羟基磷灰石材料制备的研究概况
- 格式:pdf
- 大小:379.60 KB
- 文档页数:5
羟基磷灰石被动涂层的制备及可降解性研究羟基磷灰石作为一种生物医用材料,在骨组织修复和再生方面具有极强的应用前景。
而为了进一步提高其生物相容性和降解性能,研究人员近年来开始使用被动涂层技术来改善其性质。
本文将讨论羟基磷灰石被动涂层的制备方法以及这些涂层的可降解性研究。
一、羟基磷灰石被涂层的制备羟基磷灰石被涂层的制备方法主要可以分为四类:化学溶液法、离子注入法、物理气相沉积法和电化学沉积法。
其中化学溶液法和离子注入法常用于有机涂层的制备,而物理气相沉积法和电化学沉积法多用于无机涂层的制备。
化学溶液法和离子注入法通常被用来制备有机被动涂层。
这种涂层的主要成分是生物高分子材料,例如明胶、明胶-明矾酸钠等。
这些生物高分子材料具有优良的生物相容性,能够提高羟基磷灰石的耐久性和生物降解性能。
物理气相沉积法和电化学沉积法通常被用来制备无机被动涂层。
这种涂层的主要成分是钛、二氧化硅等无机物,这些材料具有坚硬耐磨的性能,能够保护羟基磷灰石体内的有机成分,提高材料的生物降解性能。
二、羟基磷灰石被涂层的可降解性研究羟基磷灰石被涂层的可降解性是一个非常重要的研究方向。
可降解性是羟基磷灰石材料的重要性能之一,能够决定材料在体内的降解速率和对组织的影响程度。
研究人员通常使用体内和体外实验来评估羟基磷灰石被涂层的可降解性。
其中最常见的评估方法是通过扫描电镜和X射线衍射仪来研究材料的磨损程度和晶体结构的变化。
另外,通过动物试验来评估材料的生物安全性和降解速率。
一些研究结果表明,被涂层的羟基磷灰石材料具有明显的降解性能。
例如,使用化学溶液法制备的生物高分子被动涂层可以在体内快速降解,且不会产生明显的毒性反应。
另外,使用无机物被涂层的羟基磷灰石材料也可以在体内降解,且对组织没有明显的刺激性。
三、总结羟基磷灰石被涂层技术在生物医用材料领域具有广泛的应用前景,可以提高材料的生物相容性和降解性能。
目前,研究人员已经开发出多种制备羟基磷灰石被涂层的方法,并对其可降解性进行了深入的研究。
羟基磷灰石的制备,实验报告实验报告实验名称:纳米羟基磷灰石的制备与表征一、实验目的了解纳米羟基磷灰石的制备及其性质,熟悉其表征方法,了解相关原理和操作流程。
二、实验原理羟基磷灰石,又称羟磷灰石,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化。
羟基磷灰石(HAP)是脊椎动物骨骼和牙齿的主要组成,人的牙釉质中羟基磷灰石的含量在96%以上。
羟基磷灰石具有优良的生物相容性,并可作为一种骨骼或牙齿的诱导因子,在口腔保健领域中对牙齿具有较好的再矿化、脱敏以及美白作用。
实验证明HAP粒子与牙釉质生物相容性好,亲和性高,其矿化液能够有效形成再矿化沉积,阻止钙离子流失,解决牙釉质脱矿问题,从根本上预防龋齿病。
含有HAP材料的牙膏对唾液蛋白、葡聚糖具有强吸附作用,能减少患者口腔的牙菌斑,促进牙龈炎愈合,对龋病、牙周病有较好的防治作用。
以Ca(N03)2.4H2O NH4H2 PO4 为原料,采用化学沉淀法制备HA,CA/P=1.67三、仪器与试剂材料:Ca(N03)2 4H2O 、NH4H2 PO4 、氨水仪器:磁力搅拌机四、实验步骤(1).称取6.9g 磷酸氢二铵和23.6g 硝酸钙。
(2)溶入250ml的蒸馏水中,硝酸钙用1000ml烧杯,磷酸氢二铵溶入250ml蒸馏水,用氨水分别调节PH值10-11。
