B y ,,则1y 与2y 的大小关系为( )A .12y y <B .12y y =C .y 1>y 2D .无法确定10.如图,下列图形是一组按照某种规律摆放而成的图案,则图8中圆点的个数是( ▲)A .64B .65C .66D .67 11.如下图:某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米12.从﹣5,﹣3,﹣1,0, 1,3,。
成都七中育才学校届九年级上数学第十七周周练习A 卷(100分)一、选择题:(每小题3分,共30分) 1.2|化简结果是( )A.2 B2 C.2- D.2 2. 一个几何体的三视图如图所示,那么这个几何体是( )A.B .C .D .3. 我国岛屿黄岩岛距离广州约为1098千米。
这个距离用科学记数法(保留三个有效数字)表示为( )A .61.09810⨯米B .61.0910⨯米C .61.1010⨯米D .61.110⨯米 4. 如图,在Rt ABC △中,90ACB ∠=,CD AB ⊥于点D ,已知AC =2BC =,那么cos ACD ∠=( ) A .3B .5C .23D .25. “国色天香乐园”三月份共接待游客20万次,五月份共接待游客63万人次,设每月的平均增长率为x ,则可列方程为( ) A .220(1)63x += B .220(1)63x -= C .263(1)20x += D .263(1)20x -= A .平分弦的直径必垂直于弦 ,并且平分弦所对的两条弧 B .弦所对的两条弧的中点连线垂直平分弦 C .若两条弧的度数相等,则它们是等弧 D .弦的垂线平分弦所对的弧 6. 如图,函数11y x =-和函数22y x=的图象相交于点M (2,m )、N (1-,n ),若12y y >,则x 的取值范围是( ) A .1x <-或02x << B .1x <-或2x > C .10x -<<或02x << D .10x -<<或2x > 7. 则此男子排球队A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm 8. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不等实数根,那么k 的取值范围是( )A .14k >-B .14k >-且0k ≠ C .14k <- D .k 1≤-4且0k ≠ 9. 如图,在等边ABC △中,P 为BC 上一点,D 为AC 上一点,且60APD ∠=,1BP =,23CD =,则ABC △的边长为( )A .3B .4C .5D .6学号:二、填空题:(每小题4分,共16分) 10.在函数2x y x+=中,自变量x 的取值范围是 。
2023-2024学年四川省成都七中育才学校九年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)如图所示的几何体的主视图是()A.B.C.D.2.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则∠BAC的正切值为()A.5B.C.D.3.(4分)矩形、菱形、正方形都具有的性质是()A.对角互补B.对角线互相垂直C.对角线互相平分D.四边相等4.(4分)如图,△ABC中,点D,E分别是边AB,AC的中点,若S△ADE=3,则△ABC的面积为()A.6B.12C.9D.85.(4分)将抛物线y=x2向下平移一个单位,得到的抛物线解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)26.(4分)关于x的方程x2+mx﹣3=0的一根是1,则m的值是()A.﹣3B.3C.﹣2D.27.(4分)目前我国建立了比较完善的经济困难学生资助体系.某校2021年发放给每个经济困难学生450元,2023年发放了600元,设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=600B.450+450(1+x)2=600C.450(1+x)=600D.450(1﹣x)=6008.(4分)如图所示,O是矩形ABCD的对角线AC的中点,E为AD的中点,若AB=6,AC=10,则△BOE 的周长为()A.10B.C.D.14二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)若,则=.10.(4分)已知反比例函数y=的图象位于第一、三象限,则k的取值范围是.11.(4分)若一元二次方程x2+6x+11=0可以配成(x+p)2+q=0的形式,则p=.q=.12.(4分)如图,将矩形ABCD沿CE折叠,点B恰好落在AD边点F处,若AB:BC=3:4,则cos∠DCF =.13.(4分)如图,在△ABC中,以点B为圆心,适当长度为半径画弧,分别交AB、BC于点P、Q,再分别以点P、Q为圆心,大于长度为半径画弧,两弧交于点M,连接BM交AC于点E,过点E作DE ∥BC交AB于点D.