四川省成都七中育才学校九年级(下)开学数学试卷 解析版
- 格式:doc
- 大小:673.50 KB
- 文档页数:31
一、选择题1.将函数 6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+ B .61y x =- C .61y x=+ D .61y x=-B 解析:B 【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B . 【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.2.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C .D .D解析:D 【解析】根据题意,在函数y=kx+k 和函数ky x=中, 有k >0,则函数y=kx+k 过一二三象限.且函数ky x=在一、三象限, 则D 选项中的函数图象符合题意; 故选D . 3.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<C 解析:C 【解析】 试题根据图象可得当12y y <时, x 的取值范围是:x <−6或0<x <2. 故选C.4.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅, 设正方形ADEF 的边长为x , 则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍), 故选:C . 【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k .5.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-A 解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值. 【详解】 解:连接BP ,∵直线y x =-与双曲线ky x=的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点 ∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大, ∴当P 、C 、B 三点共线时PB=2OQ=4, ∵PC=1, ∴BC=3,设B 点的坐标为(x ,-x ), 则()()22BC=2-23x x ++=,解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,代入k y x=中可得:12k =-,故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.6.函数y kx k =-+与ky x=在同一坐标系中的图象可能是( ) A . B . C . D .D解析:D 【分析】根据题意,分类讨论k >0和k <0,两个函数图象所在的象限,即可解答本题. 【详解】 解:当k >0时,函数y=-kx+k 的图象经过第一、二、四象限,函数ky x=(k≠0)的图象在第一、三象限,故选项A 、选项C 错误, 当k <0时,函数y=-kx+k 的图象经过第一、三、四象限,函数ky x=(k≠0)的图象在第二、四象限,故选项B 错误,选项D 正确, 故选:D . 【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答. 7.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15- B .15C .5-D .5B解析:B 【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b-得到b aab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1,所以11a b -=b a ab -=15. 故选:B. 【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.8.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<B解析:B 【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可. 【详解】 解:(0)ky k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-,而k 0<, 132y y y ∴<<.故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =. 9.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4B解析:B 【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|. 【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形, ∴AD ∥x 轴,∴四边形ADOE 为矩形, ∴S 平行四边形ABCD =S 矩形ADOE ,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.函数y=x+m与myx=(m≠0)在同一坐标系内的图象可以是()A.B.C.D.B解析:B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.二、填空题11.如图,平面直角坐标系中,矩形ABCD的顶点B在x轴负半轴上,边CD与x轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解. 【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒∴9045BAE DAE ∠=︒-∠=︒ ∴ABE △为等腰直角三角形 ∴45ABE ∠=︒ ∴45CBE ∠=︒ ∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x ⎛⎫ ⎪⎝⎭∴2kAE x x==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去) ∴()()233215k x x =+=⨯+=. 【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.12.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3 【分析】把点(,7)M a 代入反比例函数解析式,求解即可. 【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上, ∴217a=,解得3a =, 故答案为:3. 【点睛】本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键. 13.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________. 3【分析】连接OC 设AC 交y 轴于E 根据反比例函数k 的几何意义求出△AOC 的面积再利用反比例函数关于原点对称的性质推出OA=OB 即可解决问题【详解】解:如图连接OC 设AC 交y 轴于E ∵AC ⊥y 轴于E ∴S解析:3 【分析】连接OC ,设AC 交y 轴于E .根据反比例函数k 的几何意义求出△AOC 的面积,再利用反比例函数关于原点对称的性质,推出OA=OB 即可解决问题. 【详解】解:如图,连接OC 设AC 交y 轴于E .∵AC⊥y轴于E,∴S△AOE=12×2=1,S△OEC=12×1=12,∴S△AOC=32,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故答案为:3.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握反比例函数系数k的几何意义.14.已知反比例函数3yx=-,当1x>时,y的取值范围是____-3<y<0【分析】根据反比例函数的增减性求解【详解】在反比例函数∴函数图象在第二四象限且在每个象限内y随x的增大而增大当x>1时函数图象在第四象限且当x=1时y=-3∴当x>1时-3<y<0;故答解析:-3<y<0【分析】根据反比例函数的增减性求解.【详解】在反比例函数3yx=-,30k=-<,∴函数图象在第二、四象限,且在每个象限内y随x的增大而增大,当x>1时,函数图象在第四象限且当x=1时,y=-3,∴当x>1时-3<y<0;故答案为:-3<y<0.【点睛】考查反比例函数的增减性,掌握反比例函数的增减性是解题的关键,即在y=kx(k≠0)中,当k >0时,在每个象限内y 随x 的增大而减小,当k <0时,在每个象限内y 随x 的增大而增大.15.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__.-【分析】将点P 分别代入两函数解析式得到:b =a ﹣3b =﹣进而得到a ﹣b =3ab =﹣2将其代入求值即可【详解】∵点P (ab )为直线y =x ﹣3与双曲线y =﹣的交点∴b =a ﹣3b =﹣∴a ﹣b =3ab =﹣解析:-32【分析】 将点P 分别代入两函数解析式得到:b =a ﹣3,b =﹣2a ,进而得到a ﹣b =3,ab =﹣2.将其代入求值即可.【详解】∵点P (a ,b )为直线y =x ﹣3与双曲线y =﹣2x的交点, ∴b =a ﹣3,b =﹣2a, ∴a ﹣b =3,ab =﹣2. ∴1b ﹣1a =a b ab -=32-=﹣32. 故答案是:﹣32. 【点睛】考查了反比例函数与一次函数的交点,解题关键是是得到a ﹣b =3,ab =﹣2.16.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二 解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键. 17.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm 解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b , 把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n--),由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键. 18.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =k x(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____. 3【分析】作BC ⊥x 轴于CAD ⊥BC 于D 易证得△BOC ≌△ABD 得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的 解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=k x(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中 COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD,BC=AD,设B的坐标为(m,n),则OC=m,BC=n,∵点A(4,2),∴24m nn m-⎧⎨-⎩==,解得,∴B的坐标为(1,3),∵点B在双曲线y=kx(x>0)的图象上,∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m、n的方程组是解题的关键.19.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.70【分析】根据点关于y轴对称的特点写出B点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A在双曲线y=上得到2ab=1即ab=根据AB两点关于y轴对称得到点B(﹣ab)根据点B在直线解析:70【分析】根据点关于y轴对称的特点写出B点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A在双曲线y=12x上,得到2ab=1,即ab=12,根据A、B两点关于y轴对称,得到点B(﹣a,b).根据点B在直线y=x+6上,得到a+b=6,∴22a b a bb a ab+ +==2()2 a b abab+-=21 62212-⨯=361 1 2-=70.故答案为:70.【点睛】此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.20.如图,菱形ABCD顶点A在函数y=4x(x>0)的图像上,函数y=kx(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。
2023-2024学年四川省成都七中育才学校九年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示的几何体,其主视图是()A.B.C.D.2.反比例函数的图象经过点,下列各点在此反比例函数图象上的是()A. B. C. D.3.若关于x的方程有一个根为2,则m的值为()A.0B.1C.2D.34.如图,在中,D,E分别是AB,AC上的点,,若,,则BC等于()A.4B.5C.6D.75.如图,在矩形ABCD中,对角线AC,BD相交于点O,,,则矩形ABCD的周长为()A.12B.16C.D.6.如图是李老师制作的一个可以自由转动的转盘,如表是某同学收集的一组统计数据:转动转盘的次数1002003004005006007008009001000落在“蓝色”的次数306192118151182207242269302蓝色部分的圆心角最有可能是()A.B.C.D.7.12月18日23时59分,甘肃临夏州积石山县发生级地震.面对突发灾情,某公司积极募捐资金,支持当地开展灾害救援救助及灾后重建工作.第1天募捐到资金万元,第2天、第3天募捐资金连续增长,第3天募捐到的资金为万元.设该公司这两天募捐资金平均每天的增长率为x,则所列方程正确的是()A. B.C. D.8.数学课本上有这样一段表述:“在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数,所对应的图形与原图形….”请利用这一规律解答下面问题:已知,,且,若,,则PQ的长为()A.4B.6C.9D.12二、填空题:本题共10小题,每小题4分,共40分。
9.若,则______.10.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是__________.11.七巧板是一种古老的中国传统智力游戏.在如图所示的七巧板中,若正方形ABCD的边长为4,则正方形EFGH的边长为______.12.若点,都在反比例函数的图象上,则,的大小关系为______.13.如图,已知线段,分别以点A,B为圆心,以5cm为半径画弧,两弧相交于点C,D,连接AC,BC,AD,BD,则四边形ACBD的面积为______.14.已知a,b是方程的两根,则______.15.如图,在正方形ABCD中,点E是AB边上一点,且,连接CE交对角线BD于点若,则BF的长为______.16.如图,点A在反比例函数的图象上,点B在反比例函数的图象上,连接AB,且轴.点是x轴上一点,连接PA,PB,若,,则PB与y轴交点C的坐标为______.17.如图1,在中,,点D在BC上,沿直线AD翻折使点B落在AC上的处;如图2,折叠,使点A与点D重合,折痕为若,则的值为______.18.已知,数轴上从左到右有三点A,B,C,它们在数轴上对应的数分别为a,b,均不为整数,且,为正整数在点A与点B之间的所有整数依次记为,,…,;在点B与点C之间的所有整数分别记为,,,…,若,则k的值为______.三、解答题:本题共8小题,共78分。
2011-2012学年四川省成都七中九年级(下)入学考试数学试卷一、选择题:(每题3分,共30分)1.(3分)下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.2.(3分)如图是一个包装盒的三视图,则这个包装盒的体积是()A.192πcm3B.1152πcm3C.288cm3D.384πcm3 3.(3分)如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为()A.B.C.D.4.(3分)如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm5.(3分)已知:抛物线y=kx2+2(k+1)x+k+1开口向下,且与x轴有两个交点,则k的取值范围是()A.﹣1<k<0B.k<0C.k<﹣1D.k>﹣1 6.(3分)如图,正△AOB的顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)7.(3分)要得到二次函数y=﹣x2+2x﹣2的图象,需将y=﹣x2的图象()A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位8.(3分)如图,点O为优弧所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为()A.20°B.27°C.30°D.54°9.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.10.(3分)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(点C与点A不重合),CF⊥CD交AB于F,DE⊥CD交AB于E,G为半圆中点,当点C在上运动时,设的长为x,CF+DE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共20分,每小题3分)11.(3分)如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,则CE=.12.(3分)已知关于x的方程x2﹣nx+m=0有一个根是m(m≠0),则m﹣n=.13.(3分)如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.14.(3分)将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB 围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为cm.15.(3分)为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,待带标记的鱼完全混合于鱼群后,第二次再捕上200条,若其中带有标记的鱼有10条,那么估计湖里大约有条鱼.16.(4分)如图,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.若∠AOC=60°,BE=3,则点P到弦AB 的距离为 .17.(4分)如图,已知双曲线y=(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k= .18.(4分)周长是94、各边长都是整数的各个矩形中,最大的面积是 .19.(4分)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.20.(4分)如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .三、解答题21.