成都石室中学2019届高三上学期入学考试数学(文)试题+Word版含答案
- 格式:doc
- 大小:1.41 MB
- 文档页数:10
石室中学高2019届2018~2019学年上期入学考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i iiz 211++-=,则=||z A .0 B .12C .1D .2 2.设集合{})2(log |2x y x A -==,若全集A U =,{}21|<<=x x B ,则U C B = A . (),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x <-B .00x ∃>,001ln 1x x <-C .00x ∃≤,001ln 1x x <-D . 0x ∀>,1ln 1x x≤- 4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是 A .3 B .7 C .11 D .335.在区间[0,2]上随机取一个数x ,使232sin≥x π的概率为 A .13 B .12C .23D .346. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的体积为A. 2B.32C. 1D. 462+7.已知等比数列{a n }的前n 项和为S n ,2531=+a a 且4542=+a a ,则=nn a S A .14n - B .41n - C .12n - D .21n -8.已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,()11cos f x x=-,则下列结论正确的是 A. ()32129f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B. ()19322f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭C. ()22913f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭ D. ()19223f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭9.已知约束条件为32402020x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,若目标函数y kx z +=取最大值时的最优解有无数多个,则k 的值为A. 1B. 1-C. 32-D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为 A .4 B .6 C .8 D .1011.向量c b,a,满足:||4=a ,||42=b ,b 在a 上的投影为4,()()0-⋅-=a c b c ,则⋅b c 的最大值是A. 24B. 2824-C. 2824+D. 2812.已知函数()(1)(2)e e x f x m x x =----,若关于x 的不等式0)(>x f 有且只有一个正整数解,则实数m 的最大值为A .3e e 2+B .2e e 2+C .3e e 2-D .2e e 2-二、填空题:本大题共4小题,每小题5分,共20分.13.若nxx )1(-的展开式中第3项和第5项的二项式系数相等,则展开式中的常数项为 .14. 直线:2(5)l y x =-过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C 只有一个公共点,则C的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16.函数2()3sin 2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成如下频率分布直方图,已知实体店与网店销售量相互独立.实体店销售量(单位:件)频率组距0.0400.0340.0320.0240.0200.0140.012706560555045403530250频率组距网店销售量(单位:件)70656055504540350.0680.0460.0440.0200.0100.0080.004(Ⅰ)若将上述频率视为概率,已知实体店每天销售量不低于50件可盈利,网店每天销量不低于45件可盈利,求任取一天,实体店和网店都盈利的概率;(Ⅱ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).(Ⅲ)若将上述频率视为概率,记该服装店未来三天实体店销售量不低于40件的天数为X ,求随机变量X 的分布列和数学期望.18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知4,2,2cos ,c b c C b === ,D E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(I)求线段AD 的长; (II)求ADE ∆的面积.19.(本小题满分12分)直播答题是最近很热门一款游戏,其答题规则如下:每次都有12道题,每题三个选项中恰有一个正确选项,若中途答错,则退出游戏,若正确回答完12题就可以平分当期奖金. 随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:男 女 认为直播答题模式可持续 360 280 认为直播答题模式不可持续240120(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系? (II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答题游戏中,前8个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该网友本场答题个数X 的分布列,并求该网友当期可平分奖金的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82820.(本小题满分12分)如图O 为坐标原点,圆 22:4,O x y +=点 ),(),,(030321F F -,以线段M F 1为直径的圆N 内切于圆O ,切点为P ,记点M 的轨迹为曲线C .(I )证明:12||||F M F M +为定值,并求曲线C 的方程;(II )设Q 为曲线C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与曲线C 的上半部分交于R 点,求四边形21F RQF 面积的取值范围.21.(本小题满分12分)已知函数()ln m xf x x=,()()1g x n x =-+,其中0mn ≠. (I )若m n =,讨论()()()h x f x g x =+的单调区间; (II )若()()0f x g x +=的两根为12,x x ,且12x x >,证明:()121220g x x mx x ++<+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线),(:200παραθ<<≥=l 分别交21C C , 于N M ,两点,求||||OM ON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试数学参考答案(理科)1-5:CBBCA 6-10:ADDBA 11-12:CA 13、-20 14、5 15、13 16、7(3,]217解:(Ⅰ)由题意,任取一天,实体店盈利的概率1(0.0320.0200.0122)50.38P =++⨯⨯= 网店盈利的概率21(0.0040.020)50.88P =-+⨯= 由实体店和网店销售量相互独立, 故任取一天,实体店和网店都盈利的概率0.380.880.3344.P =⨯= .