羟基磷灰石材料制备的研究概况
- 格式:pdf
- 大小:139.89 KB
- 文档页数:5
羟基磷灰石的制备及其性能研究
羟基磷灰石(HAP)具有特有的吸附结构和独特的多吸附位点,有望在处理有毒有害废水和受污染土壤等方面获得应用。
本论文采用水热合成法合成了5种羟基磷灰石并比较了各类羟基磷灰石吸附氟离子的效果,得到如下主要结果:1.采用水热合成法制备了一系列羟基磷灰石样品,研究了合成相关的影响因素,结果表明水热合成法的最佳温度为120℃,最佳pH为9,获得氟、钾、镁、镁钾共掺羟基磷灰石多个样品,不同的掺杂物对羟基磷灰石的晶型结构造成了不同程度的畸变;2.优化了吸附工艺条件,上述样品对氟离子吸附过程中25℃时吸附达到最大,吸附平衡的时间2小时,羟基磷灰石最佳加量为10g/L,F-离子的初始浓度为
5Omg/L,酸碱度为近中性;3.对比分析了5个不同类型羟基磷灰石样品的氟离子吸附性能,镁钾共掺的羟基磷灰石样品具有较好的氟离子吸附性能,8小时氟离
子吸附量高达480mg/g。
从动力学和热力学方面探究了其吸附机理,羟基磷灰石对氟离子的吸附符合拟二级反应动力学过程和Freundlich吸附等温方程,该吸附是一个吸热过程,氟吸附在羟基磷灰石表面使得羟基磷灰石发生了结构的变化,整个体系的混乱度增加。
羟基磷灰石的制备及表征一、实验目的1。
掌握纳米羟基磷灰石的制备及原理2.了解羟基磷灰石的表征方法及生物相容性二实验原理羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。
HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。
HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。
HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。
为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。
纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。
固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。
液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法.水热合成法、溶胶—凝胶法、自然烧法、微乳液法、微波法等。
化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。
沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。
金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。
摘要本论文主要分为两大部分第一部分是均匀沉淀法制备羟基磷灰石的研究第二部分是研究用羟基磷灰石作为载体的负载型二氧化钛光催化剂的制备及性能评价羟基磷灰石是人体和动物骨骼的主要无机成份合成磷灰石以其特有的性能可在生物活性吸附性生物高分子的分离精制环境净化重金属离子的捕获环境催化剂脱氟剂等方面有广泛的应用本论文采用均匀沉淀法制备了纳米级的针状羟基磷灰石利用XRD FT-IR SEM BET比表面测试以及粒度测试对其进行了表征并最终获得了平均粒径为纳米级的针状羟基磷灰石晶体在制备得到性能良好的羟基磷灰石粉末的基础上采用压模成型的方法烧结制得具有一定形状和强度的羟基磷灰石块状载体光催化氧化法是以n 型半导体的能带理论为基础以半导体作敏化剂的一种光敏氧化法传统光催化悬浮体系存在反应后TiO2难以回收以及产生二次污染等问题很多研究者考虑将光催化剂固定到某种载体上本文拟通过制备一种与环境友好的羟基磷灰石作为具有吸附性能的新型载体改进溶胶-凝胶法制备TiO2的配方采用浸渍涂覆的方法制得高效且能多次重复使用的负载型复合光催化剂并以酸性媒介红B等模拟染料废水为处理对象来进行光催化的活性评价其中对光催化剂TiO2的负载量染料溶液初始浓度及pH值染料溶液的种类载体本身的特点对染料的脱色进行了讨论并将TiO2/HAP与P25悬降体系玻璃载体进行了比较实验结果表明当钛酸正丁酯与水的摩尔比为12以冰醋酸作酸催化剂和络合剂并添加一定量的稳定剂时既能保证所制备的溶胶长时间不变成凝胶又能保证催化剂负载牢固当煅烧温度为500时TiO2的主要晶型为锐钛矿结构将HAP模块在TiO2溶胶中浸渍涂覆3次平均负载量为0.171克/片在15W的杀菌灯下的照射120min后对100mg/L酸性媒介红B的脱色率可达到92%以上实验证明了TiO2/HAP对染料具有较高的催化活性HAP不仅是一种良好的吸附材料而且对光催化还有一定的促进作用是一种良好的光催化剂载体综上所述采用均匀沉淀法可制得粒径在纳米级的针状羟基磷灰石对其进行加工定型后除本身具有一定的吸附效果和光催化效果外还是一种性能良好的光催化剂载体这对制备新型环境材料羟基磷灰石以及开发拓展它的新功能方面有一定的应用价值关键词羟基磷灰石二氧化钛均匀沉淀法光催化载体染料废水AbstractThis dissertation has two parts. The first part is the preparation of hydroxyapatite (HAP). And the second part is the preparation of photocatalytic materials, titanium dioxide. The new immobilized photocatalysts are prepared using HAP as carrier. The activity of the immobilized photocatalysts is investigated by photocatalytic degradation of Acid Mordant Red B.HAP as the main inorganic component of the hard tissues in bones and teeth, is widely