(21分)(1)计算:2sin230°•tan30°﹣cos60°•tan60°;(2)解方程:3x(x﹣1)=2﹣2x;(3)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.22.(8分)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.23.(8分)你喜欢玩游戏吗?小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?如果公平,请说明理由;如果不公平,请你做一修改,使他俩获胜的机会一样大.24.(8分)已知反比例函数的图象与直线y=x+1都过点(﹣3,n).(1)求n,k的值;(2)若抛物线y=x2﹣2mx+m2+m+1的顶点在反比例函数的图象上,求这条抛物线的顶点坐标.25.(10分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.26.(8分)金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.27.(10分)在△ABC中,分别以AB,AC为直径在△ABC外作半圆O1和半圆O2,其中O1和O2分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.(1)如图一,连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;(2)过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,①如图二,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;②如图三,若连接FA,猜想PQ与FA的位置关系,并说明你的结论.28.(12分)如图,设抛物线C1:y=a(x+1)2﹣5,C2:y=﹣a(x﹣1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是﹣2.(1)求a的值及点B的坐标;(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;②若l与△DHG的边DG相交,求点N的横坐标的取值范围.2011-2012学年四川省成都七中九年级(下)入学考试数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选:A.【点评】本题考查了平行投影特点,难度不大,注意结合选项判断.2.(3分)如图是一个包装盒的三视图,则这个包装盒的体积是()A.192πcm3B.1152πcm3C.288cm3D.384πcm3【分析】根据三视图确定几何体,然后再根据图中所给出的数据求出体积.【解答】解:先由三视图确定该几何体是六棱柱,再计算出其底面的面积,进而求得直六棱柱的体积,底面边长为4cm的正六边形可分割为六个边长为4cm的等边三角形,而每个等边三角形的面积为×4×(4×sin60°)=8×=4(cm2),∴该包装盒的体积为6×4×12=288(cm3).故选C.【点评】本题主要考查了由三视图确定几何体和求正六边形的面积.3.(3分)如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为()A.B.C.D.【分析】由于四边形ABCD是正方形,△AEF是等边三角形,所以首先根据已知条件可以证明△ABE≌△ADF,再根据全等三角形的性质得到BE=DF,设BE=x,那么DF=x,CE=CF=1﹣x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出关于x的方程,解方程即可求出BE.【解答】解:∵四边形ABCD是正方形,∴∠B=∠D=90°,AB=AD,∵△AEF是等边三角形,∴AE=EF=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,设BE=x,那么DF=x,CE=CF=1﹣x,在Rt△ABE中,AE2=AB2+BE2,在Rt△CEF中,FE2=CF2+CE2,∴AB2+BE2=CF2+CE2,∴x2+1=2(1﹣x)2,∴x2﹣4x+1=0,∴x=2±,而x<1,∴x=2﹣,即BE的长为=2﹣.故选:A.【点评】此题主要考查了正方形、等边三角形的知识,把求线段长放在正方形的背景中,利用勾股定理列出一元二次方程解决问题.4.(3分)如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm【分析】延长AO交BC于D,过O作BC的垂线,设垂足为E,根据∠A、∠B 的度数易证得△ABD是等边三角形,设AB的长为xcm,由此可表示出OD、BD和DE的长;在Rt△ODE中,根据∠ODE的度数,可得出OD=2DE,进而可求出x的值.【解答】解:延长AO交BC于D,作OE⊥BC于E,设AB的长为xcm,∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=x;∵OA=4cm,BC=10cm,∴BE=5cm,DE=(x﹣5)cm,OD=(x﹣4)cm,又∵∠ADB=60°,∴DE=OD,∴x﹣5=(x﹣4),解得:x=6.故选:B.【点评】此题主要考查了等边三角形的判定和性质以及勾股定理的应用.解答此题时,通过作辅助线将半径OB置于直角三角形OBE中,从而利用勾股定理求得.5.(3分)已知:抛物线y=kx2+2(k+1)x+k+1开口向下,且与x轴有两个交点,则k的取值范围是()A.﹣1<k<0B.k<0C.k<﹣1D.k>﹣1【分析】抛物线开口向下,二次项系数k<0,与x轴有两个交点△>0,联立解不等式组即可.【解答】依题意,得解得:﹣1<k<0.故选:A.【点评】本题考查了抛物线的性质与解析式中系数的关系.要熟悉关于系数的算式的符号与图象位置的关系.6.(3分)如图,正△AOB的顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)【分析】过点A作AC⊥y轴于C,根据已知条件知道△OAB是正三角形,然后设AC=a,则OC=a,这样点A则坐标可以用a表示,再把这点代入反比例函数的解析式就可以求出a从而求出点B的坐标.【解答】解:如图,过点A作AC⊥y轴于C,∵△OAB是正三角形,∴∠AOB=60°,∴∠AOC=30°,∴设AC=a,则OC=a,∴点A则坐标是(a,a),把这点代入反比例函数的解析式就得到a=,∴a=±1,∵x>0,∴a=1,则OA=2,∴OB=2,则点B的坐标为(2,0).故选:A.【点评】此题综合考查了反比例函数的性质,正三角形等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.7.(3分)要得到二次函数y=﹣x2+2x﹣2的图象,需将y=﹣x2的图象()A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位【分析】只需看顶点坐标是如何平移得到的即可.【解答】解:原抛物线的顶点坐标为(0,0),新抛物线的顶点坐标为(1,﹣1),∴将原抛物线向右平移1个单位,再向下平移1个单位可得到新抛物线.故选:D.【点评】考查两个二次函数的图象的平移问题.8.(3分)如图,点O为优弧所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为()A.20°B.27°C.30°D.54°【分析】先根据圆周角定理可得∠ABC=∠AOC,易求∠ABC,而BC=BD,易得∠BCD=∠D,且∠ABC是△BCD的外角,从而易得∠ABC=2∠D,进而可求∠D.【解答】解:∵∠AOC、∠ABC是同弧对的圆心角和圆周角,∴∠ABC=∠AOC,∵∠AOC=108°,∴∠ABC=54°,∵∠ABC是△ABD的外角,∴∠ABC=∠BCD+∠D,∵BD=BC,∴∠BCD=∠D,∴∠ABC=∠BCD+∠D=2∠D,∴∠D=∠ABC=27°.故选:B.【点评】本题考查了圆周角定理、等腰三角形的性质、三角形的外角性质.解题的关键是先求出∠ABC.9.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.【分析】可先根据二次函数的图象与性质判断a、b、c的符号,再判断正比例函数、反比例函数的图象大致位置.【解答】解:由二次函数y=ax2+bx+c的图象开口向上可知a>0;∵x=﹣>0,∴b<0;∵图象与y轴交于负半轴,∴c<0,即b+c<0,∴反比例函数y=图象在一、三象限,正比例函数y=(b+c)x图象在二、四象限;故选:B.【点评】本题考查正比例函数、反比例函数、二次函数图象与性质.10.(3分)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(点C与点A不重合),CF⊥CD交AB于F,DE⊥CD交AB于E,G为半圆中点,当点C在上运动时,设的长为x,CF+DE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【分析】根据弦CD为定长可以知道无论点C怎么运动弦CD的弦心距为定值,据此可以得到函数的图象.【解答】解:作OH⊥CD于点H,∴H为CD的中点,∵CF⊥CD交AB于F,DE⊥CD交AB于E,∴OH为直角梯形的中位线,∵弦CD为定长,∴CF+DE=y为定值,故选:B.【点评】本题考查了动点问题的函数图象,解题的关键是化动为静.二、填空题(本题共20分,每小题3分)11.(3分)如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,则CE=2.【分析】有条件可得AD=CD,再有切线长定理可得:CD=CE,所以AD=CE,问题的解.【解答】解:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角和等腰三角形的判定定理和性质定理.12.(3分)已知关于x的方程x2﹣nx+m=0有一个根是m(m≠0),则m﹣n=﹣1.【分析】将x=m代入原方程,列出关于m的一元二次方程m2﹣nm+m=0,然后通过因式分解法解该方程求得m﹣n的值即可.【解答】解:∵关于x的方程x2﹣nx+m=0有一个根是m(m≠0),∴x=m满足关于x的方程x2﹣nx+m=0,∴m2﹣nm+m=0,即m(m﹣n+1)=0,∴m=0(舍去),或m﹣n+1=0,∴m﹣n=﹣1;故答案是:﹣1.【点评】本题考查了一元二次方程的解的定义、因式分解的应用.解答该题时,通过提取公因式m将方程m2﹣nm+m=0的左边转化为两式之积的形式,从而求得m﹣n的值.13.(3分)如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.【分析】在Rt△ABC中,易知∠ABC的正切值为;根据圆周角定理可得,∠AED=∠ABC,由此可求出∠AED的正切值.【解答】解:在Rt△ABC中,AC=1,AB=2;∴tan∠ABC==;∵∠AED=∠ABC,∴tan∠AED=tan∠ABC=.故答案为:.【点评】本题主要考查圆周角定理及锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.14.(3分)将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB 围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为2cm.【分析】根据图形可以得到扇形的半径为8﹣2=6cm,然后求得扇形的弧长,利用圆锥的周长等于扇形的弧长即可求得圆锥的底面半径.【解答】解:∵三角板上所对应的刻度分别是8cm、2cm,∴圆锥的母线长为8﹣2=6cm,∵弧所对的扇形圆心角∠AOB=120°,∴扇形AOB的弧长==4π,设圆锥的半径为r,则2πr=4π,解得r=2cm,故答案为2.【点评】本题考查了圆锥的计算,正确理解圆锥侧面与其展开得到的扇形的关系:圆锥的母线长等于扇形的半径,圆锥的底面周长等于扇形的弧长.是解决这类题目的关键.15.(3分)为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,待带标记的鱼完全混合于鱼群后,第二次再捕上200条,若其中带有标记的鱼有10条,那么估计湖里大约有2000条鱼.【分析】可根据“第二次捕得的带标记的鱼数量÷第二次捕鱼的数量=被标记的鱼所占的比例”来列等量关系式,其中“被标记的鱼所占的比例=被标记的鱼总数量÷湖里总鱼数”.【解答】解:设湖里大约有x条鱼.根据公式得:解得:x=2000.经检验x=200是方程的解.答:湖里大约有2000条鱼.故答案为2000.【点评】解题关键是要读懂题目的意思,根据列出方程,再求解.16.(4分)如图,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.若∠AOC=60°,BE=3,则点P到弦AB的距离为.【分析】此题比较复杂,考查圆周角定理及角平分线的性质.【解答】解:过P作PF⊥AB,PG⊥BD∵∠CBD=∠ABC,PE∥AB交BD于点E,∠AOC=60°,BE=3∴∠CBD=∠ABC=30°∵BC为∠ABD的角平分线,PF=PG又∵PE∥AB∴∠BPE=∠ABC=∠CBD=30°∴∠PEG=∠BPE+∠CBD=30°+30°=60°∵PG⊥BD∴∠PGE=90°∴sin∠PEG=即=∴PG=×PE=×3=,∴则点P到弦AB的距离为PF=PG=,故答案为:.【点评】此题比较复杂,考查的是平行线的性质,是中学阶段的重点.17.(4分)如图,已知双曲线y=(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k= 2 .【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=|k |. 【解答】解:过D 点作DE ⊥x 轴,垂足为E , ∵在Rt △OAB 中,∠OAB=90°, ∴DE ∥AB ,∵D 为Rt △OAB 斜边OB 的中点D , ∴DE 为Rt △OAB 的中位线, ∴DE ∥AB , ∴△OED ∽△OAB , ∴两三角形的相似比为:=∵双曲线y=(k >0),可知S △AOC =S △DOE =k , ∴S △AOB =4S △DOE =2k ,由S △AOB ﹣S △AOC =S △OBC =3,得2k ﹣k=3, 解得k=2.故本题答案为:2.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.(4分)周长是94、各边长都是整数的各个矩形中,最大的面积是552.【分析】先设矩形的长是x,宽是(﹣x),则S=﹣x2+47x,由于a=﹣1<0,则说明S有最大值,而矩形的各边长都是整数,易求出x的值,进而可求宽,从而可求面积.【解答】解:设矩形的长是x,宽是(﹣x),则S=x(47﹣x)=﹣x2+47x,∵a=﹣1<0,∴当x=﹣==23.5时,S有最大值,又∵x是整数,∴当x=24,47﹣x=23时,=23×24=552.∴S最大值故答案是552.【点评】本题考查了有理数的最值,解题的关键是注意矩形的各边长都是整数的条件.19.(4分)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要127枚棋子,摆第n个图案需要3n2+3n+1(n ∈N+)枚棋子.【分析】本题可依次解出n=1,2,3,…,图案需要的棋子枚数.再根据规律以此类推,可得出第6个及第n个图案需要的棋子枚数.【解答】方法一:解:∵n=1时,总数是6+1=7;n=2时,总数为6×(1+2)+1=19;n=3时,总数为6×(1+2+3)+1=37枚;…;∴n=6时,总数为6×(1+2+3…+6)+1=127枚;…;∴n=n时,有6×(1+2+3+…n)+1=6×+1=3n2+3n+1枚.故答案为:127,3n2+3n+1(n∈N+).方法二:n=1,s=7;n=2,s=19;n=3,s=37,经观察.此数列为二阶等差(即后项减前项,两次作差,差相等)设:s=an2+bn+c,∴,∴,∴s=3n2+3n+1,把n=6代入,s=127.方法三:,,,,,∴a6=37+24+30+36=127.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(4分)如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 ①③⑤ .【分析】①首先利用已知条件根据边角边可以证明△APD ≌△AEB ;②由①可得∠BEP=90°,故BE 不垂直于AE 过点B 作BF ⊥AE 延长线于F ,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为BF=,故②是错误的;③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =PD ×BE=,所以S △ABD =S △APD +S△APB+S △BPD =2+,由此即可判定.【解答】解:由边角边定理易知△APD ≌△AEB ,故①正确; 由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°, 所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离, 在△AEP 中,由勾股定理得PE=,在△BEP 中,PB=,PE=,由勾股定理得:BE=,∵∠PAE=∠PEB=∠EFB=90°,AE=AP , ∴∠AEP=45°,∴∠BEF=180°﹣45°﹣90°=45°, ∴∠EBF=45°, ∴EF=BF ,在△EFB 中,由勾股定理得:EF=BF=,故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的; 由△APD ≌△AEB , ∴PD=BE=,可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =+,因此④是错误的;连接BD ,则S △BPD =PD ×BE=, 所以S △ABD =S △APD +S △APB +S △BPD =2+,所以S 正方形ABCD =2S △ABD =4+.综上可知,正确的有①③⑤.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.三、解答题21.(21分)(1)计算:2sin 230°•tan30°﹣cos60°•tan60°; (2)解方程:3x (x ﹣1)=2﹣2x ;(3)已知:y=y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y 的值.【分析】(1)将各特殊角的三角函数值代入上式,再进行实数的乘方、乘法及减法运算;(2)将原方程化简,然后解一元二次方程;(3)设y1=kx2,y2=,将两式代入y=y1+y2,再将x=1,y=3;x=﹣1,y=1代入y=y1+y2,得到关于k、m的二元一次方程组,解方程组,求出k、m的值,得到新的解析式,将x=﹣代入解析式即可求出y的值.【解答】解:(1)原式=2×()2×﹣×=﹣=﹣.(2)原方程可化为3x2﹣x﹣2=0,整理得(x﹣1)(3x﹣2)=0,解得x1=1,x2=.(3)设y1=kx2,y2=,将两式代入y=y1+y2得,y=kx2+,将x=1,y=3;x=﹣1,y=1代入y=kx2+得,,解得,所得解析式为y=2x2+,当x=﹣时,y=﹣.【点评】(1)本题考查了特殊角的三角函数值的相关运算,记住特殊角的三角函数值是解题的关键;(2)本题考查了解一元二次方程﹣﹣﹣因式分解,应用十字相乘法是解答此题的关键;(3)本题考查了待定系数法求函数解析式,要熟悉正比例函数及反比例函数的解析式的设法以及会解二元一次方程组.22.(8分)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.【分析】(1)根据等腰梯形的中位线的性质求出四边形四边相等即可;(2)利用等腰梯形的性质和正方形的性质解答.