(3)将磷酸氢二铵滴加到硝酸钙溶液中,控制滴加速度和搅拌速度,反应过程中检测反应的PH值以便及时做出调整。
(4)溶液滴加完后,继续搅拌加热维持1h,反应结束后陈化8h,薄膜覆盖烧杯口。
(5)蒸馏水清洗至中性,40。
C下干燥,研磨成粉状。
五、数据处理表征红外谱图1图1是HA标准红外光谱图。
HA有两个阴离子基团,P043-四面体阴离子基团和OH-基团。
图中P043-的吸收谱线571、602、963、1050和1089cm-1都出现了,OH-基团的谱线则出现在631、3570 cm-1处,证明所制备的晶体是HA晶体。
羟基磷灰石生物材料的研究现状、制备及发展前景于方丽1 周永强2 张卫珂3 马景云1(1陕西科技大学材料科学与工程学院 咸阳 712081) (2温州大学制笔重点实验室 325035) (3山东大学材料液态结构及其遗传性教育部重点实验室 济南 250061)摘 要 羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物陶瓷材料。
笔者论述了羟基磷灰石生物陶瓷材料的研究现状,同时对羟基磷灰石及其复合生物陶瓷材料的各种制备方法进行了概述,重点研究综合性能优越的羟基磷灰石生物陶瓷材料的制备及发展前景。
关键词 羟基磷灰石 生物陶瓷材料 研究现状 制备 发展前景The Present and Prospect of Research on Hydroxyapatite Bioceramic MaterialsYu Fangli1,Zhou Yongqiang2,Zhang Weike3,Ma Jingyun1(1Shaanxi University of Science and Technology,Xianyang,712081)(2Wen zhou University Main Laborotary,325035)(3Collegeofmaterial Science&Engineering,Shandong University,Jinan,250061)Abstract:Hydroxyapatite has excellent biocompatibility and tissue bioactivity and is hydroxyapatite bioceramic materials.This paper su m marizes the study situati on and the various preparation methods of hydroxyapati te bioceramic materials.The keys are enhancement and preparation and develop ment prospect of the synthesization of the composite bioceramic materials.Key words:Hydroxyapatite;Bioceramic materials;Research situation;Preparation;Develop ment prospect前言20世纪,生物材料学领域取得了飞速发展,无机生物医用材料的研究及其应用十分活跃,其中备受关注的是羟基磷灰石(hydroxyapatite,简称HA或HAP)活性陶瓷材料的研究和临床应用。
