则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
注意:有界性是数列收敛的必要条件. 推论 无界数列必定发散.
2、唯一性
定理2 收敛的数列极限唯一。
证 设 l n ix n m a ,又 l n ix n m b , 由定义,
0,N 1,N 2.使当 得 n N 1 时x 恒 n a 有 ;
定理2 收敛的数列极限唯一。
证 法二 设 l n ix n m a ,又 l n ix n m b ,
假设a
b,不
妨
设
a
b,则 可 取 0
a
2
b
0,
lim
n
xn
a
对于0
0,N 1,n
N1,
xn a
0,
xn
a
0
a
2
b
,
只有(至 有多 限 N 个 只 )个 落有 在 . 其外
例1 证l明 im n(1)n11. n n
证
xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11
n
n(1)n1 n
Xn
1
1 2n
1
数 定义:按自然数1,2,3,编号依次排列的一列数
列
x1, x2,, xn,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn称为通项(一般项).数列(1)记为{xn}.
例如 2,4,8, ,2n, ; { 2 n }