【解答】(1)证明:∵四边形ABCD为等腰梯形,∴AB=CD,∠A=∠D.∵M为AD的中点,∴AM=DM.(2分)∴△ABM≌△DCM.(1分)∴BM=CM.(1分)∵E、F、N分别是MB、CM、BC的中点,∴EN、FN分别为△BMC的中位线,∴EN=MC,FN=MB,且ME=BE=MB,MF=FC=MC.∴EN=FN=FM=EM.∴四边形ENFM是菱形.(1分)(2)解:结论:等腰梯形ABCD的高是底边BC的一半.理由:连接MN,∵BM=CM,BN=CN,∴MN⊥BC.∴MN是梯形ABCD的高.(2分)又∵四边形MENF是正方形,∴∠EMF=90°,∴△BMC为直角三角形.又∵N是BC的中点,∴MN=BC.(1分)即等腰梯形ABCD的高是底边BC的一半.【点评】本题比较复杂,涉及面较广,需要同学们把所学知识系统化,提高自己对所学知识的综合运用运用能力.23.(8分)你喜欢玩游戏吗?小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?如果公平,请说明理由;如果不公平,请你做一修改,使他俩获胜的机会一样大.【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:先根据游戏规则分析小明和小华取胜的概率:列表分析可得:按两个转盘中指针落在区域不同共24种情况;其乘积为偶数的有18种,为奇数的6种;则小华赢的概率大于小明赢的概率;故这个游戏不公平.要使游戏公平:只需是两人取胜时所包含的情况数目相等即可,如将游戏规则改为同为奇数或偶数,小华赢;一奇一偶,小明赢;这样游戏就公平了..【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)已知反比例函数的图象与直线y=x+1都过点(﹣3,n).(1)求n,k的值;(2)若抛物线y=x2﹣2mx+m2+m+1的顶点在反比例函数的图象上,求这条抛物线的顶点坐标.【分析】(1)根据反比例函数的图象与直线y=x+1都过点(﹣3,n),直接代入一次函数解析式求出即可,进而得出k的值;(2)利用抛物线y=x2﹣2mx+m2+m+1的顶点在反比例函数的图象上,表示出二次函数的顶点坐标,代入反比例函数解析式求出即可.【解答】解:(1)∵反比例函数的图象与直线y=x+1都过点(﹣3,n),∴将点(﹣3,n),代入y=x+1,∴n=﹣3+1,n=﹣2,∴点的坐标为:(﹣3,﹣2),将点代入y=,∴xy=k,k=6;(2)∵抛物线y=x2﹣2mx+m2+m+1的顶点为:(﹣,)∴﹣=m,==m+1,∴抛物线y=x2﹣2mx+m2+m+1的顶点为:(m,m+1),∵抛物线y=x2﹣2mx+m2+m+1的顶点在反比例函数的图象上,∴m(m+1)=6,∴(m﹣2)(m+3)=0,∴m1=﹣2,m2=3,∴抛物线y=x2﹣2mx+m2+m+1的顶点为:(﹣2,﹣1),(3,4).【点评】此题主要考查了反比例函数的综合应用以及二次函数顶点坐标的求法,求出二次函数顶点坐标再利用图象上点的性质得出m(m+1)=6是解题关键.25.(10分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.【分析】(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;(2)如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(3)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的。
2024年四川省成都市七中学育才学校九年级数学第一学期开学监测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于()A .30B .120C .135D .1082、(4分)下列图案中,既是中心对称又是轴对称的图案是()A .B .C .D .3、(4分)若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为()A .(﹣1,0)B .(﹣1,﹣1)C .(﹣2,0)D .(﹣2,﹣1)4、(4分)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.1.其中说法正确的是()A .①②③B .①②④C .①③④D .①②③④5、(4分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A .中位数B .众数C .平均数D .方差6、(4分)要使分式x 1x 4+-有意义,则x 的取值应满足()A .x ≠4B .x ≠﹣1C .x =4D .x =﹣17、(4分)如图,在四边形ABCD 中,AB =BC =2,且∠B =∠D =90°,连接AC ,那么四边形ABCD 的最大面积是()A .B .4C .D .88、(4分)函数中,自变量x 的取值范围是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将菱形纸片ABCD 折叠,使点C ,D 的对应点C ',D '都落在直线AB 上,折痕为EF ,若EF =1.AC '=8,则阴影部分(四边形ED 'BF )的面积为________。
七中育才学校2022—2023学年度(下)月定时练习九年级数学A 卷(共分)第Ⅰ卷(选择题,共分)一、选择题(每小题分,共分,请将正确的答案涂在答题卡上) 1.2023的相反数是( ) A .2023B .12023C .-2023D .120232.“数”说二十大:二十大报告中,一组组亮眼的数字,吸引无数目光,折射出新时代十年的非凡成就.全国八百三十二个贫困县全部摘帽,近一亿农村贫困人口实现脱贫,九百六十多万贫困人口实现易地搬迁,其中一亿用科学记数法表示为( ) A .90.110⨯B .8110⨯C .9110⨯D .81010⨯3.如图,下列关于物体的主视图画法正确的是( )A .B .C .D .4.下列运算正确的是( ) A .236a a a +=B .()22ab ab -= C .()222a b a b -=- D .()326aa =5.小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:则阅读课外书数量的中位数和众数分别是( ) A .13,15 B .14,15 C .13,18, D .15,156.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位):马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .64485338x y x y +=⎧⎨+=⎩B .64385348x y x y +=⎧⎨+=⎩C .46483538x y x y +=⎧⎨+=⎩D .46383548x y x y +=⎧⎨+=⎩7.如图,ABC △和DEF △是以点O 为位似中心的位似图形.若25AB ED =,则下列结论正确的是().A .25OA AD = B .25OB OE = C .25ABC DEF S S =△△D .25AC FE = 8.二次函数2y ax bx c =++,自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A .抛物线的开向下B.当3x >-时,y 随x 的书大而增大 C .一次函数的最小值是-2D.抛物线为对称轴是直线52x =-二、填空题(每小题4分,共20分,答案写在答题卡上) 9.分解因式:24a -=______.10.在平面直角坐标系xOy ,若点()13,A y ,()25,B y 在反比例函数()0ky k x=>的图象上,见1y ______2y (填“>”“<”或”“=”).11.如图.在矩形ABCD 中,若6AB =.10AC =,14AF FC =,则AE 的长为______.12.如图,在圆内接六边形ABCDEF 中,BD ,EC 交于点G ,已知ED =EG 的长为______.13.如图,在ABC △中,AB AC =,观察尺规作图的痕迹,若2BE =,BC =,则AC =______.三、解答题(共5个小题,满分48分) 14.(12分)(1)计算()213sin 30π202322-⎛⎫︒---- ⎪⎝⎭(2)解不等式组:()35223143x x x x -≥-⎧⎪⎨-<-⎪⎩15.(8分)育才中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校课程以提升课后服务质量,促进学生全面健康发展.为优化师资配备,学校面向七级参与课后服务的部分学生开展了“你选修哪课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图: 请结合上述信息,解答下列问题:(1)共有______名学生参与了本次问卷查:“陶艺”在扇形统计图中所对应的圆心角是______度; (2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.16.(8分)去年居家网课学习时,小华先将笔记本电脑放置在水平的桌面上,如图(1)所示,其侧面示意图如图(2)所示,120AOB ∠=︒,20cm OA OB ==;使用时为了散热,他在底板下垫入散热架ACO ',且OA O A '=,并将显示屏OB 旋转到O B ''的位置,如图(3)所示,其侧面示意图如图(4)所示.已知B ',O ',C 三点在一条直线上,且B C AC '⊥,37O AC '∠=︒(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75︒≈ 1.73≈.) (1)求散热架ACO '底边AC 的长;(2)垫入散热架后,显示屏顶部B '比原来升高了多少cm?(结果保留整数)17.(10分)如图,在ABC △中,以AB 为直径作圆O 交AC ,BC 于点D ,E ,且点D 是AC 的中点,过点D 作DG BC ⊥于点G ,交BA 的延长线于点H . (1)求证: C BAC ∠=∠;(2)求证:直线HG 是圆O 的切线; (3)若6HA =,2cos 5B =,求CG 的长.18.(10分)如图,一次函数4y kx =+的图象与反比例函数ny x=的图象交于点()4,A m ,与y 轴交于点B ,与x 轴交于点C ,且8OC =.(1)求k 与n 的值;(2)点P 为x 轴上的一点,当ABP △的面积为16,求点P 的坐标;(3)在(2)问的条件下,且点P 在x 轴正半轴时.点N 在y 轴上,点在反比例函数图象上,以B ,P ,M ,N 为顶点的四边形是平行四边形,求点N 的坐标.B 卷一、填空题(每小题4分,共20分,答案写在答题卡上)19.已知a ,b ,是方程2370x x +-=的两个实数根,则232023a b -+的值是______. 20.已知关于x 的分式方程12233m x x-+=--的解为非负数,则m 的取值范围为______. 21.如图,小球在菱形ABCD 上自由地滚动,点E ,F 分别在AB ,CD 上,且2BE AE =,2DF CF =,点G ,H 在AC 上,且G ,H 刚好是线段AC 的两个黄金分割点,则小球最终停在阴影区域上的概率是______(结果保留根号).22.如图,反比例函数()0a y x x =>的图像过点A ,反比例函数by x=的图像与直线OA 交于点B ,C ,已知:1:3OB OA =,过点A 分别作y 轴和x 轴的平行线,分别交反比例函数by x=的图像于点D 和E ,连接CD 交y 轴于G ,连接CE 交x 轴于点F ,当CFG △的面积为时,a b +=______.23.在平面直角坐标系xOy 中,我们给出如下定义:将图形M 绕直线x t =上某一点P 逆时针旋转90︒,再关于直线x t =对称,得到图形N ,我们称图形N 为图形M 关于点P 的共存图形.已知点A 的坐标为()0,1,2t =-.(1)若点A 关于点P 的共存图形与点A 刚好重合时,点P 的坐标为______﹔(2)若点A 关于点P 的共存e上时,此时P点坐标为______.图形在半径为1的A二、解答题(共3个小题,满分30分)24.(8分)某水果店销售某种水果的单价1y 与销售月份x 之间的关系如图1所示,成本2y 与销售月份x 之间的关系如图2所示(图1的图像是线段,图2的图像是抛物线).已知6月份这种水果的成本最低. (1)求6月份时销售这种水果每千克的利润.(2)设每千克该水果销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种水果每千克的利润最大,最大利润是多少?25.(10分)如图1,二次函数经过点()1,0A -,()1,0B ,且与y 轴交于点()0,1C -. (1)求二次函数的解析式;(2)如图2,直线ED 过点O ,与二次函数交于点D 、E ,若DE =,求ECD △的面积;(3)如图3,直线MN 、ED 过点O ,与二次函数分别交于点M 、N 与E 、D ,线段MD 交y 轴于Q ,线段EN 交y 轴于P , ①求()()11E D y y ++的值;②线段CQ 与线段CP 的长度的积是否为定值?若是,请求出定值;若不是,请说明理由.26.(12分)如图1,AB AC =,1AD =,2BD CD ==,点E 在线段CA 的延长线上,点F 在线段DA 延长线上,且EF AB ∥.(1)当AB 平分EBD ∠时,证明:AEB BEC ∽△△;(2)如图2,若AE =点P 为AF 中点,点Q 从点A 出发,以每秒1个单位的速度,延折线A E F --运动至点F 停止,作点A 关于直线PQ 的对称点K ,t 秒后P 、K 、B 三点共线,求t 的值;(3)如图3,作FM FD ⊥,FN MA ∥且FN FM =,若AE =E 在直线MN 上,求FM 的长.七中育才学校2022—2023学年度(下)月定时练习九年级数学(参考答案)A 卷(共分)第Ⅰ卷(选择题,共分)一、选择题二、填空题 9.()()22a a +-10.>11.212.213.5三、解答题(共5个小题,满分48分) 14(12分)(1)计算()213sin 30π202322-⎛⎫︒---- ⎪⎝⎭解:原式()131242=⨯-+-31242=--32=--(2)解不等式组:()35213143x x x x -≥-⎧⎪⎨-<-⎪⎩①②解:由①得3524x x -≥-,1x ≥,由②得:39412x x -<-,3x -<-,3x >∴3x > 15.(8分) (1)120;99° (2)共有25种等可能情况.其中两人恰好选到同一门课程 有五种情况51255P -== 16.解:由题得:20OA O A '==,37O AC '∠=︒,90O CA '∠=︒ 在Rt ACO '△中,90O CA '∠=︒ ∴cos 0.8ACA AO =≈',∴0.820AC ≈⨯,16AC ≈ ∴散热架底边AC 的长16cm ;(2)过点B 作BN AC ⊥交其延长线于点N .∵120AOB ∠=︒,∴60BON ∠=︒在Rt BON △中,90BNO ∠=︒,∴sin BN BON OB <==∵20OB =,∴BN =在Rt AO C '△中,90O CA '∠=︒,∴sin 0.6O CA O A'=≈'∴12O C '=,122032B C '=+=,∴3215B C BN '-=-≈ 答:显示屏顶部升高315cm .17.证明:(1)连结OD ,∵O 为AC 的中点,O 为BA 的中点,∴OD 是ABC △的中位线, ∴1//2OD BC ,∴C ODA ∠=∠,∵OA OD =,∴A ODA ∠=∠,∴BAC C ∠=∠ (2)∵DG BC ⊥,∴190∠=︒∵OD BC ∥,∴90HDO ∠=︒,又∵OD 是半径,∴直线HG 是O e 的切线;(3)∵OD BC ∥,∴B DOH ∠=∠在Rt DOH △中,2cos cos 5OD DOH HD ∠=== 设2OD r =,则5HD r =,∵6HA =,∴2r =,∴4OD OA OB ===,∴8BC =在Rt HBG △,2cos 5BG B HB ==,∴285BG =,∴125CG = 18.(10分)(1)解:∵8OC =,∴()8,0C -,∵点()8,0C -在一次函数4y kx =+的图像上,∴84O k =-+,∴12k = 又∵142y x =+过()4,A m ,∴6m =,∴()4,6A ∵7y x=的图像过点A ,∴24n =, (2)如图,当1P 在x 轴正y 轴的111ABP ACP BCP S S S =-△△△ ∵()8,0C -,()0,4B ,()4,6A ∴111132ACP A S CP y CP =⋅⋅=△,111122BCP B S CP y CP =⋅⋅=△ ∴111132ABP S CP CP CP =-=△, ∵16ABP S =△,∴116CP =∵()8,0C -,∴()18,0P2 当2P 在x 轴负半轴时222ABP ACP BCP S S S =-△△△221632CP CP =-,∴216CP =,∴()224,0P -综上所述:()224,0P -,()18,0P(3)令()0,N n ,24,M m m ⎛⎫ ⎪⎝⎭,()0,4B ,()8,0P ∵B ,P ,M ,N 为顶点的平行四边形1°∴0802440m n m+=+⎧⎪⎨+=+⎪⎩∴81m n =⎧⎨=⎩,∴()10,1N 2°0082440m n m +=+⎧⎪⎨+=+⎪⎩,8m =,1n =-,∴()20,1N - 3°0802404m n m +=+⎧⎪⎨+=+⎪⎩,∴87m n =⎧⎨=⎩∴()30,7N 综上,()20,1N ,()32,1N -B 卷一、填空题(每小题4分,共20分,答案与在答题卡上)19.2039 20.3m ≥-且3m ≠2122.45223.(1)()2,1--;(2)2,12⎛--+ ⎝⎭或2,12⎛⎫--- ⎪ ⎪⎝⎭24.解:①312-=(元) ②12973y =-+,()221613y x =-+,212110633P y y x x =-=-+- 当5x =时,max 73P =, 答:(或下结论)25.(10分) 解:(1)设()()11y a x x =+-,∴1a -=-,1a =,∴21y x =-(2)设ED :y kx =,21y kxy x =⎧⎨=-⎩,210x kx --=ED ===== ()()221410k k++=,42560k k +-=,()()22160k k -+= ∵20k ≥,∴21k =∴()2245D E x x k -=+=,D E x x -=ECD DCE ECD S S S =+△△△()2D E DC x x ⋅-==(3)①()()()()()2221111111E D E D E D y y x x x x ++=-+-+=⋅= ②同理()()()2111M N M N y y y y ++=⋅=设MD :y kx b =+ 21y kx b y x =+⎧⎨=-⎩,210x kx b ---= ()()()()()()222221111M D M D Q C y y x x b b y y CQ ++=⋅=--=--=-=⎡⎤⎣⎦ 同理 ()()211E n y y CP ++=∴()()()()221111M d E N CQ CP y y y y ⋅=++++ ()21CQ CP ⋅=,1CQ CP ⋅=26.(12分)解:(1)∵AB AC =,∴23∠=∠∵21∠=∠,∴13∠=∠,∵AEB BEC ∠=∠,∴AEB BEC ∽△△(2)∵AB AC =,BD CD =,∴AD BC ⊥,123∠=∠=∠ ∵EF AB ∥,∴1F ∠=∠在Rt BAD △中tan tan 3tan 12QH F AH ∠=∠=∠==cos 3P AE ∆∠==∴1AP AD ==,∴2PD BD ==,∴45BPD PBD ∠=∠=︒ ①Q 在AE 上∵对称∴22.5QPA BPQ ∠=∠=,∴1BP Bk PD kD == ∴tankD QH QPA PD PH ∠===设AH x =,2QH x =,(2HP x =+,∴(21x x ++=3x ==-∴1AQ t ==②Q 在EF 上,∵对称,∴45667.5∠=∠=∠=︒,22.5PDT ∠=︒ ∴tanPT PDT TQ ∠== ∵tan 2QT F FT∠==∴设FT x =,2QT x =,()2PT x ==∴()21x x +=,x ==∴1AE EQ t +== 作ES FM ⊥,EF AB ⊥(3)∵FM FN =,∴1N ∠=∠∵AM FN ∥∴213N ∠=∠=∠=∠∵ES FM ⊥,ET AM ⊥,∴ES ET =∵AE EF =,∴()Rt Rt ESF ETA HL ≌△△△∴MEAF 共圆,∴3EAF EFA ∠=∠=∠∵ES FS ⊥,AF FS ⊥,∴ES AF ∥,∴EFA SEF ∠=∠,∴sinSF SEF EF ∠==,cos ES SEF EF ∠== ∴2SE =,4SF =, ∵tan 32SE SM∠==,∴1SM =,∴413MF SF SM =-=-=。