studied and used in clinical application to fill or restore damaged human calcified tissue because of its excellent bioactivity, biocompatibility and nontoxicity.Nanograde needle-like)2crystals are prepared by homogeneous precipitation method starting from Ca(NOFT-I Rfor 2h ,coated p hotocatalyst with 3 coating layers ,the degradation of 100mg/L Acid mordant red B rat e for 2h is more than 92%.The experimental results have indicated that nanograde needle-like crystals are prepared by homogeneous precipitation method. Not only the adsorption of HAP, but alsothe excellent carrier of immobilized photocatalysts.Key words: Hydroxyapatite Titanium dioxide Homogeneous precipitation method Photocatalytic Carrier Dye wastewater1 绪论1.1 引言磷灰石是具有相同结构的无机磷酸钙大家族的总称简称HAP或HA)是严格化学组成的化合物是人体和动物骨骼的主要无机成份它是一种长度为20~40nm³Ý¹ÇµÄ½á¹¹Ò²ÀàËÆÓÚ×ÔÈ»¹ÇÆä³É·ÖºÍ×ÔÈ»¹ÇÍêÈ«²»Ò»Ñù其生物兼容性和人体适应性尚不令人满意研究接近或类似于自然骨成份的无机生物医学材料极其活跃日本学者Aoki[3][4]等发现烧成的羟基磷灰石陶瓷具有很好的生物兼容性Aoki我国80年代开始研究羟基磷灰石陶瓷山东工业陶瓷研究设计院并进行了许多临床研究P理论值为1.67ËüÃǵĸßÎÂÏ༴Êdz£ÓõÄ和-TCPO xnHôÇ»ùÁ×»ÒʯÄÉÃ×Á£×ÓÓëÆÕͨµÄHAP相比具有不同的理化性能具有抑癌作用等在研究中人们发现羟基磷灰石纳米粒子本身就有一定的生物学效应制备出分散性良好合成磷灰石以其特有的性能可在生物活性生物高分子的分离重金属离子的捕获包括羟基磷灰石粉末和陶瓷的制备已有了充分的认识由于机械可靠性差由于羟基磷灰石的一些独特性质当前的研究主要集中在以下几个方面1因此来设计生物陶瓷种植体的形状ÉúÎï»îÐÔ²£Á§µÈ×é³É¸´ºÏ²ÄÁÏ[7]¶ø¶Ô²»Ðâ¸ÖÈÍÐÔÓÅÁ¼µÄ¼Ó¹¤ÐÔÄÜÀ´¿ª·¢Ó¦ÓÃHAP材料的一个尝试白色半透明粉末折射率为1.64~1.65¼î·Ö×ÓÖеÄCa2+容易被Cd2+Ba2+»¹¿ÉÓ뺬ÓÐôÈ»ùµÄ°±»ùËám空间群b0.6885nm0001面上的投影可见这种Ca2+的配位数为9¸½¼ÓÒõÀë×ÓOH-则与其上下两层的6个Ca2+组成OH-Ca6配位八面体这种Ca2+的配位数为70001¸ÃλÖÃÁª½á×Å2个Ca2+ÓÉÓÚ2个Ca2+带正电当表面的Ca2+在某一瞬间空缺时能吸附Sr2+等阳离子和蛋白质分子上的E基团在水中的表面能较低从原料来源看湿法包括沉淀法干法即固态反应法1该法反应温度不高工艺相对简单必须严格控制工艺条件4H2OÊ®¶þÍé»ùÁòËáÄÆÎªÔ-ÁϲÉÈ¡¾ùÔȳÁµí·¨ÖƱ¸ÁËÄÉÃ×¼¶µÄôÇ»ùÁ×»Òʯ·ÛÄ©2ÓëÆäËûʪ»¯Ñ§·½·¨Ïà±È²»Ðè×÷¸ßÎÂׯÈÈ´¦Àíͨ¹ý¿ØÖÆË®ÈÈÌõ¼þË®ÈÈ·¨ÖƱ¸µÄ·ÛÌå¾§Á£Ïß¶ÈÓë·´Ó¦Ìõ¼þ(反应温度工艺较为简单通过水热合成得到晶粒完整作者还发现HAP粉体随水热温度的提高及时间的延长廖其龙等[11]采用CaCO3和CaHPO4.2H2O的混合物为前驱物下经8h的水热反应3溶胶形成后得到疏松的干凝胶该法优点在于纯度高但是邬鸿彦等[12]采用硝酸钙和磷酸三甲酯为原料1孟令科等[13]在800ÔÚ500-12004ÔÚ1000-1300Ca10(PO4)6(OH)2+4H2O +4CO2Ca 3(PO4)2+CaOCa10(PO4)6(OH)2+6 H2O(PO4)2+Ca(OH)2Ca½Ï³¤µÄÔ¤»ìĥʱ¼ä¶ÔÖмäÏàת»¯ÎªHAP更为有利无晶格缺陷结晶程度高的HAP晶体往往有杂质相存在因此在生物陶瓷领域较少采用5对医用生物材料而言如高温分解哺乳类动物骨制得结晶程度较好的HAP粉近年来也成功地从鱼鳞中提取了HAP和吸附激光由于其独特的生物相容性制得了各式各样的复合材料组织工程支架和穿皮元件等而用作生物大分子分离[18]ÈËÃÇ·¢ÏÖôÇ»ùÁ×»Òʯ×÷Ϊ»·¾³²ÄÁÏ·½Ãæ¾ßÓÐÐí¶à¶ÀÌØµÄÓŵã¸÷ÖÖ²ÄÁÏ´ÓÁòËá¸Æµ½ÍѸƹǶ¼ÓÃÀ´×÷ÎªÒÆÖ²¹ÇµÄÌæ´úÎïHAP与构成动物骨骼的主要矿物---生物磷灰石组成相似具有良好的理化性质和生物学特点根据HAP自身结构和具有的生物特性1HAP和合成高分子的复合[23-24]Í¿²ã[25-26]和金属合金组成的复合材料[27-28]5HAP的多相复合材料[32-33]¿ÉÖÆ³É¸÷ÖÖÎü¸½¼ÁºÍÀë×Ó½»»»¼ÁÖîÈç½µ·ú¼ÁHAP的晶体结构形式和离子半径相似性决定了某些阳离子(如Pb2+Zn2+ijЩÒõÀë×Ó(如F-Ö÷ÒªµÄÈ¥³ý»úÀí°üÀ¨Îü¸½ÀûÓÃËüµÄÕâÐ©ÌØÐÔ¿ÉÓÃÓÚÐí¶àÓк¦ÖؽðÊôÀë×ӺͷúÀë×ӵĸ»¼¯·ÖÀë±»Îü¸½µÄÖØ½ðÊôÀë×ӿɹ̻¯ÔÚ¾§¸ñÖжø²»³öÏÖ½âÎüÆäÐÐΪÀàËÆÓÚË®ÈÜÒºÖÐÑôÀë×ÓÓëÁ×»Òʯ¾§¸ñÖÐCa2+之间的离子交换反应这对于去除废水中的各种重金属离子和综合回收其中有价值元素具有潜在的应用前景铁氧体法离子交换吸附近年来Cu2+Pb2+ >Cd2+>Cu2+ >Zn2+ïӵķÏË®Cd2+Ca 3.5Cd6.5(PO4)6(OH)2½»»»Îü¸½ÈÝÁ¿¸ßÉ豸¼òµ¥HAP对F-的结合能力很强,这不仅由于F-与OH-带有相同的电荷,并且具有很小的离子半径,很容易取代OH-填进HAP的晶格由于HAP对F-的吸附作用一是双分解反应形成CaF2PO4PO»¹Ìرð½«ôÇ»ùÁ×»ÒʯÓë¹ÇÌ¿»îÐÔÑõ»¯ÂÁÔÚÖØÁ¿ÏàµÈµÄÎü¸½²ÄÁÏÖÐÒÔ¼°ÆäËûº¬·ú·ÏË®µÄ´¦Àí·½Ãæ¾ßÓкܺõÄÓ¦ÓÃǰ¾°ÈçHAP能吸附Cl-3HAP还能吸附某些低分子的有机偶联剂[40]Maniatis[41]发现HAP能对高分子的有机物如蛋白质产生吸附而且与溶液状况及聚合物建立了羟基磷灰石(HAP)吸附牛血清白蛋白 (BSA)的物理模型和数学模型[43]ͨ¹ý·Ö×ÓÄ©¶ËµÄ¹ÙÄÜÍÅÓëHAP表面的吸附位置结合而HAP吸附高分子有机物时1.2.3.3 萤光材料1949年并很快在萤光并且有较强的离子交换能力离子交换领域找到了广阔用途也可作为化学反应取得不错的效果[45]和H3PO4做前驱物MM来制备HAP 1.5ppm200ppmͬÑùW.T.Reichle对环己酮,H.Nishikawa[48]对三氯丁烯进行处理 Yuichi.Komazak 在实验中HAP等比例混合后粘结在玻璃管上这些文献都证明了HAP 具有一定的光催化效果由东京大学开发的光敏催化剂是由被钛改性的羟基磷灰石钙(Ca-HAP)制得的加入钛1这就是该催化剂比传统的光敏催化剂效果好的原因在不可见光下这种新型催化剂可以用于像乙醛1.2.3.5 湿度传感元件随着科学技术发展高强度的高性能陶瓷材料受到广泛的重视羟基磷灰石在室温下的湿敏机理可用于质子导电从而把HAP又列入新型智能敏感材料的行列磷灰石水泥所以有希望作为自然融合型的新材料而得到利用并具有良好的生物相容性和生物活性白度高牙釉质的硬度为7²»½ö¿ÉÒÔÆðµ½Á¼ºÃµÄÄ¥²ÁÅ×¹â×÷ÓÃ会损伤牙釉质使牙齿变白牙面亮泽[53]通过羟基磷灰石牙膏的体外吸附试验含2%羟基磷灰石的牙膏促进牙龈炎愈合1.2.3.8 其它1989年另外HAP还可用作脱臭剂和毛发化妆品的主要原料[57-58]½µµÍÓÍÖ¬Ëá¼ÛºÍ¹ýÑõ»¯ÖµµÄ¾«ÖÆÔ-ÁϵÈÓйضþÑõ»¯îѵȰ뵼Ìå¹â´ß»¯¼ÁµÄÑо¿³ÉΪ¹úÄÚÍâ»·¾³ÁìÓòµÄÒ»¸öÈȵ㼺ÓкܶàÆÀÊöÐÔÎÄÏ×Ëù±¨µÀÈÈÎȶ¨ÐԺöÔÈËÌåÎÞº¦µÈÓŵ㱶ÊÜÈËÃÇÇàíùÈËÃǹ㷺¶øÉîÈëµØÑо¿Á˶þÑõ»¯îѵĸÄÐÔ¼¼ÊõÒÔÌá¸ß¹â´ß»¯¼ÁµÄ»îÐԺʹ߻¯Ð§Âʼ´Ê¹Ó÷Ûĩ״¹â´ß»¯¼Áʵ¼ÊÉÏÕ⼺¾-³ÉΪÒÔ¶þÑõ»¯îѵÈΪ»ù´¡µÄ¹â´ß»¯·½·¨ÄÑÒÔÉÌÒµ»¯µÄÖ÷ÒªÔ-ÒòÖ®Ò»ÈËÃÇÒѽ«Ñо¿µÄÖØµãתÏòÖÆ±¸¸ßЧÂʵĴ߻¯Ä¤È¡´úTiO2粉末在不同的应用条件与环境下总体来说´øÏ¶½Ï¿í(约3.2eV )如何提高光催化剂的光谱响应范围和催化效率是制约TiO2光催化技术实用的关键问题[60-61]¿ÕѨµÄ·ÖÀëЧÂÊ贵金属表面沉积[63]表面超强酸化[66]等2而化学方法分为溶胶-凝胶法电化学沉积法[70]ÆäÖÐÓõý϶àµÄÊÇÈܽº-凝胶法它可细分为浸渍提拉法[73-74]热催化[79]电化学等技术[82]或过程与光催化反应相结合的研究ÈÝÒ×Öж¾´ß»¯¼Á²»Ò×·¢É¢µÈȱµã[83]µ«²¢²»Ó°Ïìʵ¼ÊÓ¦ÓÃÌá¸ß¹â´ß»¯Ð§ÂÊÒ»°ãÓÉÌîÂúµç×ӵĵÍÄܼ۴ø(valence band¼Û´øºÍµ¼´øÖ®¼ä´æÔÚ½û´øEg) 的光照射半导体时在价带上产生空穴(h+)¶ø¾ßÓкÜÇ¿µÄÑõ»¯ÄÜÁ¦OH自由基也有部分有机物与h+直接反应整个光催化反应中半导体内产生的电子-空穴对存在分离/被俘获与复合的竞争 图1.2 TiO2半导体光激发原理Fig1.2 Mechanism of TiO2 semiconductor excited by impinging photos1.3.3 光催化剂载体的选择光催化氧化体系的研究然而通常的悬浮相光催化氧化存在与水分离困难因此催化剂的固定化不仅可以解决悬浮相催化剂的分离回收的问题催化在活性组分上的转化载体的选择及催化剂固定技术已是光催化研究的一个重要方面无机载体和有机载体如使用寿命性质稳定其次是吸附剂类1具体而言空心玻璃微球[90-91]玻璃筒[94]Ö®ËùÒÔʹÓò»Í¬ÐÎʽµÄ²£Á§Òò´ËÓýþÍ¿处理方法制备出漂浮负载型TiO2薄膜光催化剂选择玻璃作为载体时要注意两方面的影响较为理想玻璃中Na+ÆÆ»µTiO2的晶格结构而Si4+相对而言在热处理时更加惰性和稳定由于玻璃表面十分光滑平整附着牢固目前仍有很大的研究价值2破坏TiO2晶格降低催化活性目前使用的主要有不锈钢[97]泡沫镍[100]等所以负载也较困难3活性炭[102]Ôö¼Ó¾Ö²¿Å¨¶ÈÒÔ¼°±ÜÃâÖмä²úÎï»Ó·¢»òÓÎÀëÔÚ¹âÕÕÏÂÄÜ´ß»¯½µ½â¼«Ï¡Å¨¶ÈµÄ³ý²Ý¼ÁÈÔ´æÔÚ·´Ó¦ºóÂ˳ý¹â´ß»¯¼ÁµÄ²»±ãÈç²£Á§ÉÏ»òÉè¼Æ³ÉÁ÷»¯´²ÐÎʽ´ó·Ö×ÓµÄÓлúÎï²»ÄܽøÈëÓëÆä³ä·Ö½Ó´¥Ôò¾ßÓкܸ߹â´ß»¯»îÐÔ¶Ô³¬Ï¸¿ÅÁ£µÄTiO2具有良好的附着性Al2O3陶瓷片Micheal L. Sauer 等[103]以蜂窝状陶瓷柱作为载体负载TiO2光催化降解空气中丙酮获得了满意效果掺杂其中或是将TiO2涂布表面也能被TiO2光催化降解到目前为止主要用于废水处理和空气净化上一种是将纳米TiO2粉体混入溶液中或直接机械搅拌称为悬浮体系悬浮体系较为简单方便受光也较充分但使用中发现存在着难以回收催化剂不易分散等缺点但并不影响实际应用甚至会获得更高催化效率商品化和工业化具有重大的实际意义包括纺织其中以染色废水污染较为严重它包括纺织废水和印染废水两部分印染废水主要来自退浆丝光其中污染物主要是指各种纤维材料和加工时使用的染料表面活性剂和各类整理剂等生产品种一般印染废水pH值为61000mg/L生物化学需氧量悬浮物碱性强化学方法1.5 