羟基磷灰石陶瓷合成及其力学性能研究羟基磷灰石陶瓷具有独特的生物活性和生物相容性,是一种重要的生物医用材料,在人工骨和牙科修复领域得到广泛应用。
羟基磷灰石陶瓷的制备方法主要有:热压法、交联法、离子交换法、水热法和溶胶凝胶法等。
而本文主要介绍溶胶凝胶法的制备方法和其力学性能研究。
一、溶胶凝胶法的制备方法溶胶凝胶法主要有两种方法,分别是高温固相烧结和低温液相烧结。
在高温固相烧结方法中,首先将羟基磷灰石前驱体混合于正火粉和细铝粉中,进行球磨混合,然后压制成桦木坯,坯体经过退火后形成陶瓷体。
这种方法制备的羟基磷灰石陶瓷具有较高的机械性能和较少的孔隙度,但是制备时间较长且工艺复杂。
在低温液相烧结方法中,羟基磷灰石前驱体采用水热法和溶胶凝胶法制备,然后在较低的温度下进行烧结,羟基磷灰石晶体在氧化镁和碳酸钙等配体的作用下,制备出具有较好性能的羟基磷灰石陶瓷。
本文采用溶胶凝胶法进行羟基磷灰石陶瓷的制备,具体步骤如下:1.溶胶制备:将磷酸氢二铵(NH4H2PO4)和三乙酸钇(Y(OC2H5)3)分别加入去离子水中,边搅拌边加入氨水(NH3·H2O),搅拌至物料完全溶解,形成透明液体。
2.凝胶制备:将前驱体溶液经浓缩浓缩、干燥,得到白色粉末样品,再放入500℃-800℃的炉子内,在氧气气氛下进行2-3h的热处理,样品即完成。
二、羟基磷灰石陶瓷力学性能的研究1.悬臂梁法悬臂梁法是一种常用的力学测试方法,可以测试材料的弯曲强度和断裂韧性指标。
将制备好的羟基磷灰石陶瓷样本固定在支架上,并加上相应的荷重,记录下力-位移曲线,然后根据荷重和支距计算出弯曲强度以及断裂韧性指标。
2.压缩测试压缩测试是一种常用的力学测试方法,可以测试材料的压缩强度和压缩模量等指标。
将制备好的羟基磷灰石陶瓷样本放入压缩机中,并施加相应的载荷,记录下荷载和位移之间的关系,然后计算出相应的强度和模量等指标。
3.人工骨植入试验将制备好的羟基磷灰石陶瓷样本植入到动物体内,进行人工骨植入试验,观察材料在体内的生物相容性和生物活性。
羟基磷灰石的制备及应用研究羟基磷灰石是目前应用最广泛的生物材料之一。
因其良好的生物相容性和生物活性,在骨科和牙科领域得到了广泛的应用。
本文将就羟基磷灰石的制备及应用进行研究和探讨。
1.羟基磷灰石的制备羟基磷灰石的制备主要有湿法合成和干法合成两种方法。
其中湿法合成又包括共沉淀法、溶胶-凝胶法、水热法等几种方法。
而干法合成主要有高能球磨法等方法。
1.1 湿法合成共沉淀法:羟基磷灰石的共沉淀法制备过程中利用钙、磷两个离子在一定条件下共沉淀作用,形成了羟基磷灰石。
共沉淀法具有制备工艺简单,反应速度快等优点。
但是其产品具有较大的晶体粒径和不稳定等缺陷。
溶胶-凝胶法:在溶胶-凝胶法制备羟基磷灰石过程中,通过到达成熟态的化学缓慢水解发生反应,羟基磷灰石在凝胶中形成。
该方法得到的羟基磷灰石晶体粒度分布小,晶体形态好,内部结构均匀致密等优点。
但是该方法的制备过程复杂,且需要较长时间,成本较高。
水热法:在水热法制备羟基磷灰石过程中,通过水热反应来形成羟基磷灰石。
该方法具有制备工艺简单等优点。
但是制备效率较低且羟基磷灰石的结晶度较低,易形成杂多晶和非晶态。
1.2 干法合成高能球磨法:在高能球磨法制备羟基磷灰石过程中,通过高能钨钢球的强制研磨来形成羟基磷灰石。
该方法具有制备简单,易于大规模生产等优点。
但是制备过程中需要严格控制球的大小,否则会影响羟基磷灰石的晶体粒度和分布。