2024-2025学年四川省成都七中育才学校九上数学开学联考模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,菱形的边长为2,∠ABC=45°,则点D 的坐标为()A .(2,2)B .()C .(2)D .()2、(4分)如图,在菱形ABCD 中,AC =,6BD =,E 是BC 边的中点,,P M 分别是,AC AB 上的动点,连接,PE PM ,则PE PM +的最小值是()A .6B .C .D .3、(4分)从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k ,若数k 使得关于x 的分式方程11k x -+=k ﹣2有解,且使关于x 的一次函数y =(k +32)x +2不经过第四象限,那么这6个数中,所有满足条件的k 的值之和是()A .﹣1B .2C .3D .44、(4分)方程x(x +1)=x+1的解是()A .x1=0,x2=-1B.x =1C .x 1=x 2=1D .x 1=1,x 2=-15、(4分)如图,在矩形ABCD 中,动点P 从点B 开始沿B A D C →→→的路径匀速运动到C 点停止,在这个过程中,PBC 的面积S 随时间t 变化的图象大致是()A .B .C .D .6、(4分)熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍的速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为().A .30030021.2x x -=B .30030021.2x x -=+C .30030021.2x x-=D .30030021.2x x-=+7、(4分)多项式2m+4与多项式m 2+4m+4的公因式是()A .m+2B .m ﹣2C .m+4D .m ﹣48、(4分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A .四边形ABCD 由矩形变为平行四边形B .BD 的长度增大C .四边形ABCD 的面积不变D .四边形ABCD 的周长不变二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知点A 是双曲线3y x=在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (90AOB ∠=︒),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.10、(4分)如图,在▱ABCD 中,M 为边CD 上一点,将△ADM 沿AM 折叠至△AD′M 处,AD′与CM 交于点N .若∠B =55°,∠DAM =24°,则∠NMD′的大小为___度.11、(4分)如图,点D ,E 分别在△ABC 的边AB ,AC 上,且∠AED =∠ABC ,若DE =3,BC =6,AB =8,则AE 的长为____.12、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.13、(4分)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD 中,//AB CD ,90CBA ADC ∠=∠=︒,2AB =,5BC =,E 、P 分别在AD 、BC 上,且1DE BP ==,AP 与BE 相交于点H ,CE 与PD 相交于点F .(1)求证:四边形ABCD 为矩形;(2)判断四边形EFPH 是什么特殊四边形?并说明理由;(3)求四边形EFPH 的面积.15、(8分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)根据题干所提供的信息,确定共需租用多少辆汽车?(2)请你给学校选择一种最节省费用的租车方案.16、(8分)如图,平面直角坐标系中,反比例函数y 1=kx的图象与函数y 2=mx 图象交于点A ,过点A 作AB ⊥x 轴于点B ,已知点A 坐标(2,1).(1)求反比例函数解析式;(2)当y 2>y 1时,求x 的取值范围.17、(10分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x 表示时间,y 表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.18、(10分)如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.20、(4分)如图,在ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若40BAE∠=︒,15CEF∠=︒,则D∠的大小为______度.21、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:15x=甲,20.03s=甲;机床乙:15x=乙,20.06s=乙.由此可知:____(填甲或乙)机床性能较好.22、(4分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP 为等腰三角形时,点P的坐标为_______________________________.23、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,平行四边形ABCD 中,点O 是AC 与BD 的交点,过点O 的直线与BA ,DC 的延长线分别交于点E ,F .(1)求证:AOE COF ∆≅∆;(2)连接EC ,AF ,求证:四边形AECF 是平行四边形.25、(10分)如图,在□ABCD 中,∠B =60°.(1)作∠A 的角平分线与边BC 交于点E (用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE 是等边三角形.26、(12分)如图,已知一次函数y 1=ax+b 的图象与x 轴、y 轴分别交于点D 、C ,与反比例函数y 2=xk的图象交于A 、B 两点,且点A 的坐标是(1,3)、点B 的坐标是(3,m ).(1)求一次函数与反比例函数的解析式;(2)求C 、D 两点的坐标,并求△AOB 的面积;(3)根据图象直接写出:当x 在什么取值范围时,y 1>y 2?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】根据坐标意义,点D 坐标与垂线段有关,过点D 向X 轴垂线段DE ,则OE 、DE 长即为点D 坐标.【详解】过点D 作DE ⊥x 轴,垂足为E ,则∠CED=90°,∵四边形ABCD 是菱形,∴AB//CD ,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE ,∴CE=DE ,在Rt △CDE 中,CD=2,CD 2+DE 2=CD 2,∴,∴,∴点D 坐标为(,2),故选B.本题考查了坐标与图形性质、菱形的性质、等腰直角三角形的判定与性质,勾股定理等,正确添加辅助线是解题的关键.2、D 【解析】作点E 关于AC 的对称点E′,过点E′作E′M ⊥AB 于点M ,交AC 于点P ,点P 、M 即为使PE +PM 取得最小值的点,由PE +PM =PE′+PM =E′M 利用S 菱形ABCD =12AC•BD =AB•E′M 求解可得答案.【详解】解:如图,作点E 关于AC 的对称点E′,过点E′作E′M ⊥AB 于点M ,交AC 于点P ,则此时点P 、M 使PE +PM 取得最小值的,其PE +PM =PE′+PM =E′M ,∵四边形ABCD 是菱形,∴点E′在CD 上,∵AC =,BD =6,∴AB ==,由S 菱形ABCD =12AC•BD =AB•E′M 得12×=,解得:E′M =即PE +PM 的最小值是故选:D .本题主要考查菱形的性质和轴对称−最短路线问题,解题的关键是掌握利用轴对称的性质求最短路线的方法.3、B 【解析】首先利用一次函数的性质,求得当k=-1,1,2,3时,关于x 的一次函数y=(k+32)x+2不经过第四象限,再利用分式方程的知识求得当k=-1,3,使得关于x 的分式方程11k x -+=k-2有解,然后再把-1和3相加即可.【详解】解:∵关于x的一次函数y=(k+32)x+2不经过第四象限,∴k+32>0,解得,k>﹣1.5,∵关于x的分式方程11kx-+=k﹣2有解,∴当k=﹣1时,分式方程11kx-+=k﹣2的解是x=1-3,当k=1时,分式方程11kx-+=k﹣2无解,当k=2时,分式方程11kx-+=k﹣2无解,当k=3时,分式方程11kx-+=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.一次函数的性质以及分式方程是本题的考点,根据一次函数的性质及分式方程有解时求出k 的值是解题的关键.4、D【解析】【分析】移项后,利用因式分解法进行求解即可得.【详解】x(x+1)=x+1,x(x+1)-(x+1)=0,(x+1)(x-1)=0,x1=1,x2=-1,故选D.【点睛】本题考查了解一元二次方程,根据方程的特点熟练选取恰当的方法进行求解是关键.5、B【解析】根据三角形的面积可知当P点在AB上时,PBC的面积S随时间t变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,PBC的面积S随时间t变大而变小.【详解】解:当P点在AB上时,PBC的面积S=12BP BC,则PBC的面积S随时间t变大而变大;当P点在AD上时,PBC的面积S=12AB BC,则PBC的面积S不会发生改变;当P点在CD上时,PBC的面积S=12PC BC,则PBC的面积S随时间t变大而变小,且函数图象的斜率应与P点在AB上时相反;综上可得B选项的图象符合条件.故选B.本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.6、C【解析】设熊二的速度为x米/分钟,则熊大的速度为1.2x米/分钟,根据题意可得走过300米,熊大比熊二少用2分钟,列方程即可.【详解】解:设熊二的速度为x米/分钟,则熊大的速度为1.2x米/分钟,根据题意可得:30030021.2x x-=,故选:C.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.7、A【解析】根据公因式定义,对每个多项式整理然后即可选出有公因式的项.【详解】2m+4=2(m+2),m 2+4m+4=(m+2)2,∴多项式2m+4与多项式m 2+4m+4的公因式是(m+2),故选:A .本题考查了公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.8、C 【解析】试题分析:由题意可知,当向右扭动框架时,BD 可伸长,故BD 的长度变大,四边形ABCD 由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD 的周长不变.原来矩形ABCD 的面积等于BC 乘以AB ,变化后平行四边形ABCD 的面积等于底乘以高,即BC 乘以BC 边上的高,BC 边上的高小于AB ,所以四边形ABCD 的面积变小了,故A,B,D 说法正确,C 说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.二、填空题(本大题共5个小题,每小题4分,共20分)9、3y x =-.【解析】设点B 所在的反比例函数解析式为()0k y k x =≠,分别过点A 、B 作AD ⊥x 轴于D ,BE ⊥x 轴于点E ,由全等三角形的判定定理可知△AOD ≌△OBE (ASA ),故可得出OE BE AD OD ⋅=-⋅,即可求得k 的值.【详解】解:设点B 所在的反比例函数解析式为()0k y k x =≠,分别过点A 、B 作AD ⊥x 轴于D ,BE ⊥x 轴于点E ,如图:∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE ,同理可得∠AOD=∠OBE ,在△AOD 和△OBE 中,OAD BOE OA OB AOD OBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOD ≌△OBE (ASA ),∵点B 在第四象限,∴OE BE AD OD ⋅=-⋅,即3k x x x x ⋅=-⋅,解得3k =-,∴反比例函数的解析式为:3y x =-.故答案为3y x =-.本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.10、22.【解析】由平行四边形的性质得出∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性质求出∠AMN=79°,与三角形内角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.【详解】解:∵四边形ABCD 是平行四边形,∴∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,∴∠NMD'=101°-79°=22°;故答案为:22.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AMN 和∠AMD'是解决问题的关键.11、1根据已知条件可知△ADE∽△ACB,再通过两三角形的相似比可求出AE的长.【详解】解:∵∠AED=∠ABC,∠BAC=∠EAD∴△AED∽△ABC∴ A E DE AB CB=又∵DE=3,BC=6,AB=8∴AE=1.12、1.【解析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、1、1、10、10,所以这组数据的中位数为882+=1.故答案为:1.本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.13、1【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=1.故答案是:1.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)8 5(1)由平行线的性质证出∠BCD=90°即可;(2)根据矩形性质得出CD=2,根据勾股定理求出CE 和BE ,求出CE 2+BE 2的值,求出BC 2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP 和AECP ,推出EH//FP ,EF//HP ,推出平行四边形EFPH ,根据矩形的判定推出即可;(3)根据三角形的面积公式求出CF ,求出EF ,根据勾股定理求出PF ,根据面积公式求出即可.【详解】(1)证明:∵AB//CD ,∴∠CBA+∠BCD=180°,∵∠CBA=∠ADC=90°,∴∠BCD=90°,∴四边形ABCD 是矩形;(2)解:四边形EFPH 为矩形;理由如下:∵四边形ABCD 是矩形,∴AD=BC=5,AB=CD=2,AD ∥BC ,由勾股定理得:CE===,同理BE=2,∴CE 2+BE 2=5+20=25,∵BC 2=52=25,∴BE 2+CE 2=BC 2,∴∠BEC=90°,∴△BEC 是直角三角形.∵DE=BP ,DE//BP ,∴四边形DEBP 是平行四边形,∴BE//DP ,∵AD=BC ,AD//BC ,DE=BP ,∴四边形AECP 是平行四边形,∴AP//CE ,∴四边形EFPH 是平行四边形,∵∠BEC=90°,∴平行四边形EFPH 是矩形.(3)解:∵四边形AECP 是平行四边形,∴在Rt △PCD 中,FC ⊥PD ,PC=BC-BP=4,由三角形的面积公式得:12PD•CF=12PC•CD ,∴5=,∴EF=CE-CF=55=,∵855=,∴S 矩形EFPH =EF•PF=85,即:四边形EFPH 的面积是85.本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.15、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车4辆,乙种客车2辆.【解析】(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有1名教师.(2)根据题意设租用甲种客车x 辆,共需费用y 元,则租用乙种客车(6)x -辆,因此可列出方程400280(6)y x x =+-,再利用不等式列出不等式组,即可解得x 的范围,在分类计算费用,选择较便宜的.【详解】解:(1)由使234名学生和6名教师都有座位,租用汽车辆数必需不小于234616453+=辆;每辆汽车上至少要有1名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.(2)设租用甲种客车x 辆,共需费用y 元,则租用乙种客车(6)x -辆.6辆汽车载客人数为[]4530(6)x x +-人400280(6)y x x =+-=1201680x +∴4530(6)24012016802300x x x +-≥⎧⎨+≤⎩解得3146x ≤≤∴4x =,或5x =当4x =时,甲种客车4辆,乙种客车2辆,2160y =当5x =时,甲种客车5辆,乙种客车1辆,2300y =∴最节省费用的租车方案是租用甲种客车4辆,乙种客车2辆.本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.16、(1)反比例函数的解析式为y =2x ;(1)﹣1<x <0或x >1..【解析】(1)利用待定系数法即可解决问题;(1)根据对称性确定点C 坐标,观察图象,y 1的图象在y 1的图象上方的自变量的取值,即为所求.【详解】(1)∵反比例函数y 1=kx 经过点A (1,1),∴k =1,∴反比例函数的解析式为y=2 x;(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.17、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3)张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为370km/min【解析】(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.【详解】解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.(2)2.5-1.5=1(km),所以体育场离文具店1km.(3)65-1=20(min),所以张强在文具店逗留了20min.(4)1.5÷(100-65)=370(km/min),张强从文具店回家的平均速度为370km/min.