选题及课题研究的目的和意义1.5.1 选题本课题是国家863计划TiO2光催化氧化技术具有极大发展前景量子效率较低等问题围绕TiO2光催化剂载体羟基磷灰石的制备与TiO2光催化剂固定本论文分两部分文章的后一部分在制备得到较好的二氧化钛溶胶的基础上同时选择以载玻片为光催化剂的载体制备出负载型光催化剂TiO2 /GlassµÍºÄµÈÌØµã´ß»¯¼ÁÒÔ¼°´ß»¯¼ÁµÄÔØÌåÊÇ´ËÏî¼¼ÊõµÄ¹Ø¼üÄÚÈÝÒ×Á÷ʧµÈÌØµãÓÉÓÚôÇ»ùÁ×»ÒʯÓÅÁ¼µÄÎü¸½ÌØÐÔ¼°»·¾³ÓѺõÄÐÔÄܲÉÓýþ×ÕÍ¿¸²µÄ·½·¨ÖƱ¸Á˸ºÔØÐ͹â´ß»¯¼ÁTiO2 /HAP2ÖÆ±¸³öÁËÄÉÃ×Õë×´µÄôÇ»ùÁ×»Òʯ¾§ÌåÒÔ¼°¹¤ÒµÖдó¹æÄ£ºÏ³ÉôÇ»ùÁ×»Òʯ¶¼ÓÐÒ»¶¨µÄʵ¼ÊÒâÒå3¸ßЧÎﻯ×éºÏ¼¼ÊõÓëÉ豸的要求2 纳米针状羟基磷灰石的制备及表征在合成制备羟基磷灰石的这些方法中颗粒较细于是本论文选择以硝酸钙和磷酸为原料FT-IR比表面测试等方法进行表征分析1001 上海市吴淞五金厂磁力加热搅拌器78—1 江苏江堰银河实验仪器厂XRD粉末衍射仪Max-3B日本RIGAKU D粉末粒度测试仪Nano-Zetasizer-90 英国马尔文公司比表面测试仪ASAP2020V 美国傅立叶变换红外光谱仪equcno×55型美国Bruker公司SEM电子扫描显微镜Sirion 200 FEI公司压力试验机WE-A型山东凯威公司表2.2列出了实验所需的主要药品和试剂表2.2 部分实验药品Tab2.2 Experiment Reagent试剂分子式级别生产厂家硝酸钙Ca(NO)2H2O A.P 武汉市江北化学试剂厂六偏磷酸钠(NaPO3) 6 A.P 天津市博迪化工有限公司2.2 实验方法将一定量的Ca(NO)2°´Ca下继续搅拌1h后静置将烘干后的产物在一定温度下煅烧其反应流程图见图2.1)2 +6 H3PO4 + 20NH310Ca(NO2.3 分析方法2.3.1 X射线衍射测定条件为铜靶 1.5418A扫描速度20FT-IR按照1ÒÇÆ÷µÄ·Ö±æÂÊΪ4cm-12.3.3 粉末粒径大小及其分布为了对制备得到的粉末的粒径大小及其分布有一定了解以六偏磷酸钠为分散剂2.3.4 BET比表面测试采用美国ASAP-2020型比表面测试仪从而得出HAP粉末的BET比表面积并计算孔体积和粒径SEM2.4 结果与讨论2.4.1 Ca·Ö±ðÊÇ0.6mol/L0.1mol/L P½Á°è将溶液的pH值调节至10¹ýÂË在750图2.2 不同初始浓度Ca(NO3)2所制得的HAP粉末的XRD图Fig2.2 XRD patterns of HAP powder prepared by different initial concentration of Ca (NO3) 2图2.2是四种不同初始浓度下制得的HAP在750µ±Ca(NO3)2浓度为0.1mol/L时颗粒的沉降速度变慢Ca(NO3)2浓度为0.1mol/L的反应液静置陈化一段时间后发现但产量低较难过滤经分析那是初始浓度为0.1mol/L0.6 mol/L的Ca(NO3)2制得的粉末的平均粒径分别为66nm183.7 nmÐγɵľ§ºËÊýĿԽ¶à¿É¼û当的初始浓度当Ca(NO 3)2的初始浓度较低时因此得到的晶体粒径较小晶核与晶核之间更容易融合在一块2.4.2 HAP 煅烧温度的影响取Ca(NO3)2将均匀沉淀得到的沉淀物反复洗涤下煅烧红外粒径大小及其分布1450950HAP 的衍射峰底部较宽热处理后还有一些NO 3-未分解完全其谱峰明显地不够尖锐但随着烧结温度的升高形成结晶度很好且单一的HAP 相时但同时也含有较多的杂峰通过与HAP 的JCPDS 标准卡片比较知-TCP时羟基磷灰石开始发生相转变了a950图2.3 不同温度下煅烧HAP后的XRD衍射图谱Fig 2.3 XRD patterns of HAP powder prepared by different sintering temperatureÔ-Ïȼò²¢µÄ¼òÕýÕñ¶¯ÊÜλÖÃȺ¼´³öÏÖÁ˼ò²¢ÎüÊÕ´øµÄ·ÖÁÑͼ2.4为不同温度下煅烧的羟基磷灰石粉末FT-IR图谱H2OÆäÖÐ3570cm-1和633cm-1分别为OH-的伸缩振动íOH带和OH-的摆动ñOH带875cm-1峰表明有HPO42-基团存在962 cm-1ÔÚ(a)和(b)中1385cm-1的宽带和隆起是由NO3-的存在造成的说明在较高温度烧结HAP时NO3-已完全分解3570 cm-1和633cm-1处的OH-峰越来越尖锐说明随着温度的升高HPO42-基团逐渐消失了在低温煅烧时特征峰不突出随着煅烧温度的升高HAP又开始发生相转变-TCP的吸收峰a图2.4 不同温度下煅烧后的羟基磷灰石粉末的FT-IR图Fig 2.4 FT-IR of HAP powders prepared by different sintering temperature treament和950ÄܽϺõķ´Ó¦·ÛÄ©Á£¾¶´óСµÄ¾ùÔÈÐÔ和950在低温如200µ«Ëæ×ÅÈÈ´¦ÀíζȵÄÉý¸ß¾§Á£Ö®¼äµÄ²¢ºÍ¼Ó¾ç比表面计算得到的粒径大小基本吻合同时HAP粒子的粒径分布越来越宽而在图d中随着煅烧温度的升高(a) 200(c) 7504450950干燥脱气处理后置于-195.604Èç¹û¼ÙÏóHAP粒子为均匀球状分布表2.3 HAP比表面积与煅烧温度的关系Tab2.3 the effects of different sintering temperature treament on HAP surface煅烧温度200 450 750 950比表面积nm30.5 68.0 94.3 164通过ASAP-2020型比表面分析仪测试56.71/m2 /g可见这可能是因为在该过程中粒子融合在一起且逐渐致密化而空洞的收缩这可能与用粒度仪测试HAP粒子时溶液的分散效果5下煅烧时HAP的晶型逐渐突出时已基本可以看出HAP为针状晶体时越发突出其形貌特点也可以得到解释随着温度的升高晶型也凸现出来a450d²ÅÄÜ·¢»ÓÆä¶ÀÌØ×÷ÓÃ将过滤后所得的沉淀在100Í£Ö¹¼Óѹ²¢ÔÚ¸ÃѹÁ¦Ï±£³Ö2分钟后退模然后将生胚置于马弗炉中分别在200750下烧结形成素胚HAP 