若AB=6,AE=3,则△ADE的周长为.三、解答题(本大题共5个小题,共48分)14.(14分)(1)计算:;(2)解方程:x2﹣4x﹣2=0;(3)解方程:x(x﹣3)﹣(2x﹣6)=0.15.(8分)如图,△ABC在平面直角坐标系内三顶点的坐标分别为A(﹣1,2),B(﹣3,3),C(﹣3,1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)以B为位似中心,在B的下方画出△A2BC2,使△A2BC2与△ABC位似且相似比为2:1;(3)直接写出点A2和点C2的坐标.16.(8分)高楼AB和斜坡CD的纵截面如图所示,斜坡CD的底部点C与高楼AB的水平距离CB为30米,斜坡CD的坡度(坡比)i=1:2.4,坡顶D到BC的垂直距离DE=10米,在点D处测得高楼楼顶点A的仰角为50°,求楼的高度AB(结果精确到0.1米).(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)17.(8分)如图,平行四边形ABCD,,连接CE并延长与BA的延长线交于点F,与BD交于点G,连接DF.(1)试判断四边形ACDF的形状,并证明;(2)若平行四边形ABCD的面积是20,求CG的长.18.(10分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D.已知点A(2,1),点B(m,﹣4).(1)求反比例函数与一次函数的解析式;(2)点M是反比例函数图象上一点,当△MAO与△AOD的面积相等时,请直接写出点M的横坐标;(3)将射线AC绕点A旋转α度后与双曲线交于另一点Q,若,请求出点Q的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知一元二次方程x2﹣3x+k=0的两个实数根为x1,x2,若x1x2+2x1+2x2=1,则实数k=.20.(4分)已知点A(3,y1)、B(﹣2,y2)、C(0,y3)均在二次函数y=(x﹣1)2+m的图象上,则y1、y2、y3的大小关系用“<”连接为.21.(4分)五角星是我们常见的图形,如图点C,D分别是线段AB的黄金分割点,AB=20cm,则EC+CD =cm.22.(4分)如图,直线的图象与y轴交于点A,直线y=kx+k(k>0)与x轴交于点B,与的图象交于点M,与的图象交于点C.当S△ABM:S△AMC=5:3时,k =.23.(4分)如图,菱形ABCD的对角线交于点E,作CM⊥AB于点M,且CM交BD于点F.在ED上取点N,使得EN=FE,连接NC.记△BMF,△EFC,△BCN的周长分别为C1,C2,C3,则的最大值是.二、解答题(本大题共3个小题,共30分)24.(8分)面向世界的年度文化盛会、四川建设文化强省的闪亮名片——2023天府书展于10月13日至16日在四川成都开幕.本次盛会以“共享书香互鉴文明”为年度主题,定位“书香天府盛典,出版发行盛会”.值得一提的是,成都将为市民举办一场“巴适的购书节”,为庆祝活动的顺利召开,某大型品牌书城购买了A、B两种新出版书籍,商家用1600元购买A书籍,1200元购买B书籍,A、B两种书籍的进价之和为40元,且购买A书籍的数量是B书籍的2倍.(1)求商家购买A书籍和B书籍的进价.(2)商家在销售过程中发现,当A书籍的售价为每本25元,B书籍的售价为每本33元时,平均每天可卖出50本A书籍,25本B书籍,据统计,B书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B的销量,想使A书籍和B书籍平均每天的总获利为775元,则每本B书籍的售价为多少元?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线与x轴交于点A(1,0),与y轴交于点C(0,﹣1).(1)求抛物线的函数表达式;(2)如图所示,过点A作AQ∥BC交抛物线于点Q,思考:在x轴上方抛物线上是否存在一点R,过点R作RT⊥x轴于点T,使得△QAC与以R、T、A为顶点的三角形相似.若存在,请求点R的坐标;若不存在,请说明理由;(3)将抛物线C1向上平移一个单位得到抛物线C2,过抛物线C2对称轴上的定点N(0,n)(n≠0)的直线GS交抛物线C2于点G、S,交直线l:y=﹣n于点M,点P是直线y=n上异于点N的任意一点,求证:.26.(12分)如图,平行四边形ABCD的对角线交于点O,BD=10.(1)如图1,AB=BD,①当时,求△ABD的面积;②当△AOD为等腰三角形时,求∠AOD的正切值;(2)如图2,分别将△ABD,△ACD沿BD、AC翻折,点A、D分别落到A′、D′的位置,BA′与CD'交于点E.若AC=6,AB>AD,求CE:BE的值.。
2017级数学九年级(下)第一周周测
班级 姓名 学号
A 卷(共100分)
一、选择题(本大题共10小题,每小题3分,共30分) 1.﹣的倒数为( ) A .