此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.18、(1)P(103,2);(2)(52,2)或(﹣52,2)【解析】(1)根据已知条件得到C (5,3),设直线OC 的解析式为y =kx ,求得直线OC 的解析式为y =35x ,设P (m ,35m ),根据S △POB =13S 矩形OBCD ,列方程即可得到结论;(2)设点P 的纵坐标为h ,得到点P 在直线y =2或y =﹣2的直线上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,于是得到结论.【详解】(1)如图:∵矩形OBCD 中,OB =5,OD =3,∴C (5,3),设直线OC 的解析式为y =kx ,∴3=5k ,∴k =35,∴直线OC 的解析式为y =35x ,∵点P 在矩形的对角线OC 上,∴设P (m ,35m ),∵S △POB =13S 矩形OBCD ,∴12⨯5×35m =13⨯3×5,∴m =103,∴P (103,2);(2)∵S △POB =13S 矩形OBCD ,∴设点P 的纵坐标为h ,∴12h ×5=133⨯⨯5,∴h =2,∴点P 在直线y =2或y =﹣2上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,∴4=5n ,∴n =45,∴直线OE 的解析式为y =45x ,当y =2时,x =52,∴P (52,2),同理,点P 在直线y =﹣2上,P (52,﹣2),∴点P 的坐标为(52,2)或(﹣52,2).本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P 在位置是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(﹣3,2)【解析】由“士”的位置向右平移减1个单位,在向上平移1个单位,得Array所在位置的坐标为(-3,2),故答案是:(-3,2).20、65【解析】利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.【详解】解:在矩形AEFG中,∠AEF=90°∵∠AEB+∠AEF+∠CEF=180°,∠CEF=15°∴∠AEB=75°∵∠BAE+∠B+∠AEB=180°∠BAE=40°∴∠B=65°∵∠D=∠B∴∠D=65°故答案为65°考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.21、甲【解析】试题解析:∵S2甲<S2乙,∴甲机床的性能较好.点睛:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22、(2,4),(8,4),(7,4),(7.5,4)【解析】分PD=DA ,AD=PA ,DP=PA 三种情况讨论,再根据勾股定理求P 点坐标【详解】当PD=DA 如图:以D 为圆心AD 长为半径作圆,与BD 交P 点,P'点,过P 点作PE ⊥OA 于E 点,过P'点作P'F ⊥OA 于F 点,∵四边形OABC 是长方形,点A 、C 的坐标分别为A (10,0)、C (0,4),∴AD=PD=5,PE=P'F=4∴根据勾股定理得:3=∴P (2,4),P'(8,4)若AD=AP=5,同理可得:P (7,4)若PD=PA ,则P 在AD 的垂直平分线上,∴P (7.5,4)故答案为:(2,4),(8,4),(7,4),(7.5,4)本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.23、4或1【解析】分别利用,当MN ∥BC 时,以及当∠ANM =∠B 时,分别得出相似三角形,再利用相似三角形的性质得出答案.【详解】如图1,当MN ∥BC 时,则△AMN ∽△ABC ,故AM AN MN AB AC BC ==,则3912MN =,解得:MN =4,如图2所示:当∠ANM =∠B 时,又∵∠A =∠A ,∴△ANM ∽△ABC ,∴AM MN AC BC =,即3612MN =,解得:MN =1,故答案为:4或1.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)证明见解析.【解析】(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接EC 、AF ,由AOE COF ≅,得到OE OF =,又AO CO =,所以四边形AECF 是平行四边形.【详解】(1)四边形ABCD 是平行四边形,AO OC ∴=,//AB CD .E F ∴∠=∠.在AOE ∆与COF ∆中,E F AOE COF AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOE COF AAS ∴∆≅∆;(2)如图,连接EC 、AF ,由(1)可知AOE COF ∆≅∆,OE OF ∴=,AO CO =,∴四边形AECF 是平行四边形.本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.25、(1)见解析;(1)见解析【解析】(1)作∠A 的角平分线与边BC 交于点E 即可;(1)根据平行四边形的性质即可证明△ABE 是等边三角形.【详解】解:(1)如图(1)如图,∵四边形ABCD 是平行四边形,∴//AD BC ,∴∠1=∠1.∵AE 平分∠BAD ,∴∠1=∠3,∴∠1=∠3,∴AB =EB .∵∠B =60°,∴△ABE 是等边三角形.本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.26、(1)y 1=3x ,y 1=﹣x +4;(1)4;(3)当x 满足1<x <3、x <2时,则y 1>y 1.【解析】(1)把点A (1,3)代入y 1=x k,求出k ,得到反比例函数的解析式;再把B (3,m )代入反比例函数的解析式,求出m ,得到点B 的坐标,把A 、B 两点的坐标代入y 1=ax+b ,利用待定系数法求出一次函数的解析式;(1)把x=2代入一次函数解析式,求出y 1=4,得到C 点的坐标,把y 1=2代入一次函数解析式,求出x=4,得到D 点坐标,再根据S △AOB =S △AOD -S △BOD ,列式计算即可;(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A (1,3)代入y 1=x k ,则3=1k ,即k =3,故反比例函数的解析式为:y 1=3x .把点B 的坐标是(3,m )代入y 1=3x ,得:m =33=1,∴点B 的坐标是(3,1).把A (1,3),B (3,1)代入y 1=ax+b ,得a b 331a b +=⎧⎨+=⎩,解得a 14b =-⎧⎨=⎩,故一次函数的解析式为:y 1=﹣x+4;(1)令x =2,则y 1=4;令y 1=2,则x =4,∴C (2,4),D (4,2),∴S △AOB =S △AOD ﹣S △BOD =12×4×3﹣12×4×1=4;本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.。
四川省成都市锦江区成都市七中育才学校2023-2024学年九年级上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....下列方程中,是关于的一元二次方程的是()x+2x=1.x(x+3)=x3+2x=02x2+xy﹣3.下列等式从左边到右边的变形,属于因式分解的是(ax ay++26m m-+.一元二次方程.有两个相等的实数根.只有一个实数根b,c,d是成比例线段,若3cm.化简2xx-⎛÷⎝2xx+.如图,正比例函数,点P的纵坐标为A.2x>8.如图,在平行四边形CD的中点,连接OEA.10B.14C.16D.20二、填空题12.如图,在平面直角坐标系将墨汁滴到点B的坐标上,已知坐标为.中,13.如图,在ABC1AB的长为半径画弧,两弧相交于点2长为.三、解答题(1)画出ABC 关于原点O 成中心对称的△(2)画出ABC 绕点O 按逆时针方向旋转90(3)根据(1)(2)画出的图形,求出1AA A 16.数形结合是解决数学问题的重要思想方法,在学习观、形象的几何模型来求解.下面共有三种卡片:卡片是长为y ,宽为x 的长方形;C 型卡片是边长为(1)用1张A 型卡片,2张B 型卡片拼成如图分解的结果为______.(2)请用1张A 型卡片,2张B 型卡片,1张C 型卡片拼成一个大正方形,在图2的虚线框中画出正方形的示意图,再据此写出一个多项式的因式分解.17.如图,在ABCD Y 中,点E ,F 在对角线AC 上,且AF CE =,连接BE ,DE ,BF ,DF .(1)求证:四边形BEDF 是平行四边形;(2)若80BAC ∠=︒,AB AF =,DC DF =,求EBF ∠的度数.18.如图1,在ABC 中,AC BC =,120ACB ∠=︒,点D 是边AB 上一动点,将线段CD 绕点C 逆时针旋转120︒得到CE ,连接BE .(1)求CBE ∠的度数;(2)连接AE ,若4AD =,30ACD ∠=︒,求线段AE 的长;(3)如图2,若2AD AC BD ==,,点M 为CD 中点,AM 的延长线与BC 交于点P ,与BE 交于点N ,求线段BN 的长.四、填空题五、解答题21.如图1,在平面直角坐标系xOy 中,直线y kx b =+分别与x 轴,y 轴交于点(1,0)A -,(0,2)B ,过点(2,0)C 作x 轴的垂线,与直线AB 交于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与x 轴交于点F .i )若BDF V 的面积为8,求点F 的坐标;ii )如图2,当点F 在x 轴正半轴上时,将直线BF 绕点B 逆时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.。
2019-2020学年四川省成都七中育才学校九年级(上)开学数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,答案涂在答题卡上)1.(3分)育才校园文化博大精深,以下是“育”、“才”、“水”、“井”四字的甲骨文,其中是中心对称,但非轴对称图形的是()A.B.C.D.2.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=a(a+)3.(3分)如图,菱形ABCD的对角线AC、BD的长分别为8和6,则这个菱形的周长是()A.20B.24C.40D.484.(3分)若分式的值为0,则x等于()A.1B.1或﹣3C.﹣1或1D.﹣15.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9B.(x+4)2=﹣7C.(x+4)2=25D.(x+4)2=76.(3分)将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)7.(3分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=33°,把△ABC绕点A按顺时针方向旋转∠BAC 的大小,得到△AB′C′,延长BC交B′C′于点D,则∠BDC′等于()A.147°B.143°C.157°D.153°8.(3分)如图,将两块完全相同的矩形纸片ABCD和矩形纸片AEFG按图示方式放置(点A、D、E在同一直线上),连接AC、AF、CF,已知AD=3,DC=4,则CF的长是()A.5B.7C.5D.109.(3分)如图,已知AB∥CD∥EF,AD:AF=3:5,BC=6,CE的长为()A.2B.4C.3D.510.(3分)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()A.B.C.D.二、填空题(本大题共4小题,每小题4分,满分16分)11.(4分)已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为.12.(4分)已知x2﹣2xy=6,2y2﹣xy=5.则x2﹣4y2=.13.(4分)已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,正方形CEDF按如图所示的方式放置,则该正方形的边长为.三、解答题(本大题共6小题,满分54分)15.(10分)(1)解方程:x(2x﹣3)+(3﹣2x)2=0(2)解分式方程:16.(12分)(1)解不等式组,将解集在数轴是表示出来,并写出其最小整数集.(2)化简:(),并从2,3,4中取一个合适的数作为a的值代入求值.17.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点上,点A的坐标为(2,3),点B的坐标为(3,0),点C的坐标为(0,2).(1)以点C为旋转中心,将△ABC旋转180°后得到△A1B1C1,请画出△A1B1C1;(2)平移△ABC,使点A的对应点A2的坐标为(0,﹣1),请画出△A2B2C2.(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,则点P的坐标为.18.(8分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳.面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进手机壳按同一价格销售,全部售完后,为使得获利不少于2000元,那么销售单价至少为多少?19.(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,延长BC到F,使得CF =BC,连接CD、EF.(1)求证:四边形CDEF为平行四边形;(2)若四边形CDEF的周长是32,AC=16,求△ABC的面积;(3)在(2)的条件下,求点F到直线CD的距离.20.(10分)如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.一、填空题(每小题4分,共20分)21.(4分)若关于x的分式方程=2a有增根,则a的值为.22.(4分)已知x2+y2=3,xy=,则(﹣)÷的值为.23.(4分)若直线l1:y1=k1x+b1经过点(0,2),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.24.(4分)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,A n B n∁n A n+1,…按如图所示的方式放置,点A1,A2,A3,…,A n,…和点B1,B2,B3,…,B n,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C3的坐标是,∁n的坐标是.25.(4分)如图,AC,BD在AB的同侧,AC=1,BD=4,AB=4,点M为AB的中点,若∠CMD=120°,则CD的最大值是.二、解答题(共30分)26.(8分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划把68吨有机化肥运送到果园,为节省时间需要在一天之内运完.货运站有甲、乙两种货车,果农决定租用甲、乙两种货车共18辆,两种型号的货车的运输量和租金如下表(所租用货车都按一整天收费):型号甲乙每辆每天运输量(吨)53每辆每天租金(元)400300(1)求所付的货车租金总费用y(元)与租用甲型货车数量x(辆)的函数关系式;(2)请你帮该果农设计一种使租金总费用最少的方案,并求出所付的最少租金.27.(10分)在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF的中点Q 的运动路径长.28.(12分)如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E (1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由。
一、选择题1.(0分)[ID:11127]已知4A纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则4A纸的高度约为()A.29.7cm B.26.7cm C.24.8cm D.无法确定2.(0分)[ID:11126]已知一次函数y1=x-1和反比例函数y2=2x的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>0 3.(0分)[ID:11107]如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1B.1C.12-D.124.(0分)[ID:11104]如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.125.(0分)[ID:11099]已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512BC D.BC=512AC6.(0分)[ID :11092]在△ABC 中,若|cosA −12|+(1−tanB)2=0,则∠C 的度数是( ) A .45°B .60°C .75°D .105° 7.(0分)[ID :11083]如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:98.(0分)[ID :11070]河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米9.(0分)[ID :11064]如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 10.(0分)[ID :11050]如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm (如箭头所示),则木桩上升了( )A .8tan20°B .C .8sin20°D .8cos20°11.(0分)[ID :11049]如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .912.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2513.(0分)[ID:11044]如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.105 m B.(105 1.5)mC.11.5m D.10m14.(0分)[ID:11034]下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个15.(0分)[ID:11059]如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.2C.823D.2二、填空题16.(0分)[ID :11203]如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.17.(0分)[ID :11201]“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.18.(0分)[ID :11189]一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.19.(0分)[ID :11173]如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.20.(0分)[ID :11164]已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 21.(0分)[ID :11158]如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC=______.22.(0分)[ID :11147]如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.23.