2.羟基磷灰石的应用2.1 骨科领域羟基磷灰石可作为一种生物陶瓷,应用于骨科领域。
其良好的生物相容性和生物活性使得其能够与人体骨组织相容性良好。
在人工骨替代和组织修复中,羟基磷灰石能够促进骨细胞的生长和分化,提高骨修复的质量。
2.2 牙科领域在牙科领域,磷酸羟基磷灰石可以用于制备牙科修补材料,其生物相容性好,与人体牙齿组织具有相似的化学成分和物理性质。
磷酸羟基磷灰石的应用还可以提高口腔修复质量。
3.羟基磷灰石的未来展望随着骨科和牙科行业的飞快发展,羟基磷灰石的应用范围也在不断扩大。
羟基磷灰石-氧化锆生物复合材料制备与性能研究羟基磷灰石/氧化锆生物复合材料制备与性能研究引言:随着生物医学领域的快速发展,生物复合材料作为一种功能性材料在骨组织工程、生物医学和牙科等领域得到广泛应用。
羟基磷灰石(HAP)是一种常见的骨组织工程材料,而氧化锆(ZrO2)因其优异的生物相容性和机械性能而被广泛研究。
将HAP与ZrO2制备成生物复合材料,不仅可以综合两者的优点,还可以改善各自的缺点。
本文旨在介绍羟基磷灰石/氧化锆生物复合材料的制备方法以及其性能研究。
方法:1. 材料制备:根据预期的复合材料性能,选择合适的HAP和ZrO2粉末,并进行表面处理以提高材料的附着力。
常用的表面处理方法有等离子喷涂、离子交换等。
2. 复合材料制备:将经过表面处理的HAP和ZrO2混合均匀,并加入适量的有机胶粘剂,形成可压制成型的复合材料。
通过压制和烧结过程得到最终的复合材料。
结果与讨论:1. 组织结构:利用扫描电子显微镜(SEM)观察复合材料的组织结构。
结果显示,HAP和ZrO2颗粒均匀分布在复合材料的基质中,形成致密的微观结构。
2. 物理性能:对复合材料的力学性能进行测试,包括硬度、抗压强度和断裂韧性等。
实验结果显示,羟基磷灰石/氧化锆生物复合材料具有较高的硬度和抗压强度,符合骨组织工程和牙科材料的要求。
3. 生物相容性:将复合材料与生物体接触,观察其生物相容性。
实验结果显示,羟基磷灰石/氧化锆生物复合材料具有良好的生物相容性,不会引起免疫反应或组织排斥现象。
4. 生物活性:利用细胞培养实验评估复合材料的生物活性。
结果显示,羟基磷灰石/氧化锆生物复合材料能促进细胞的黏附和增殖,具有良好的生物活性。
结论:本研究成功制备了羟基磷灰石/氧化锆生物复合材料,并对其性能进行了详细研究。
结果表明,该复合材料具有优异的力学性能、良好的生物相容性和生物活性,有望在骨组织工程和生物医学领域得到广泛应用。
进一步的研究可以探索复合材料的制备参数优化和应用扩展,为生物医学领域的材料研究提供新的思路和方法本研究成功制备了羟基磷灰石/氧化锆生物复合材料,并对其组织结构、物理性能、生物相容性和生物活性进行了详细研究。
羟基磷灰石医用材料
摘要:
一、羟基磷灰石的基本概念与特性
二、羟基磷灰石在生物医学领域的应用
三、羟基磷灰石的制备方法与工艺
四、羟基磷灰石产品的市场现状与前景
正文:
羟基磷灰石(HAP)是一种生物活性无机材料,化学式为
Ca5(OH)(PO4)3,它是人体和动物骨骼的主要成分。
在生物医学领域,羟基磷灰石因其独特的物理和化学性质,被广泛研究和应用。
羟基磷灰石具有优良的生物相容性,能与机体组织在界面上实现化学键结合。
其在体内有一定的溶解度,能释放对机体无害的离子,参与体内代谢,对骨质增生有刺激或诱导作用,能促进缺损组织的修复,显示出生物活性。
在生物医学领域,羟基磷灰石主要用于制备生物医学材料及其制品,包括羟基磷灰石生物陶瓷及其复合材料、热喷涂涂层、电泳沉积、物理气相沉积等。