450图2.8 烧结温度对HAP 横向收缩率的影响Fig2.8 Contraction percentage of HAP compacts as a function of sintering temperature采用阿基米德法分别测试各温度下烧结形成素胚的密度从图可以看出随着烧结温度的升高说明素胚结合越来越致密-950时的基础上增加了4%HAP 开始慢慢转化为Ca32.5 本章小结4H2O 的初始浓度其中煅烧温度越高时纯度较差煅烧温度为7502我们制备羟基磷灰石时Ca(NO 3)2素胚的烧结温度分别选为450²ÉÓþùÔȳÁµí·¨ÊÇÒ»ÖֺϳÉHAP 陶瓷较简便的方法煅烧温度低有一定的工业应用价值3 TiO2溶胶及负载型光催化剂HAP/TiO2的制备与表征3.1 TiO2溶胶的制备负载型TiO2的制备方法主要有溶胶-凝胶法离子交换法制备条件温和牢固性好等优点而成为目前最常用和最具有前景的方法因此溶胶的稳定性是大家普遍关注的问题探索稳定时间长实验中所用的水均为蒸馏水表3.2 部分实验仪器Tab3.2 Experiment Reagent名称型号生产厂家磁力加热搅拌器 78—1 江苏江堰银河实验仪器厂马弗炉湖北省英山茂福电炉厂烧杯5020²»¶Ï½Á°èϼÓÈëÒ»¶¨±ÈÀýµÄÕý¶¡´¼剧烈搅拌90min后最后加入稳定剂B在得到TiO2溶胶的基础上温度下煅烧3.2 结果与讨论3.2.1 水量的影响表3.3列出了水的用量不同时温度25稳定剂A和稳定剂B的用量分别为0.7mlÒÔ¼ìÑé¶þÑõ»¯îÑÈܽºÖƱ¸¹ý³ÌÖвÎÊýµÄÑ¡Ôñ表3.3 水量对溶胶的影响Tab3.3 Effect of water content on sol stabilityH 2O (ml) 溶胶的稳定性膜1.0 加入H 2O 后10min 成为乳白色沉淀0.5 溶胶可稳定存放4d 干燥后即可用手抹去0.3浅黄色溶胶煅烧后有大面积白色晶粉存放60d颜色和体积没有变化90d 时变为橙黄色仍可进行提拉涂膜仍可进行提拉涂膜敞口放置第一次煅烧后膜透明多次涂覆煅烧后呈白色 0.1 溶胶的性状基本同上一次煅烧后附着不牢2次煅烧膜成粉状煅烧3次后膜一抹即掉Ti(OBu n )4Ti (OBun)2(OH)2Ti(OH)4缩合反应一般都与Ti(OBu)4/H 2O 的摩尔比有关在稳定的溶胶体系中上述过程是分步进行的加水量少反之从表中数据可以看到生成氧化物沉淀但水缺乏时综合考虑溶胶的稳定时间和成膜性质适2均匀有序的溶胶结构需要较快的水解反应速率和较慢的聚合反应过程而加入酸作催化剂不仅能加快醇盐的水解反应过程它们会排斥OR 基而与羟基相吸附使它们的电荷更正另一方面OR 基与金属阳离子之间为此比较了它们的催化作用温度25稳定剂A 和稳定剂B 的用量分别为0.7ml·ÅÖúó³ÊÀ¶É«¸½×Ų»ÀÎHNO 3 5浅黄色溶胶可抹去HNO 3 3浅黄色溶胶可抹去HNO 3 1 缓慢形成白色沉淀 /CH 3COOH5浅黄色溶胶70d后颜色加深90d时变为橙黄色仍可进行提拉涂膜仍可进行提拉涂膜敞口放置第一次煅烧后膜透明多次涂覆煅烧后呈白色只有pH值适当时pH 值越小pH 值过小(如小于1.5)时溶液逐渐成稳定的溶胶这些带电胶粒互相排斥促使其不能聚合成凝胶也不会立即聚沉温度及反电荷溶胶等强电解质用HNO3调节pH为1时直接生成了沉淀水溶液中电离常数为1.75¸üÖ÷ÒªÊÇÒòΪ´×ËáÊÇÒ»ÖÖÂçºÏ¼ÁÒ»ÖÖÔÚÄ©¶ËTi(OBu n)4+AcOH´×ËáÅäλÌå×÷Ϊ˫Åäλ»ùÒýÆðòüºÏÅäλºÍÇŽÓλÈܽº²»»á¶Ìʱ¼äÄÚ±ä³ÉÄý½º¿Õ×èЧӦºÍÂçºÏÄÜÁ¦À´Ó°Ïì½ðÊô´¼ÑεÄË®½âºÍËõ¾ÛµÄ³Ì¶ÈµÄ¾ùÔÈ»¯Æä·Ö½â±í3.5给出了无水乙醇其他条件为冰醋酸2.0ml0.5mlÈýÖÖ²»Í¬µÄ´¼×÷ÈܼÁʱîÑËá¶¡õ¥¿ÉÓë´¼ÈܼÁºÜ¿ì·¢Éú¿ÉÄæµÄÈ¡´ú·´Ó¦¶ø¿Õ×èЧӦ´óС´ÎÐòÔòÊǶ¡Íé»ù>异丙烷基>乙烷基缩聚反应都是乙烷基最快乙醇>异丙醇>正丁醇加快凝胶化进程表3.5 溶剂的影响Tab3.5 Effect of solvent on sol stability溶剂 溶胶的稳定性膜无水乙醇草绿色溶胶4次煅烧后开始脱落之后成为亮黄色凝胶 可连续6次涂膜煅烧存放60d颜色和体积没有变化90d 时变为橙黄色仍可进行提拉涂膜仍可进行提拉涂膜敞口放置第一次煅烧后膜透明多次涂覆煅烧后呈白色 3.2.4 稳定剂的作用钛酸酯中的钛虽然是四价所以加入配合能力适当的配体不但不会发生白色沉淀而且易于生成氢氧化物或氧化物沉淀得到稳定的溶胶其他条件为冰醋酸2.0ml3.2.5 TiO2的X衍射分析煅烧温度和时间影响晶粒的生长过程及晶型金红石(rutile)和板钛矿(brookite)三种晶型其中锐钛矿型光催化活性较高图3.1 TiO2晶型结构示意图Fig3.1 the pattern structure of TiO2 crystallites两者的差别在于八面体的畸变程度和八面体相互联结的方式不同锐钛矿型八面体呈明显的斜方晶畸变3.04)比金红石型(3.57 Å1.980 Å)小于金红石型(1.949 Ű˸ö¹²¶¥½Ç)Ëĸö¹²¶¥½Ç)ÈñîÑ¿óÐÍÓÉËĸöTiO2分子组成锐钛矿型的质量密度(3.894g/cm3)小于金红石型(4.250g/cm3)金红石型TiO2比表面积较小·OH的另一个来源以及羟基化产物进一步氧化反应的氧化剂光生电子与空穴容易复合图3.2是将TiO 2干凝胶分别在400600时当煅烧温度为600¶øµ±ìÑÉÕζÈΪ500下煅烧催化剂即可制备负载型的光催化剂TiO2/ HAPÑ¡ÓÃHAP450慢慢浸入制得的TiO2透明溶胶中最后将其在马弗炉中煅烧下保温一段时间即得负载型光催化剂TiO2/HAP模块每片HAP450模块上的涂覆量可通过称重差量得到A0表示负载前的重量表3.7 负载次数与TiO2负载量Tab3.7 Relation between loaded weight and coating times负载次数 1 2 3 4 5 6HAP450g%g%HAP模块表面负载的二氧化钛量也随之增加同时的负载量HAP450±È±íÃæ½Ï´ó3.3.3 TiO2/ HAP的吸附性实验广义的吸附作用(sorption)包括两种主要的机理其中表面吸附有4种类型而我们通常所说的吸附作用皆属于表面吸附的范畴Kresak.M认为HAP对有机物的吸附大部分符合Langmuir型单分子层的吸附等温线素坯以及负载好二氧化钛溶胶的模块置于100mg/L的酸性媒介红B溶液中暗反应。