(0分)[ID :11226]如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.24.(0分)[ID :11191]已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.25.(0分)[ID :11222]如果a c e b d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____.三、解答题26.(0分)[ID :11324]如图,一次函数y =mx +5的图象与反比例函数y =k x (k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A 作y 轴的垂线,垂足为M.(1)求一次函数和反比例函数的解析式;(2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使PA +PB 最小.27.(0分)[ID:11300]如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E 为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.28.(0分)[ID:11291]如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.29.(0分)[ID:11285]如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O为位似中心,位似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1,并直接写出C1点的坐标;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.30.(0分)[ID:11283]如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.A4.D5.D6.C7.A8.B9.D10.A11.C12.A13.C14.D15.C二、填空题16.-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=的图象中任取一点过这一个点向x轴和y轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k|17.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴18.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA 的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E19.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值20.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)21.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键22.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:223.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题24.4【解析】∵线段b是ac的比例中项∴解得b=±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去 25.3【解析】∵=k ∴a=bkc=dke=fk ∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】 设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似,∴21=212x x 解得21229.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 2.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2, 那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题3.A解析:A【解析】【分析】连接OC 、OB ,如图,由于BC ∥x 轴,根据三角形面积公式得到S △ACB =S △OCB ,再利用反比例函数系数k 的几何意义得到12×|3|+12•|k|=2,然后解关于k 的绝对值方程可得到满足条件的k 的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.D解析:D 【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.5.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;∴AC=12AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .7.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.8.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.10.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 11.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE12.A解析:A【解析】【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2,故选A . 【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.13.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.14.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .15.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题16.-3【解析】【分析】根据比例系数k 的几何含义:在反比例函数y=的图象中任取一点过这一个点向x 轴和y 轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC 的面积为3∴|k|解析:-3【解析】【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3. 又∵点A 在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.17.05【解析】∵EG ⊥ABFH ⊥ADHG 经过A 点∴FA ∥EGEA ∥FH ∴∠HFA =∠AEG =90°∠FHA =∠EAG ∴△GEA ∽△AFH ∴∵AB =9里DA =7里EG =15里∴FA =35里EA =45里∴解析:05【解析】∵EG ⊥AB ,FH ⊥AD ,HG 经过A 点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.18.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E 解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.19.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 20.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.21.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.22.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2 解析:3:2【解析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.23.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l∥2l∥3l,∴36 DE ABEF BC==又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.24.4【解析】∵线段b是ac的比例中项∴解得b=±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】 ∵a c e b d f===k ,∴a=bk,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题26.(1)y=4x;y =-x +5(2)2(3)(0,175) 【解析】 分析:(1)根据待定系数法分别求出反比例函数与一次函数解析式即可;(2)根据反比例函数的性质,xy=k <直接求出面积即可;(3)作点A 关于y 轴的对称点N ,则N (-1,4),连接BN 交y 轴于点P ,点P 即为所求.详解:(1)将B (4,1)代入y =k x 得:1=4k , ∴k=4,∴y =4x, 将B (4,1)代入y=mx+5,得:1=4m+5,∴m=-1,∴y=-x+5,(2)在y =4x 中,令x=1, 解得y=4,∴A(1,4),∴S=12×1×4=2,(6分)(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由414k bk b==+⎧⎨-+⎩,得35175kb⎧-⎪⎪⎨⎪⎪⎩==,∴y=−35x+175,∴P(0,175)点睛:此题主要考查了待定系数法求一次函数与反比例函数解析式以及作对称点问题,根据已知得出对称点是解决问题的关键.27.(1)见解析(2)见解析(3)AC7 AF4=.【解析】【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD.(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=12AB=AE,从而可证得∠DAC=∠ECA,得到CE∥AD.(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得AFCF的值,从而得到ACAF的值.【详解】解:(1)证明:∵AC平分∠DAB ∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴AD AC AC AB=即AC2=AB•AD.(2)证明:∵E为AB的中点∴CE=12AB=AE∴∠EAC=∠ECA.∵∠DAC=∠CAB ∴∠DAC=∠ECA ∴CE∥AD.(3)∵CE∥AD∴△AFD∽△CFE∴AD AF CE CF=.∵CE=12AB∴CE=12×6=3.∵AD=4∴4AF 3CF =∴AC7 AF4=.28.(1)6yx=(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.29.(1)图见解析,C1(-6,4);(2)D1(2a,2b).【解析】【分析】(1)连接OB并延长,使BB1=OB,连接OA并延长,使AA1=OA,连接OC并延长,使CC1=OC,确定出△A1B1C1,并求出C1点坐标即可;(2)根据A与A1坐标,B与B1坐标,以及C与C1坐标的关系,确定出变化后点D的对应点D1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C1的坐标为(-6,4);(2)变化后D的对应点D1的坐标为:(2a,2b).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.30.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-4 3 .【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为4yx=,∵A(4,m),∴m=44=1;(2)∵当x=﹣3时,y=﹣43;当x=﹣1时,y=﹣4,又∵反比例函数4yx=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣43.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.。
2018-2019学年九年级(下)开学数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程x2﹣x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根2.(3分)某几何体的三视图如图,则该几何体是()A.圆柱B.圆锥C.长方体D.三棱柱3.(3分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°4.(3分)将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1 B.y=(x﹣4)2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 5.(3分)下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角6.(3分)如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.B.C.D.7.(3分)如图是一个反比例函数的图象,它的表达式可能是()A.y=x2B.C.D.8.(3分)二次函数y=x2﹣2x,若点A(﹣1,y1),B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定9.(3分)如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③10.(3分)在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4二、填空题(共4小题,每小题4分,满分16分)11.(4分)方程x2﹣3x=0的根为.12.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是.13.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD 的长为.14.(4分)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.三、解答题(共6小题,满分48分)15.(6分)(1)计算;(2)解不等式.16.(6分)解方程:﹣=1.17.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.18.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)19.(10分)如图,直线y=ax﹣4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,﹣2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.20.(10分)如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.22.(4分)如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=.23.(4分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.24.(4分)如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于.25.(4分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O 的运动过程中,线段FG的长度的最小值为.五、解答题(共3小题,满分30分)26.(8分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)27.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.28.(12分)如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,B,抛物线y=﹣x2+bx+c经过点A,B,点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值;(3)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共诸点”.直接写出E、F、P三点成为“共诸点”时m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程x2﹣x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】把a=1,b=﹣1,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣1,c=3,∴△=b2﹣4ac=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根.故选:C.2.(3分)某几何体的三视图如图,则该几何体是()A.圆柱B.圆锥C.长方体D.三棱柱【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,∵俯视图是一个圆,∴该几何体是一个圆柱;故选:A.3.(3分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°【分析】根据圆周角定理解答.【解答】解:∵OA⊥OB,∴∠AOB=90°,由圆周角定理得,∠ACB=∠AOB=45°,故选:D.4.(3分)将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1 B.y=(x﹣4)2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 【分析】先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣4x+1=(x2﹣4x+4)+1﹣4=(x﹣2)2﹣3.所以把二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为:y=(x﹣2)2﹣3.故选:C.5.(3分)下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【解答】解:A、任意画两个直角三角形,这两个三角形相似是随机事件;B、相似三角形的对应角相等是必然事件;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件;D、直径所对的圆周角为直角是必然事件;故选:A.6.(3分)如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.B.C.D.【分析】过P作PN⊥x轴于N,PM⊥y轴于M,根据点P的坐标求出PN和ON,解直角三角形求出即可.【解答】解:过P作PN⊥x轴于N,PM⊥y轴于M,则∠PMO=∠PNO=90°,∵x轴⊥y轴,∴∠MON=∠PMO=∠PNO=90°,∴四边形MONP是矩形,∴PM=ON,PN=OM,∵P(4,3),∴ON=PM=4,PN=3,∴tanα==,故选:C.7.