此外,羟基磷灰石也可用作高纯试剂。
羟基磷灰石的制备方法有多种,如湿化学法、干化学法、沉淀法、水热法等。
其中,超临界流体干燥法(SCFD)是一种常用的制备纳米羟基磷灰石的方法。
这种方法具有制备过程简单、能耗低、产品纯度高等优点。
在市场应用方面,羟基磷灰石产品在我国医疗、生物医学领域有着广泛的应用。
随着科技的发展和需求的增长,羟基磷灰石在医疗领域的应用将进一步
拓展。
目前,我国已经有不少企业致力于羟基磷灰石相关产品的研发和生产,积极推动其在医疗、生物医学领域的应用。
总之,羟基磷灰石作为一种具有生物活性的无机材料,在我国生物医学领域具有广阔的应用前景。
羟基磷灰石多孔材料的研究概况摘要关键词:羟基磷灰石多孔支架骨组织工程生物材料是指可对机体组织进行诊断、修复、治疗,替代与再生损坏的组织、器官或增进其功能的材料。
随着全球老龄化趋势的发展和骨创伤事故的频繁发生对人造齿、人造骨的需求越来越大。
多孔支架材料应用于骨修复和骨植入成为骨组织工程学研究的重点[1]。
骨组织用多孔支架的选材关键是材料是否具有良好生物相容性和适合微观孔结构比[2],羟基磷灰石具有良好的生物相容性、骨传导性等,是修复和替换活性硬组织的关键材料[3]。
1 羟基磷灰石简介1.1羟基磷灰石理化性质羟基磷灰石(HA)是磷酸钙盐的一种,它的化学式Ca10(PO4)6(OH)2。
其属于六方晶系,密度为3.16g/cm3,它是一种含有羟基的钙磷盐,Ca/P比为1.67。
微溶于水,呈弱碱性,易溶于酸,难溶于碱。
羟基磷灰石是脊椎动物体内骨骼、牙齿等硬组织的主要无机成分。
相关资料表明:羟基磷灰石是人体骨的矿物相,而胶原纤维是骨的主要有机相,成熟骨主要由羟基磷灰石晶体紧密嵌入胶原基体中构成。
并且其具有良好的生物活性和骨传导性。
因此,羟基磷灰石(HA)是目前人体硬骨组织的最佳选择。
1.2纳米羟基磷灰石的制备纳米羟基磷灰石粉体的制备方法很多,大致可以分为干法合成和湿法合成两大类。
干法合成主要为机械化学法、高温固相合成法、微波固相合成法等,湿法合成包括沉淀法、水热法、溶胶—凝胶法、超声波合成法及微乳液法等。
1.3 多孔羟基磷灰石的性质孔的结构包括孔隙率、孔径的大小、孔连通程度以及支架的比表面积。
多孔羟基磷灰石材料的制备方法有添加造孔剂法、机泡沫浸渍法、气体发泡法和模压成型法等[4、5]。
研究表明,多孔羟基磷灰石中含有适当尺寸孔隙并占有一定体积分数,对材料与组织相互作用有重要作用。
一般认为孔径在100µm以上能使骨细胞在孔洞内游移;200µm以上具有较优的成骨效应。
多孔羟基磷灰石植入后能短时间内与软骨组织紧密结合并无外体反应,且多孔结构能为纤维细胞和骨细胞的生长提供通道及空间,增大组织液与HA接触表面积从而加快反应进行,相互连通的孔隙有利于组织液的微循环并为HA深部的新生骨提供营养,使界面的软硬组织长入空隙,形成纤维组织和新生成骨组织交叉结合状态[6]。
羟基磷灰石的制备与应用研究1.引言羟基磷灰石(HA)是一种广泛应用于医学领域的生物材料,具有与骨骼组织相似的化学成分和结构。
因此,HA材料被广泛应用于骨修复、植入物、药物缓释等领域。
本文旨在介绍羟基磷灰石的制备方法和应用研究。
2.羟基磷灰石的制备2.1 化学合成法化学合成是制备HA材料的一种常用方法。
主要步骤包括磷酸和Ca(OH)2的反应,生成磷酸钙沉淀物,进一步反应形成HA。