羟基磷灰石医用材料
摘要:
一、羟基磷灰石的基本概念与特性
二、羟基磷灰石在生物医学领域的应用
三、羟基磷灰石的制备方法与工艺
四、羟基磷灰石产品的市场现状与前景
正文:
羟基磷灰石(HAP)是一种生物活性无机材料,化学式为
Ca5(OH)(PO4)3,它是人体和动物骨骼的主要成分。
在生物医学领域,羟基磷灰石因其独特的物理和化学性质,被广泛研究和应用。
羟基磷灰石具有优良的生物相容性,能与机体组织在界面上实现化学键结合。
其在体内有一定的溶解度,能释放对机体无害的离子,参与体内代谢,对骨质增生有刺激或诱导作用,能促进缺损组织的修复,显示出生物活性。
在生物医学领域,羟基磷灰石主要用于制备生物医学材料及其制品,包括羟基磷灰石生物陶瓷及其复合材料、热喷涂涂层、电泳沉积、物理气相沉积等。
此外,羟基磷灰石也可用作高纯试剂。
羟基磷灰石的制备方法有多种,如湿化学法、干化学法、沉淀法、水热法等。
其中,超临界流体干燥法(SCFD)是一种常用的制备纳米羟基磷灰石的方法。
这种方法具有制备过程简单、能耗低、产品纯度高等优点。
在市场应用方面,羟基磷灰石产品在我国医疗、生物医学领域有着广泛的应用。
随着科技的发展和需求的增长,羟基磷灰石在医疗领域的应用将进一步
拓展。
目前,我国已经有不少企业致力于羟基磷灰石相关产品的研发和生产,积极推动其在医疗、生物医学领域的应用。
总之,羟基磷灰石作为一种具有生物活性的无机材料,在我国生物医学领域具有广阔的应用前景。
羟基磷灰石制备一、基本信息羟基磷灰石,又称羟磷灰石,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化。
但是经常被写成(Ca10(PO4)6(OH)2)的形式以突出它是由两部分组成的.羟磷灰石是磷灰石中含氢氧根的纯正端元,羟磷灰石的晶系为六方晶系,比重为3.08,摩氏硬度为5。
纯的羟磷灰石粉末是白色,但天然的羟磷灰石会夹杂着棕色、黄色或绿色。
也可以用人工的方式合成,应用于骨组织修复。
羟基磷灰石还有另外一种晶体结构:单斜晶系。
羟磷灰石是人体骨骼组织的主要无机组成成分。
植入体内后,钙和磷会游离出材料表面被身体组织吸收,并生长出新的组织。
有研究证明羟磷灰石的晶粒越细,生物活性越高。
牙齿表面的珐琅质的主要成份亦是羟磷灰石。
羟基磷灰石可由自己制作的方式来取得。
制作羟磷灰石粉末的方法很多,比较常见的方法有沉淀法、水解法、水热法及固相法等。
其中水热法的设备适比较复杂而且昂贵。
相较于水热法,沉淀法则是操作简单、设备便宜、产能大,目前大多数以此种方法为主。
但是沉淀法有一些缺点,像是粉末容易聚集在一起、质量不稳定等等。
二、制备方法:可由Ca3(PO4)2和CaCO3按拟定比例在高温下反应同时注入高压水蒸气,粉末经NH4Cl水溶液洗涤后干燥而成,分多孔型和致密型两种,前者是粉料发泡后于1250℃烧结制备,后者成型后于1250℃烧结而成。
广泛存在于人体和牛乳中,人体内主要分布于骨骼和牙齿中,牛乳内主要分布于酪蛋白胶粒和乳清中。
三、实验操作原料:Ca(NO3)2H2O1.配液:按照Ca/P=1.67的比值称量称9.6g加入1000ml蒸馏水溶解,称Ca(NO3)2H2O118g加入1000ml蒸馏水溶解。
Ca(NO3)2H2O118g加入1000ml蒸馏水溶解。
2.调节PH:用氨水分别将上述配制好的溶液的PH值调节到11.5~12,加入的氨水相对较多。
3.反应:把缓慢倒入液中,边倒边用电搅拌器搅拌。
(现象:溶液逐渐变为乳白色。
羟基磷灰石材料的合成及应用羟基磷灰石材料是生物医学领域中非常常见的一种生物陶瓷材料,广泛应用于植入性医学器材和骨子结构修复、组织工程等方面。
本文将介绍羟基磷灰石材料的合成方法及其应用。
1. 羟基磷灰石材料的合成羟基磷灰石材料可通过多种方法进行制备,主要有化学共沉淀法、溶胶-凝胶法、水热法和高温固相合成法等。
其中,化学共沉淀法和溶胶-凝胶法是比较常用的两种方法。
1.1 化学共沉淀法在化学共沉淀法中,将钙离子和磷酸离子以一定的比例混合,加入一定量的氢氧化钠,反应完毕后,产生的固体沉淀物即为羟基磷灰石的前体物质。
接着,将前体物质放入焙烧炉中进行煅烧,生成最终的羟基磷灰石材料。
1.2 溶胶-凝胶法在溶胶-凝胶法中,将适量的羟基磷灰石前体溶解于甲醇、乙醇等有机溶剂中,得到溶胶。
再将溶胶极缓慢地加热到一定温度,使其凝胶化。
最后,将凝胶体焙烧,得到最终的羟基磷灰石材料。
2. 羟基磷灰石材料的应用由于其良好的生物相容性和生物活性,羟基磷灰石材料广泛应用于骨组织工程、口腔种植、骨折治疗、植入性医学器材等领域。
2.1 骨组织工程骨组织工程是利用生物材料和骨细胞形成人工骨组织的技术,羟基磷灰石材料具有优异的生物相容性,可以促进骨细胞的增殖和分化,有助于骨组织的修复和再生。
2.2 口腔种植羟基磷灰石材料在口腔种植中应用广泛,可以用于修复牙齿、修复颌骨缺损、种植人工牙根等,具有良好的生物相容性和组织相容性。
2.3 骨折治疗羟基磷灰石材料具有良好的生物相容性和生物活性,可以被人体吸收和代谢,有助于骨折的修复和再生。
2.4 植入性医学器材羟基磷灰石材料可以制成人工关节、人工骨头等植入性医学器材,具有优异的生物相容性和生物活性,有助于植入器材的耐久性和效果。
总之,羟基磷灰石材料具有良好的生物相容性和生物活性,在医学领域中应用广泛,可以用于组织工程、口腔种植、骨折治疗、植入性医学器材等领域。
在未来,羟基磷灰石材料的应用前景将更加广阔。
溶胶-凝胶法制备纳米羟基磷灰石的研究
溶胶-凝胶法是一种制备纳米材料的重要方法之一,其基本原理是通过化学反应在溶液中形成胶体溶胶,随后通过干燥、煅烧等处理方式制备出纳米材料。