(3分)如图是一个反比例函数的图象,它的表达式可能是()A.y=x2B.C.D.【分析】根据反比例函数的图象在二四象限,可以得到k<0即可.【解答】解:∵函数是反比例函数,且双曲线在二四象限,∴k<0,故解析式s满足k<0的双曲线即可,故选:B.8.(3分)二次函数y=x2﹣2x,若点A(﹣1,y1),B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】分别计算自变量为﹣1、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣1时,y1=x2﹣2x=3;当x=2时,y2=x2﹣2x=0;∵3>0,∴y1>y2,故选:C.9.(3分)如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③【分析】根据有两组角对应相等的两个三角形相似对①进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似对②③进行判断.【解答】解:∵∠DAE=∠BAC,∴当ADE=∠C时,△ADE∽△ACB;当=时,△ADE∽△ACB.故选:C.10.(3分)在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【分析】先确定y2的二次项系数为1,然后根据二次项系数的绝对值大,图象开口反而小即可得出结论.【解答】解:由图象可知:开口都是向上,二次项系数都大于0,函数y1的开口最大,大于y2,函数y3的开口小于y2,函数y4的开口等于y2∵抛物线y2的顶点为(0,﹣1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2﹣1,则二次项的系数为1,故解析式中的二次项系数一定小于1的是y1故选:A.二、填空题(共4小题,每小题4分,满分16分)11.(4分)方程x2﹣3x=0的根为x1=0,x2=3 .【分析】根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.12.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .【分析】因为(﹣1,2)在函数图象上,k=xy,从而可确定k的值.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.13.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD的长为4.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠B=60°,可求出CE的长,然后由AB⊥CD,可求得CE的长,又由垂径定理,求得答案.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,∴∠A=30°,∴∠EOC=60°,∴∠OCE=30°∵AO=OC=4,∴OE=OC=2,∴CE==2,∵直径AB垂直于弦CD,∴CE=DE,∴CD=2CE=4,故答案为:4.14.(4分)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点能(填“能”或“不能”)画一个圆,理由是因为这三点不在一条直线上.【分析】先设出过其中两点的函数的解析式,把(0,﹣2),(1,﹣1)代入求出其解析式,再把(2.17,0.37)代入解析式看是否与(0,﹣2),(1,﹣1)在同一条直线上.然后根据不在同一直线上的三点确定一个圆即可求解.【解答】解:设经过(0,﹣2),(1,﹣1)的直线解析式为y=kx+b,则,解得.所以经过(0,﹣2),(1,﹣1)的直线解析式为y=x﹣2;当x=2.17时,y=2.17﹣2=0.17≠0.37,所以点(2.17,0.37)不在经过(0,﹣2),(1,﹣1)的直线上,即三点:(0,﹣2),(1,﹣1),(2.17,0.37)不在同一直线上,所以过这三个点能画一个圆.故答案为能,因为这三点不在一条直线上.三、解答题(共6小题,满分48分)15.(6分)(1)计算;(2)解不等式.【分析】(1)根据特殊角的三角函数值、零指数幂的意义,绝对值的意义得到原式=4×+1﹣2﹣1,然后合并即可.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=4×+1﹣2﹣1=2+1﹣2﹣1=0;(2).由①得x>﹣4,由②得x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)解方程:﹣=1.【分析】观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.17.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为=.18.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)【分析】在直角三角形DPA中,利用锐角三角函数定义表示出AD,在直角三角形DPB中,利用锐角三角函数定义表示出BD,由DB﹣AD表示出AB,进而求出所求即可.【解答】解:在Rt△DPA中,∵tan∠DPA=,∴AD=PD•tan∠DPA,在Rt△DPB中,∵tan∠DPB=,∴BD=PD•tan∠DPB,∴AB=BD﹣AD=PD•(tan∠DPB﹣tan∠DPA),∵AB=5.6,∠DPB=53°,∠DPA=18°,即5.6=(tan53°﹣tan18°)•PD,∴PD==5.6,则此时观光船到大桥AC段的距离PD的长为5.6千米.19.(10分)如图,直线y=ax﹣4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,﹣2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.【分析】(1)把点A的坐标分别代入直线y=ax﹣4与双曲线y=,求出k和a的值即可;(2)将直线y=ax+b代入y=,整理得出关于x的一元二次方程,根据根的判别式△>0即可得出结果.【解答】解:(1)∵直线y=ax﹣4与双曲线y=只有一个公共点A(1,﹣2),∴,解得:,故k=﹣2,a=2;(2)若直线y=2x+b(a≠0)与双曲线y=﹣有两个公共点,则方程组有两个不同的解,即2x+b=﹣有两个不相等的解,整理得:2x2+bx+2=0,△=b2﹣16>0,解得:b<﹣4,或b>4.20.(10分)如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.【分析】(1)根据同弧所对的圆周角相等和三角形外角的性质及角平分线定义可得结论;(2)先根据同弧所对的圆周角相等和圆周角定理得:∠CFB=∠CBN,再由外角的性质得:∠CNB=∠CBE=∠CDE,并由(1)知:∠CNB=∠AND=∠CED,得∠CDE=∠CED,根据等角对等边可得结论;(3)如图3,先作辅助线,构建全等三角形,证明△CMB≌△CKB,得BM=BK,可得BM =2,利用勾股定理求BC=2,和CM=6,再作辅助线,构建全等三角形,证明△CGH ≌△FHB,设FM=x,根据三角函数可得x的值,证明△CBF∽△EDF(可以用正切值相等),列比例式,作EQ⊥DF交DF于点Q,设FQ=3k,EQ═6k,在Rt△PDB中,根据勾股定理列方程得:PB2+PD2=DB2,解出可得结论.【解答】(1)证明:如图1,连接BE.∵∠CED=∠CEB+∠DEB,∠AND=∠CAB+∠ACD,…(1分);∵CD是∠ACB的平分线,∴∠ACD=∠BCD=∠DEB,∵∠CAB=∠CEB,…(2分)∴∠CAB+∠ACD=∠CEB+∠DEB,即∠CED=∠AND;…(3分)(2)如图2,∵2∠BDC=90﹣∠DBE,∴∠BDC+∠DBE=90°﹣∠BDC=∠CFB,∵∠BDC=∠BAC,∵AB是直径,∴∠ACB=90,∴∠BAC+∠CBN=90°,∴∠CBN=90°﹣∠BAC=90°﹣∠BDC,∴∠CFB=∠CBN,…(4分)∴∠CFB+∠ABE=∠CBN+∠ABE,∴∠CNB=∠CBE=∠CDE,由(1)知:∠CNB=∠AND=∠CED,∴∠CDE=∠CED,…(5分);∴CE=CD…(6分);(3)如图3,过C作CM⊥BE,CK⊥DB,∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD,∴△CEM≌△CDK,∴EM=DK,CM=CK,∴△CMB≌△CKB,∴BM=BK,∴BE﹣BD=BM+EM﹣BD=BM+DK﹣BD=BM+BK=2BM=4,BM=2,Rt△BCM中,∵BC=2,∴CM===6…(7分);作FH⊥BC于点H,FH交CM于点G,∵∠FCB=45°,CH=FH,∴△CGH≌△FHB,∴CG=BF,设FM=x,∴CG=BF=x+2,GM=6﹣(x+2)=4﹣x,tan∠GFM=tan∠MCB==,∴x=3,FM=3,CF=3…(1分);∵△CBF∽△EDF(可以用正切值相等),∴,作EQ⊥DF交DF于点Q,设FQ=3k,EQ═6k,则DQ=2k,EF=3k,DE=2k,∴BE=5+3k,BD=BE﹣4=3k+1,作DP⊥BE交于点P,∵∠PED=∠BCD=45°,∴PD=PE=DE=2k,PB=BE﹣PE=5+k…(8分);在Rt△PDB中,PB2+PD2=DB2,即(5+k)2+(2k)2=(3k+1)2,∴k=,∴DF=5k=3=CF,BD=3k+1=10,…(9分);∴OF⊥CD,连接OD,∴∠AOD=∠BOD=90°,∴OD=BD=5,在Rt△ODF中,OF2=OD2﹣DF2=50﹣45=5,∴OF=…(10分);四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣1 .【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+xx2,然后利用整体代入的方法计算;1【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.22.(4分)如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=3:2 .【分析】由AG∥BC,推出△AGF∽△BDF,推出==,设AG=3k,BD=5k,可得CD=2k,由AG∥CD,推出△AGE∽△CDE,可得===.【解答】解:∵AG∥BC,∴△AGF∽△BDF,∴==,设AG=3k,BD=5k,∵=,∴=∴CD=2k,∵AG∥CD,∴△AGE∽△CDE,∴===,故答案为3:2.23.(4分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.24.(4分)如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于3.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故答案为:3.25.(4分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙O 的运动过程中,线段FG的长度的最小值为﹣1 .【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.五、解答题(共3小题,满分30分)26.(8分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利 1 元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)【分析】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),即可求解;(2)点(3,5)、(6,3)为一次函数上的点,求得直线的表达式为:y1=﹣x+7;同理,抛物线的表达式为:y2=﹣(x﹣6)2+1,故:y1﹣y2=﹣x+7+(x﹣6)2﹣1=﹣(x﹣5)2+,即可求解.【解答】解:(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),故:答案为1;(2)设直线的表达式为:y1=kx+b(k≠0),把点(3,5)、(6,3)代入上式得:,解得:,∴直线的表达式为:y1=﹣x+7;设:抛物线的表达式为:y2=a(x﹣m)2+n,∵顶点为(6,1),则函数表达式为:y2=a(x﹣6)2+1,把点(3,4)代入上式得:4=a(3﹣6)2+1,解得:a=,则抛物线的表达式为:y2=(x﹣6)2+1,∴y1﹣y2=﹣x+7﹣(x﹣6)2﹣1=﹣x2+x﹣6,∵﹣<0,∴x=5时,函数取得最大值,故:5月销售这种多肉植物,单株获利最大.27.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为α.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A 为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F 三点共线时,BF最长,根据等腰三角形的性质和勾股定理可求,OH=HC,BH=3HC,即可求tan∠FBC的值.【解答】证明:(1)①如图1,连接DA,并延长DA交BC于点M,∵点C关于直线l的对称点为点D,∴AD=AC,且AB=AC,∴AD=AB=AC,∴点B,C,D在以点A为圆心,AB为半径的圆上②∵AD=AB=AC∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=故答案为:α(2)如图2,连接CE,∵∠BAC=60°,AB=AC∴△ABC是等边三角形∴BC=AC,∠ACB=60°,∵∠BDC=∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,∵在△BOF中,BO+OF≥BC∴当点O,点B,点F三点共线时,BF最长,如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC,∴BC=AC,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴OC=HC,∵点O是AC中点,∴AC=2HC,∴BC=4HC,∴BH=BC﹣HC=3HC∴tan∠FBC==28.(12分)如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,B,抛物线y=﹣x2+bx+c经过点A,B,点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值;(3)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共诸点”.直接写出E、F、P三点成为“共诸点”时m的值.【分析】(1)交x轴,y轴于点A,B,求出点A、B的坐标,即c=2,则抛物线表达式为:y=﹣x2+bx+2,将点A的坐标代入上式,即可求解;(2)①当∠EBF为直角时,则tan∠BEF=,则BE2=4BF2,②当∠BEF为直角时,则EF=BE,即可求解;(3)分点P在y轴左侧、点P在y轴右侧两种情况,分别求解即可.【解答】解:(1)直线分别交x轴,y轴于点A,B,则点A、B的坐标分别为(4,0)、(0,2),即c=2,则抛物线表达式为:y=﹣x2+bx+2,将点A的坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2;(2)tan∠OAB==,点P的横坐标为m,则点E、F的坐标分别为:(m,﹣m2+m+2)、(m,﹣m+2),①当∠EBF为直角时,以B、E、F为顶点的三角形与△FPA相似,则∠BEF=∠OAB,则tan∠BEF=,则BE2=4BF2,即:m2+(﹣m2+m+2m﹣2)2=4[m2+(﹣m+2﹣2)2],解得:m=或(舍去);②当∠BEF为直角时,则EF=BE,同理可得:m =;综上,m=或;(3)点P的横坐标为m,则点E、F 的坐标分别为:(m,﹣m2+m +2)、(m,﹣m+2),①当点P在y轴左侧时,即m≤0,则点E、P可能是中点,当点E 是中点时,由中点公式得:2(﹣m2+m+2)=m﹣m+2,解得:m=(不合题意的值已舍去),当点P是中点时,同理可得:m=;②当点P在y轴右侧时,则点F是中点,同理可得:m =;综上,m=或或.31。
2018-2019学年九年级(下)开学数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程x2﹣x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根2.(3分)某几何体的三视图如图,则该几何体是()A.圆柱B.圆锥C.长方体D.三棱柱3.(3分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°4.(3分)将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1 B.y=(x﹣4)2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 5.(3分)下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角6.(3分)如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.B.C.D.7.(3分)如图是一个反比例函数的图象,它的表达式可能是()A.y=x2B.C.D.8.(3分)二次函数y=x2﹣2x,若点A(﹣1,y1),B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定9.(3分)如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③10.(3分)在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4二、填空题(共4小题,每小题4分,满分16分)11.(4分)方程x2﹣3x=0的根为.12.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是.13.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD 的长为.14.(4分)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.三、解答题(共6小题,满分48分)15.(6分)(1)计算;(2)解不等式.16.(6分)解方程:﹣=1.17.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.18.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)19.(10分)如图,直线y=ax﹣4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,﹣2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.20.(10分)如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.22.(4分)如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=.23.(4分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.24.(4分)如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于.25.(4分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O 的运动过程中,线段FG的长度的最小值为.