B . 3
C . ﹣3
D .﹣1
2.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是( )
A . 抽取的10台电视机
B . 这一批电视机的使用寿命
C . 10
D . 抽取的10台电视机的使用寿命 3.中国的领水面积约为370000km 2
,将数370000用科学记数法表示为( )
A .37×104
B . 3.7×104
C . 0.37×106
D .3.7×105
4.下列图形中,既是轴对称图形又是中心对称图形的是( )
5.在2015年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、分别是( )
A 、3,2.5
B 、47,46
C 、47,47
D 、50,47
6.如图,已知⊙O 的半径为2,∠AOB=90°,则图中阴影部分的面积为( ) A .π﹣2 B . π﹣ C . π D .2
7.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o
, 那么∠2的度数是( )
A.32o
B.58o
C.68o
D.60o
8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是( )
A .200πcm 3
B . 500πcm 3
C . 1000πcm 3
D . 2000πcm 3
9.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的总产值为175亿元,若设平均每月的增长率为x ,根据题意可列方程( )
A .50(1+x )2=175
B .50(1+x )+50(1+x )2
=175
C .50+50(1+x )2=175
D .50+50(1+x )+50(1+x )2
=175
10.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=22.5°,OC=4,CD 的长为( ) A .2 B .4 C .4 D .8
出题人:林玲 审题人:刘爽
二、填空题(每小题4分,共16分)
11.在函数y =
中,自变量x 的取值范围是__________________. 12.分解因式:3244x x x -+=__________________.
13.如图,锐角三角形ABC 中,直线PL 为BC 的垂直平分线,射线BM 为ABC ∠的平分线,PL 与BM 相交于P 点,若︒=∠︒=∠2030ACP PBC ,,则A ∠的度数为__________。
14.若一元二次方程(m ﹣1)x 2
﹣4x ﹣5=0没有实数根,则m 的取值范围是 . 三、解答题: 15.(本题满分12分,每题6分) (1)计算:(+1)0
+(﹣1)
2015+
sin45°﹣()﹣1
. (2)解方程:)15(3)15(2-=-x x
16.(6分)先化简,再求值:2222
(1)2a b a b ab b a ab ab +⎛⎫-÷+ ⎪--⎝⎭
,其中2
(2)0a b -+=
17.(本题8分)如图,小岛A 在港口P 的南偏西45°方向,距离
港口8l 海里处.甲船从A 出发,沿AP 方向以9海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东60°方向,以l8海里/时的速度驶离港口.现两船同时出发,(1)出发后几小时两船与港口P 的距离相等?(2)出发后几小时乙船在甲船的正东方
向?(结果精确到0.1小时)(参考数据: 1.41≈, 1.73≈)
18.(本题10分)如图,在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m
y m x =
≠的图象交于A ,B 两点,与x 轴交于点C ,点A 的坐标为且tan 2ACO ∠=.
(1)求反比例函数和一次函数的表达式; (2)求点B 的坐标; (3)请直接写出不等式m
kx b x
+<
的解集.
19.(本题8分)某班开展为班上捐书活动。
共捐得科技、文学、教辅、传记四类图书,分别用A 、B 、C 、D 表示,下图是未制作完的捐书数量y ((单位:百本)与种类x (单位:类)关系的条形统计图,根据统计图回答下列问题:
(1)若D 类图书占全部捐书的10%,请求出D 类图书的数量(单位:百本),并补全统计图;
(2)若有一本图书,梅丽、李进都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若梅丽掷得的数字比李进掷得的数
字小,书给梅丽,否则给李进”.试用“列表法或画树状图”的方法分析,这个规则
对双方是否公平?
20.(本题10分)如图,在Rt ABC ∆中,90ABC ∠=︒,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF BC =.O 是BEF ∆的外接圆,EBF ∠的平分线交EF 于点G ,交O 于点H ,连接BD ,FH .
(1)求证:ABC EBF ∆≅∆;
(2)试判断BD 与O 的位置关系,并说明理由; (3)若1AB =,求HG HB ⋅的值.
A
B 卷 (共20分)
一、填空题:(每小题3分,共9分)
21.已知x ﹣2y+2=0,则x 2+y 2﹣xy ﹣1的值为 . 22.如图,已知:直线13
1
+-=x y 与坐标轴交于A ,B 两点,矩形ABCD 的对称中心为M ,双曲线x
k
y =
(x >0)正好经过C ,M 两点,则k= .
23.如图,在△ABC 中,,45,5,AB AC B AC BC >∠=︒==。
① AB 的长为________. ② 若E 是AB 边上一点,将△BEC 沿EC 所在直线翻折得到△DEC ,DC 交AB 于F ,
当DE//AC 时,tan ∠BCD 的值为________. 二、解答题
24.(本小题满分11分)
如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA =OC =4OB ,动点P 在过A ,B ,C 三点的抛物线上.(1)求抛物线的解析式;
(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件
的点P 的坐标;若不存在,说明理由;
(3)过动点P 作PE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为
F ,连接EF ,以线段EF 的中点
G 为圆心,以EF 为直径作⊙G ,当⊙G 最小时,求出点P 的坐标.。