纳米羟基磷灰石是一种重要的生物医用材料,具有优异的生物相容性和生物活性,广泛应用于骨科、牙科等领域。
利用溶胶-凝胶法制备纳米羟基磷灰石的过程中,主要涉及以下几个步骤:
1. 制备前驱液:将适量的羟基磷灰石粉末加入到醋酸、乙醇等溶剂中,加适量的表面活性剂溶解均匀。
2. 溶胶化:在适当的条件下搅拌前驱液,使其转变为均匀分散的胶体溶胶。
3. 凝胶化:通过加热、干燥等方式,使胶体溶胶逐渐转变成凝胶体。
4. 煅烧:将凝胶体进行高温处理,使得纳米羟基磷灰石形成。
通过优化上述步骤的条件,如控制pH值、添加络合剂等,可以得到形态规整、尺寸均一的纳米羟基磷灰石。
溶胶-凝胶法制备的纳米羟基磷灰石具有优异的生物相容性、生物降解性和生物活性,有望成为生物医用材料领域的研究热点。
含镁羟基磷灰石的制备与性能研究镁羟基磷灰石(Mg-CHAP)是一种重要的生物陶瓷材料,具有良好的生物相容性和生物活性。
它主要由镁元素和羟基磷酸盐组成,可以作为骨科植入物、修复材料和生物活性涂层等方面的材料。
本文将探讨Mg-CHAP的制备方法及其性能研究,为其在生物医学领域的应用提供理论基础。
一、Mg-CHAP的制备方法目前,制备Mg-CHAP的方法主要包括溶胶-凝胶法、共沉淀法、离子交换法和水热法等。
这些方法在制备过程中可以控制镁元素和羟基磷酸盐的比例和形貌,从而调节材料的性能。
溶胶-凝胶法是一种常用的制备方法,其步骤包括:将镁盐和磷酸盐混合溶解于适当的溶剂中,形成溶胶;通过溶胶凝胶转化为固体材料;将固体材料热处理得到Mg-CHAP。
这种方法可以控制材料的孔径和孔隙度,从而影响其生物活性。
另一种常用的制备方法是共沉淀法,即将镁盐和磷酸盐溶液混合,加入碱性溶液沉淀析出Mg-CHAP。
通过控制溶液的pH值和沉淀反应的速率,可以得到不同形貌和晶相结构的Mg-CHAP。
离子交换法是一种通过阳离子和阴离子的相互置换实现材料结构调控的方法。
通过调节离子交换的条件,可以改变Mg-CHAP的晶相结构和生物活性。
水热法是一种在高温高压环境下进行合成的方法,通过水热条件下的反应,可以得到高纯度的Mg-CHAP。
这种方法对反应条件的控制要求较高,但可以得到具有优良的生物活性和生物相容性的材料。
二、Mg-CHAP的性能研究Mg-CHAP作为一种生物陶瓷材料,具有优异的力学性能、生物相容性和生物活性。
其力学性能主要包括抗压强度、弯曲强度和断裂韧性等指标,这些指标直接影响着材料的应用性能。
生物相容性是评价生物陶瓷材料是否适用于体内应用的重要指标,包括材料对细胞的毒性、组织的炎症反应和血管生成等。
研究表明,Mg-CHAP对细胞有良好的生物相容性,可以促进骨细胞的黏附和增殖。
生物活性是衡量材料在体内是否能与骨组织发生有效交互的指标,主要通过材料表面的羟基磷灰石形成速度和表面矿化程度来评价。
羟基磷灰石研究进展羟基磷灰石(Hydroxyapatite,HA)是一种广泛应用于生物医学领域的无机材料,具有良好的生物相容性和生物活性。
近年来,随着生物医学科学的发展,羟基磷灰石的研究也逐渐深入,涉及材料制备、表征方法、组织工程等多个方面。
本文将对羟基磷灰石研究的进展进行综述,以期对相关领域的研究提供参考和启示。
首先,羟基磷灰石的制备方法是研究的重点之一、目前,常见的制备方法包括溶液法、固相法和凝胶法等。
溶液法是一种常见的制备羟基磷灰石的方法,通过控制反应温度、pH值和配方比例等条件,可以获得具有一定形貌和尺寸的羟基磷灰石颗粒。
固相法主要通过固相反应得到羟基磷灰石,具有高温高压条件和长时间反应的特点,得到的羟基磷灰石晶体质量较高。
凝胶法是一种较为新颖的羟基磷灰石制备方法,通过凝胶的形成和热处理过程,可以获得具有高孔隙率和较大比表面积的羟基磷灰石材料。
此外,还有一些新的制备方法也在不断涌现,如微乳液法、电化学沉积法和水热法等,这些方法可以制备出形貌和结构更加复杂的羟基磷灰石材料。
其次,羟基磷灰石的表征方法也在不断发展。
传统的表征方法主要包括X射线衍射、扫描电子显微镜和傅里叶变换红外光谱等。
X射线衍射可以得到羟基磷灰石的晶体结构信息,如结晶度、晶粒大小和结晶方向等。
扫描电子显微镜可以观察到羟基磷灰石的表面形貌和孔隙结构等。
傅里叶变换红外光谱可以分析羟基磷灰石的化学组成和键合状态等。
然而,这些传统的表征方法对于复杂的羟基磷灰石材料已经显得有些局限。
因此,近年来,一些新的表征方法也开始应用于羟基磷灰石的研究,如透射电子显微镜、原子力显微镜和拉曼光谱等,这些方法可以提供更加全面和细致的羟基磷灰石材料表征信息。
最后,羟基磷灰石在组织工程领域的应用也备受关注。
羟基磷灰石具有与骨组织相似的化学成分和结构,因此可以作为骨缺损修复的理想替代材料。
目前,常见的羟基磷灰石在组织工程方面的应用包括骨组织工程支架、骨修复材料和骨转移负载等。
羟基磷灰石水热法制备羟基磷灰石是一种重要的生物陶瓷材料,被广泛应用于医学、牙科等领域。
其中,水热法是制备羟基磷灰石的一种常见方法。
下面将从原理、实验步骤、反应条件、优点和不足五个方面介绍羟基磷灰石水热法的制备方法。
一、原理羟基磷灰石的制备方法有多种,其中水热法是一种比较常见的方法。
水热法通过在高温高压下,在钙和磷酸盐的水溶液中反应制备羟基磷灰石。
二、实验步骤具体实验步骤如下:(1)将Ca(NO3)2和(NH4)2HPO4按1:1的摩尔比放入三口瓶中。
(2)加入适量的蒸馏水,使溶液浓度为0.1mol·L-1。
(3)将瓶子密封,放入热水槽中,温度控制在180℃,继续反应24h。
(4)反应结束后,用蒸馏水洗涤沉淀,并在105℃干燥4h,制备出羟基磷灰石。
三、反应条件羟基磷灰石的水热法制备需要控制反应条件,对于反应的成功与否有着非常大的影响。
(1)反应温度:在制备羟基磷灰石的反应中,反应温度要控制在180℃左右。
(2)反应时间:反应时间一般为24h,如果反应时间不足,羟基磷灰石的结晶度会降低。
(3)溶液浓度:溶液浓度过低或过高都不利于羟基磷灰石晶体生长。
四、优点和不足水热法制备羟基磷灰石有以下的优点:(1)制备简单方便,操作容易。
(2)反应速度快,反应时间短。
(3)制备出的羟基磷灰石结晶度高,且形态规则。
但是,水热法也存在一些不足之处:(1)制备出来的羟基磷灰石器形分散,大小不一。
(2)虽然反应时间短,但反应温度要求较高。