五、解答题(共3小题,满分30分)26.(8分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)27.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.28.(12分)如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,B,抛物线y=﹣x2+bx+c经过点A,B,点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值;(3)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共诸点”.直接写出E、F、P三点成为“共诸点”时m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程x2﹣x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】把a=1,b=﹣1,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣1,c=3,∴△=b2﹣4ac=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根.故选:C.2.(3分)某几何体的三视图如图,则该几何体是()A.圆柱B.圆锥C.长方体D.三棱柱【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,∵俯视图是一个圆,∴该几何体是一个圆柱;故选:A.3.(3分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°【分析】根据圆周角定理解答.【解答】解:∵OA⊥OB,∴∠AOB=90°,由圆周角定理得,∠ACB=∠AOB=45°,故选:D.4.(3分)将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1 B.y=(x﹣4)2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 【分析】先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣4x+1=(x2﹣4x+4)+1﹣4=(x﹣2)2﹣3.所以把二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为:y=(x﹣2)2﹣3.故选:C.5.(3分)下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【解答】解:A、任意画两个直角三角形,这两个三角形相似是随机事件;B、相似三角形的对应角相等是必然事件;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件;D、直径所对的圆周角为直角是必然事件;故选:A.6.(3分)如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.B.C.D.【分析】过P作PN⊥x轴于N,PM⊥y轴于M,根据点P的坐标求出PN和ON,解直角三角形求出即可.【解答】解:过P作PN⊥x轴于N,PM⊥y轴于M,则∠PMO=∠PNO=90°,∵x轴⊥y轴,∴∠MON=∠PMO=∠PNO=90°,∴四边形MONP是矩形,∴PM=ON,PN=OM,∵P(4,3),∴ON=PM=4,PN=3,∴tanα==,故选:C.7.(3分)如图是一个反比例函数的图象,它的表达式可能是()A.y=x2B.C.D.【分析】根据反比例函数的图象在二四象限,可以得到k<0即可.【解答】解:∵函数是反比例函数,且双曲线在二四象限,∴k<0,故解析式s满足k<0的双曲线即可,故选:B.8.(3分)二次函数y=x2﹣2x,若点A(﹣1,y1),B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】分别计算自变量为﹣1、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣1时,y1=x2﹣2x=3;当x=2时,y2=x2﹣2x=0;∵3>0,∴y1>y2,故选:C.9.(3分)如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③【分析】根据有两组角对应相等的两个三角形相似对①进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似对②③进行判断.【解答】解:∵∠DAE=∠BAC,∴当ADE=∠C时,△ADE∽△ACB;当=时,△ADE∽△ACB.故选:C.10.(3分)在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【分析】先确定y2的二次项系数为1,然后根据二次项系数的绝对值大,图象开口反而小即可得出结论.【解答】解:由图象可知:开口都是向上,二次项系数都大于0,函数y1的开口最大,大于y2,函数y3的开口小于y2,函数y4的开口等于y2∵抛物线y2的顶点为(0,﹣1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2﹣1,则二次项的系数为1,故解析式中的二次项系数一定小于1的是y1故选:A.二、填空题(共4小题,每小题4分,满分16分)11.(4分)方程x2﹣3x=0的根为x1=0,x2=3 .【分析】根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.12.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .【分析】因为(﹣1,2)在函数图象上,k=xy,从而可确定k的值.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.13.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD的长为4.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠B=60°,可求出CE的长,然后由AB⊥CD,可求得CE的长,又由垂径定理,求得答案.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,∴∠A=30°,∴∠EOC=60°,∴∠OCE=30°∵AO=OC=4,∴OE=OC=2,∴CE==2,∵直径AB垂直于弦CD,∴CE=DE,∴CD=2CE=4,故答案为:4.14.(4分)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点能(填“能”或“不能”)画一个圆,理由是因为这三点不在一条直线上.【分析】先设出过其中两点的函数的解析式,把(0,﹣2),(1,﹣1)代入求出其解析式,再把(2.17,0.37)代入解析式看是否与(0,﹣2),(1,﹣1)在同一条直线上.然后根据不在同一直线上的三点确定一个圆即可求解.【解答】解:设经过(0,﹣2),(1,﹣1)的直线解析式为y=kx+b,则,解得.所以经过(0,﹣2),(1,﹣1)的直线解析式为y=x﹣2;当x=2.17时,y=2.17﹣2=0.17≠0.37,所以点(2.17,0.37)不在经过(0,﹣2),(1,﹣1)的直线上,即三点:(0,﹣2),(1,﹣1),(2.17,0.37)不在同一直线上,所以过这三个点能画一个圆.故答案为能,因为这三点不在一条直线上.三、解答题(共6小题,满分48分)15.(6分)(1)计算;(2)解不等式.【分析】(1)根据特殊角的三角函数值、零指数幂的意义,绝对值的意义得到原式=4×+1﹣2﹣1,然后合并即可.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=4×+1﹣2﹣1=2+1﹣2﹣1=0;(2).由①得x>﹣4,由②得x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)解方程:﹣=1.【分析】观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.17.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为=.18.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)【分析】在直角三角形DPA中,利用锐角三角函数定义表示出AD,在直角三角形DPB中,利用锐角三角函数定义表示出BD,由DB﹣AD表示出AB,进而求出所求即可.【解答】解:在Rt△DPA中,∵tan∠DPA=,∴AD=PD•tan∠DPA,在Rt△DPB中,∵tan∠DPB=,∴BD=PD•tan∠DPB,∴AB=BD﹣AD=PD•(tan∠DPB﹣tan∠DPA),∵AB=5.6,∠DPB=53°,∠DPA=18°,即5.6=(tan53°﹣tan18°)•PD,∴PD==5.6,则此时观光船到大桥AC段的距离PD的长为5.6千米.19.(10分)如图,直线y=ax﹣4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,﹣2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.【分析】(1)把点A的坐标分别代入直线y=ax﹣4与双曲线y=,求出k和a的值即可;(2)将直线y=ax+b代入y=,整理得出关于x的一元二次方程,根据根的判别式△>0即可得出结果.【解答】解:(1)∵直线y=ax﹣4与双曲线y=只有一个公共点A(1,﹣2),∴,解得:,故k=﹣2,a=2;(2)若直线y=2x+b(a≠0)与双曲线y=﹣有两个公共点,则方程组有两个不同的解,即2x+b=﹣有两个不相等的解,整理得:2x2+bx+2=0,△=b2﹣16>0,解得:b<﹣4,或b>4.20.(10分)如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.【分析】(1)根据同弧所对的圆周角相等和三角形外角的性质及角平分线定义可得结论;(2)先根据同弧所对的圆周角相等和圆周角定理得:∠CFB=∠CBN,再由外角的性质得:∠CNB=∠CBE=∠CDE,并由(1)知:∠CNB=∠AND=∠CED,得∠CDE=∠CED,根据等角对等边可得结论;(3)如图3,先作辅助线,构建全等三角形,证明△CMB≌△CKB,得BM=BK,可得BM =2,利用勾股定理求BC=2,和CM=6,再作辅助线,构建全等三角形,证明△CGH ≌△FHB,设FM=x,根据三角函数可得x的值,证明△CBF∽△EDF(可以用正切值相等),列比例式,作EQ⊥DF交DF于点Q,设FQ=3k,EQ═6k,在Rt△PDB中,根据勾股定理列方程得:PB2+PD2=DB2,解出可得结论.【解答】(1)证明:如图1,连接BE.∵∠CED=∠CEB+∠DEB,∠AND=∠CAB+∠ACD,…(1分);∵CD是∠ACB的平分线,∴∠ACD=∠BCD=∠DEB,∵∠CAB=∠CEB,…(2分)∴∠CAB+∠ACD=∠CEB+∠DEB,即∠CED=∠AND;…(3分)(2)如图2,∵2∠BDC=90﹣∠DBE,∴∠BDC+∠DBE=90°﹣∠BDC=∠CFB,∵∠BDC=∠BAC,∵AB是直径,∴∠ACB=90,∴∠BAC+∠CBN=90°,∴∠CBN=90°﹣∠BAC=90°﹣∠BDC,∴∠CFB=∠CBN,…(4分)∴∠CFB+∠ABE=∠CBN+∠ABE,∴∠CNB=∠CBE=∠CDE,由(1)知:∠CNB=∠AND=∠CED,∴∠CDE=∠CED,…(5分);∴CE=CD…(6分);(3)如图3,过C作CM⊥BE,CK⊥DB,∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD,∴△CEM≌△CDK,∴EM=DK,CM=CK,∴△CMB≌△CKB,∴BM=BK,∴BE﹣BD=BM+EM﹣BD=BM+DK﹣BD=BM+BK=2BM=4,BM=2,Rt△BCM中,∵BC=2,∴CM===6…(7分);作FH⊥BC于点H,FH交CM于点G,∵∠FCB=45°,CH=FH,∴△CGH≌△FHB,∴CG=BF,设FM=x,∴CG=BF=x+2,GM=6﹣(x+2)=4﹣x,tan∠GFM=tan∠MCB==,∴x=3,FM=3,CF=3…(1分);∵△CBF∽△EDF(可以用正切值相等),∴,作EQ⊥DF交DF于点Q,设FQ=3k,EQ═6k,则DQ=2k,EF=3k,DE=2k,∴BE=5+3k,BD=BE﹣4=3k+1,作DP⊥BE交于点P,∵∠PED=∠BCD=45°,∴PD=PE=DE=2k,PB=BE﹣PE=5+k…(8分);在Rt△PDB中,PB2+PD2=DB2,即(5+k)2+(2k)2=(3k+1)2,∴k=,∴DF=5k=3=CF,BD=3k+1=10,…(9分);∴OF⊥CD,连接OD,∴∠AOD=∠BOD=90°,∴OD=BD=5,在Rt△ODF中,OF2=OD2﹣DF2=50﹣45=5,∴OF=…(10分);四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣1 .【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+xx2,然后利用整体代入的方法计算;1【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.22.(4分)如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=3:2 .【分析】由AG∥BC,推出△AGF∽△BDF,推出==,设AG=3k,BD=5k,可得CD=2k,由AG∥CD,推出△AGE∽△CDE,可得===.【解答】解:∵AG∥BC,∴△AGF∽△BDF,∴==,设AG=3k,BD=5k,∵=,∴=∴CD=2k,∵AG∥CD,∴△AGE∽△CDE,∴===,故答案为3:2.23.(4分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.24.(4分)如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于3.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故答案为:3.25.(4分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙O 的运动过程中,线段FG的长度的最小值为﹣1 .【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.五、解答题(共3小题,满分30分)26.(8分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利 1 元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)【分析】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),即可求解;(2)点(3,5)、(6,3)为一次函数上的点,求得直线的表达式为:y1=﹣x+7;同理,抛物线的表达式为:y2=﹣(x﹣6)2+1,故:y1﹣y2=﹣x+7+(x﹣6)2﹣1=﹣(x﹣5)2+,即可求解.【解答】解:(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),故:答案为1;(2)设直线的表达式为:y1=kx+b(k≠0),把点(3,5)、(6,3)代入上式得:,解得:,∴直线的表达式为:y1=﹣x+7;设:抛物线的表达式为:y2=a(x﹣m)2+n,∵顶点为(6,1),则函数表达式为:y2=a(x﹣6)2+1,把点(3,4)代入上式得:4=a(3﹣6)2+1,解得:a=,则抛物线的表达式为:y2=(x﹣6)2+1,∴y1﹣y2=﹣x+7﹣(x﹣6)2﹣1=﹣x2+x﹣6,∵﹣<0,∴x=5时,函数取得最大值,故:5月销售这种多肉植物,单株获利最大.27.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为α.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A 为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F 三点共线时,BF最长,根据等腰三角形的性质和勾股定理可求,OH=HC,BH=3HC,即可求tan∠FBC的值.【解答】证明:(1)①如图1,连接DA,并延长DA交BC于点M,∵点C关于直线l的对称点为点D,∴AD=AC,且AB=AC,∴AD=AB=AC,∴点B,C,D在以点A为圆心,AB为半径的圆上②∵AD=AB=AC∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=故答案为:α(2)如图2,连接CE,∵∠BAC=60°,AB=AC∴△ABC是等边三角形∴BC=AC,∠ACB=60°,∵∠BDC=∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,∵在△BOF中,BO+OF≥BC∴当点O,点B,点F三点共线时,BF最长,如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC,∴BC=AC,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴OC=HC,∵点O是AC中点,∴AC=2HC,∴BC=4HC,∴BH=BC﹣HC=3HC∴tan∠FBC==28.(12分)如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,B,抛物线y=﹣x2+bx+c经过点A,B,点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值;(3)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共诸点”.直接写出E、F、P三点成为“共诸点”时m的值.【分析】(1)交x轴,y轴于点A,B,求出点A、B的坐标,即c=2,则抛物线表达式为:y=﹣x2+bx+2,将点A的坐标代入上式,即可求解;(2)①当∠EBF为直角时,则tan∠BEF=,则BE2=4BF2,②当∠BEF为直角时,则EF=BE,即可求解;(3)分点P在y轴左侧、点P在y轴右侧两种情况,分别求解即可.【解答】解:(1)直线分别交x轴,y轴于点A,B,则点A、B的坐标分别为(4,0)、(0,2),即c=2,则抛物线表达式为:y=﹣x2+bx+2,将点A的坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2;(2)tan∠OAB==,点P的横坐标为m,则点E、F的坐标分别为:(m,﹣m2+m+2)、(m,﹣m+2),①当∠EBF为直角时,以B、E、F为顶点的三角形与△FPA相似,则∠BEF=∠OAB,则tan∠BEF=,则BE2=4BF2,即:m2+(﹣m2+m+2m﹣2)2=4[m2+(﹣m+2﹣2)2],解得:m=或(舍去);②当∠BEF为直角时,则EF=BE,同理可得:m =;综上,m=或;(3)点P的横坐标为m,则点E、F 的坐标分别为:(m,﹣m2+m +2)、(m,﹣m+2),①当点P在y轴左侧时,即m≤0,则点E、P可能是中点,当点E 是中点时,由中点公式得:2(﹣m2+m+2)=m﹣m+2,解得:m=(不合题意的值已舍去),当点P是中点时,同理可得:m=;②当点P在y轴右侧时,则点F是中点,同理可得:m =;综上,m=或或.31。