其中,磷酸和Ca(OH)2的摩尔比例是重要的,影响着HA的形态和结构。
2.2 热沉淀法热沉淀法是一种常用制备HA材料的方法。
该方法主要步骤包括磷酸和CaCl2混合并调节pH值,然后在高温条件下使其反应生成HA。
这种方法可以制备出具有大量孔隙和高比表面积的HA材料。
2.3 生物制备法生物制备法是利用微生物、植物、动物等生物体通过其生理代谢产生的有机酸或其他物质来制备HA材料。
这种方法制备的HA 材料更具有生物相容性,并且制备成本更低。
3.羟基磷灰石的应用研究3.1 骨科材料由于HA与骨骼结构相似,因此它是一种在骨科领域广泛应用的生物材料。
HA材料可以用于骨修复、骨填充、植入物等领域。
HA材料具有生物相容性高、吸附能力好、力学性能良好等优点,已经成为骨科领域的重要材料。
3.2 药物缓释HA材料具有很好的生物相容性和化学稳定性,可以被用于药物缓释领域。
HA材料的微孔可以吸附药物,然后缓慢释放出来。
这种方法可以使药物在缓慢释放的过程中保持其活性,同时也可以延长药物的作用时间。
3.3 医用传感器HA材料也可以作为医用传感器的基础材料。
许多现代医疗设备和技术都需要传感器来搜集医学数据。
利用HA材料的导电性能特点,可以研制出具有高灵敏度、稳定性和生物相容性的传感器。
4.总结羟基磷灰石是一种具有广泛应用的生物材料,目前已经在医药领域得到了广泛的应用。
本文介绍了HA材料的制备方法和应用研究,展示了它的潜力和前景。
HA材料在医疗领域中将继续发挥重要作用。
羟基磷灰石的制备及应用研究羟基磷灰石是一种生物医用材料,具有良好的生物相容性和生物活性。
在牙科、骨科、普外科等领域被广泛应用,特别是在人造骨修复方面发挥着重要作用。
1. 羟基磷灰石的制备方法羟基磷灰石的制备方法有多种,其中包括化学合成、水热法、共沉淀法等。
其中,共沉淀法是目前最为常用的制备方法之一。
共沉淀法是通过将含有Ca2+和PO4^3-的化合物,如CaCl2和Na2HPO4混合在一起,并在水中搅拌,使其形成沉淀。
沉淀经过干燥和高温煅烧,即可得到羟基磷灰石。
通过调节反应条件,如pH值、反应温度和时间等参数,可以得到不同形态和性质的羟基磷灰石。
2. 羟基磷灰石的应用研究羟基磷灰石的应用研究主要集中在生物医用材料领域。
它具有良好的生物相容性和生物活性,可以与组织细胞良好地结合,促进骨组织的生长和再生。
在牙科领域中,羟基磷灰石被广泛应用于牙髓炎和牙根被破坏的治疗中。
在骨科领域中,羟基磷灰石则被用于骨修复和骨再生。
在普外科领域中,羟基磷灰石则被用于人造关节的制作,以及其他重大手术中的骨缺损修复。
不仅如此,羟基磷灰石还可以通过表面修饰、掺杂和复合等方法,来改善其性能和功能,例如提高降解速率、增强力学性能、抗菌、降解药物等。
这些方法均可以扩展羟基磷灰石的应用范围和提高其性能,推动其在生物医用材料领域的进一步发展。
3. 羟基磷灰石的发展前景近年来,随着医疗技术的发展和人们健康意识的提高,生物医用材料的需求量越来越大。
而作为一种重要的生物医用材料,羟基磷灰石将在未来得到进一步的应用和发展。
未来,羟基磷灰石的发展将更加注重材料的智能化、定制化和可持续发展。
通过纳米材料、生物材料等新技术的应用,将实现羟基磷灰石在组织工程、医学影像等领域的广泛应用。
同时,在病理诊断与治疗中更广泛地运用,例如在肿瘤的预防、诊断和治疗中的应用,将会取得更为广泛和重要的应用和发展。
总之,羟基磷灰石是一种生物医用材料,具有广泛的应用前景和发展空间。