(3)得到的产物纯度较低。
五、结论羟基磷灰石是一种非常重要的生物陶瓷材料,其水热法制备方式因其制备简单,反应速度快,羟基磷灰石的结晶度高等优点优点被广泛采用。
但是,其不足之处也应引起重视,相关科研人员需要因材施策,根据实际情况选择合理的制备方法。
山 东 化 工 收稿日期:2020-04-30基金项目:沈阳师范大学2019年大学生创业创新训练计划项目(201910166346);沈阳师范大学校内项目(XNL2016002);沈阳师范大学博士启动项目(BS201805)作者简介:蒲宇彤,女,沈阳师范大学本科生;通讯作者:苗雨欣,博士,讲师,硕士研究生导师,主要从事纳米材料的控制合成及其在环境催化领域的研究。
介孔羟基磷灰石的制备及其应用的研究进展蒲宇彤,门健博,王丽莹,杨 爽,苗雨欣(沈阳师范大学化学化工学院能源与环境催化研究所,辽宁沈阳 110034)摘要:介孔羟基磷灰石材料是一种新型功能材料,其特有的结构和性质让它备受各界关注。
以下是对介孔羟基磷灰石的制备及其应用进行综述,讨论了介孔羟基磷灰石的研究进展并展望了其发展趋势。
关键词:介孔羟基磷灰石;材料;制备;应用中图分类号:TB34 文献标识码:A 文章编号:1008-021X(2020)13-0064-011 介孔羟基磷灰石简介羟基磷灰石,化学式为Ca10(PO4)6(OH)2,依据国际理论和应用化学联合会(IUPAC)的定义,微孔是孔径小于2nm的孔;孔径大于50nm的孔叫做大孔;介孔则是指孔径在2~50nm之间的孔。
羟基磷灰石的微孔是由天然孔道结构形成,具有较强的表面吸附性和离子交换性。
为了更大程度地发挥其性质,可通过科学技术手段将羟基磷灰石制成介孔材料。
而所制得的介孔羟基磷灰石则具有三维孔道结构和巨大比表面积和孔体积。
介孔羟基磷灰石在吸附、催化、医学、分离、生物材料等领域皆具有不错的发展前景,具有极大的科学研究价值。
2 介孔羟基磷灰石的制备在文献研究中,合成介孔羟基磷灰石的方法有很多,目前主要分为两大类:硬模板法和软模板法[1]。
这两大类方法的具体举措也有很多,例如:水热合成法、冷冻干燥法、化学沉淀法以及溶胶凝胶与均匀沉淀法等。
其中化学沉淀法和水热合成法相对更为简单方便,应用也更为广泛[2]。
羟基磷灰石生物陶瓷材料的制备及其新进展在我们生活的世界里,有一种非常神奇的材料,叫做羟基磷灰石生物陶瓷材料。
这种材料就像是一个小小的魔法精灵,在很多地方都发挥着特别重要的作用!今天,就一起来了解一下它是怎么制作出来的,还有它最近又有了哪些新的进展。
一、羟基磷灰石生物陶瓷材料是什么?想象一下,我们的身体就像一个超级复杂又神奇的小宇宙,里面有很多不同的“小零件”在努力工作。
羟基磷灰石生物陶瓷材料,其实是一种和我们身体很亲近的材料。
它和我们骨头里的一种成分很相似!就好像是骨头的“好朋友”,可以和我们的身体相处得非常融洽。
比如说,当我们不小心受伤,骨头出现了一些小问题的时候,这种材料就有可能派上用场,帮助我们的骨头更好地恢复健康。
二、它是怎么制作出来的。
制作羟基磷灰石生物陶瓷材料,就像是在做一个特别有趣的小手工。
有一种常见的方法叫做“粉末烧结法”。
这就好比是在玩搭积木。
首先,科学家们要把一些含有羟基磷灰石成分的原料磨成很细很细的粉末,这些粉末就像是一个个小小的积木块。
然后,把这些粉末放在一个特殊的模具里,把它们压得紧紧的,就像我们把积木块一块一块地搭在一起,搭成我们想要的形状。
最后,再把这个压好的“积木堆”放到高温的环境里去“烤一烤”,经过高温的处理,这些粉末就会紧紧地粘在一起,变成了我们需要的羟基磷灰石生物陶瓷材料。
还有一种方法叫“水热合成法”。
这就像是在煮一锅神奇的汤。
科学家们把一些原料放到一个装满水的容器里,然后给这个容器加热,就像我们煮开水一样。
在这个过程中,原料就会在水里发生奇妙的变化,慢慢地形成羟基磷灰石的小颗粒。
等这些小颗粒长大了,就可以把它们收集起来,经过一些处理,也能变成我们想要的生物陶瓷材料。
三、它的新进展又是什么?现在,科学家们还在不断地研究羟基磷灰石生物陶瓷材料,让它变得更加厉害!比如说,他们想让这种材料变得更加强壮和耐用,就像给它穿上了一层超级坚固的“铠甲”。
这样一来,当它在我们身体里工作的时候,就不容易被损坏。
羟基磷灰石做湿敏半导体材料引言羟基磷灰石广泛应用于医学领域,如人工骨骼和牙科材料。
然而,近年来,研究者们逐渐发现其在电子工程领域的潜力。
羟基磷灰石具有湿敏性,能够对环境湿度做出响应,并在湿润环境下表现出半导体的特性。
本文将探讨羟基磷灰石作为湿敏半导体材料的研究进展以及其在相关应用中的潜力。
羟基磷灰石的结构和特性羟基磷灰石是一种无机化合物,化学式为Ca10(PO4)6(OH)2。
其晶体结构由磷酸根离子和羟基离子构成,钙离子填充在晶体的空隙中。
这种结构赋予了羟基磷灰石良好的生物相容性和化学稳定性。
除了在医学领域的应用,羟基磷灰石还被发现具有湿敏性。
湿敏材料是指能够对湿度作出响应的材料。
当湿度升高时,羟基磷灰石中的结构会发生变化,导致电导率增加。
这种湿敏性使羟基磷灰石有可能应用于湿润环境下的电子器件中。
羟基磷灰石作为湿敏半导体材料的研究进展电学性能的调控羟基磷灰石作为湿敏半导体材料的一个关键问题是如何调控其电学性能。
研究者们通过控制羟基磷灰石的制备方法、添加不同的掺杂物以及调节湿度等途径来实现对电学性能的调控。
制备方法的优化羟基磷灰石的结构和形貌对其电学性能具有重要影响。
研究者们通过改变制备条件,如反应温度、溶剂选择等,来优化羟基磷灰石的结构和形貌。
例如,采用水热法制备的羟基磷灰石具有较高的电导率和湿敏性能。
掺杂物的引入掺杂可以有效调控羟基磷灰石的电学性能。
研究者们引入不同的掺杂物,如钇、镍等,来改变羟基磷灰石的电子结构和导电机制。
掺杂可以增加羟基磷灰石的载流子浓度,并改变其导电型态。
应用潜力羟基磷灰石作为湿敏半导体材料具有广阔的应用前景。
以下是羟基磷灰石在几个领域的应用潜力介绍:湿敏传感器羟基磷灰石基于其湿敏性可以应用于湿润环境下的湿敏传感器。
传感器可以通过测量羟基磷灰石的电导率的变化来实现湿度的测量。
这种湿敏传感器广泛应用于农业、环境监测等领域。
湿敏电子器件羟基磷灰石的湿敏性使其有望应用于湿润环境下的各种电子器件,如湿敏电容器和湿敏电阻器。