…………3分 (Ⅱ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故网店销售量的中位数的估计值为0.5-0.3450+552.350.34⨯≈(件)…………6分(Ⅲ)由题意,实体店销售量不低于40件的概率31(0.0120.0140.024)54P =-++⨯=……7分故3~(3,)4X B ,X 的可能取值为0,1,2,3.相应的概率为()3033101464P X C ⎛⎫==⋅-= ⎪⎝⎭, ()2133********P X C ⎛⎫==⋅-= ⎪⎝⎭, ()22333272()14464()P X C ==⋅-=, ()3333273()464P X C ==⋅=,分布列为X 0 1 2 3 P16496427642764…………11分因为3~(3,)4X B ,所以期望为39(X)344E =⨯=.…………12分18.解:(1)根据题意,2=b ,4=c ,b C c =cos 2,则412cos ==c b C ; 又由4141642cos 2222=-+=-+=a a ab c b a C ,解可得4=a即4=BC ,则2=CD , 在ACD ∆中,由余弦定理得:6cos 2222=⋅-+=C CD AC CD AC AD , 则6=AD ;…………………(6分)(2)根据题意,AE 平分BAC ∠,则21==AB AC BE CE , 变形可得:3431==BC CE ,41cos =C ,则415sin =C , 615=-=∆∆∆ACE ACD ADE S S S …………………(12分) 19、解析:(I )依题意,2K 的观测值()210003601202402801257.87960040064036012k ⨯⨯-⨯==>⨯⨯⨯, 故可以在犯错误的概率不超过0.5%的前提下,认为对直播大题模式的态度与性别有关系;…………5分 (Ⅱ)由题意X 的取值为10,11,12,且后四个题每个题答对的概率为13.………………6分224(X 10);339P ==⨯=2121228(X 11)33333327P ==⨯⨯+⨯⨯=;2233331217(X 12)()()33327P C C ==⨯+=.故X 的分布列为…………………………………………9分记该网友当期可平分奖金为事件A ,则3344441211()()()3339P A C C =⨯+=. 故该网友当期可平分奖金的概率为19. ………………………12分20、解:(1)由题知:O ,P ,N 三点共线,连2MF则4222221=+=+=+||||||||||||ON NP ON MN MF MF , 所以点M 的轨迹是以21F F ,为焦点,长轴长为4的椭圆,其中,,,,X 10 11 12 P49827727则动点M 的轨迹方程是.……………………………………4分(2)如图:PR F QPR PQMR F PQF S S S S 12121===………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x , ),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:0132422=-++ty y t )(由弦长公式可得:41441616122222++=++⋅+=t t t t t PR )(||又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以],(20∈S ……………………12分21、解:(Ⅰ)由已知得()()()ln (1)xh x =f x +g x =m x x--, 所以()2221ln 1(1ln )x h'x =m =x x x xm -⎛⎫--- ⎪⎝⎭,……………2分 当01x <<时,2210,ln 0,1ln 0x x x x ->->∴-->;当1x >时,2210,ln 0,1ln 0x x x x -<-<∴--<.……………3分 故若0m >,)(h x 的单调递增区间为()0,1,单调递减区间为()1,+∞;若0m <,)(h x 的单调递减区间为()0,1,单调递增区间为()1,+∞.……………5分 (Ⅱ)依题意()111ln 1x m n x x =+, ()2111ln ...+m x n x x ∴=①, 同理,()2222+ln ...m x n x x =②由①-②得,()()()221112212122l 1+nx m n x x x x n x x x x x =--=-++,……………7分 ()()121212ln1x m x n x x x x ∴++=-,()11212221ln g (1)xx x n x x x m m x x +-++==-,……………8分要证()121220g x x mx x ++<+,即证:122112ln 20xx x x x x +<-+,即证:11212221ln+01x x x x x x ->+(),……………9分 令121x t x =>,即证()1ln +20,11t p t t t t -=>∀>+. ()()()()222114'011t p t t t t t -=-=>++,……………10分 ()p t ∴在区间[)1,∞+上单调递增,()()10,1p t p t ∴>=∀>成立.故原命题得证.……………12分22. 解:(1) 因为,,,所以 的极坐标方程为04=-+θρθρsin cos , 因为 的普通方程为,即,对应极坐标方程为.……………………5分(2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以)cos (sin sin ||||αααρρ+==2112ON OM=414242+-)sin(πα 又,),(43442πππα-∈-,所以当 242ππα=-,即83πα=时,||||ON OM 取得最大值 412+……10分23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x . 又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x . 又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x . 又∵3>x ,∴53≤<x . 综上所得,51≤≤x .∴原不等式的解集为]5,1[.…………………(5分)(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m ,nn m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=+≥n m , 原不等式得证.…………………(10分)。
"四川省成都石室中学2019届高三数学上学期入学考试试题 理 "一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i iiz 211++-=,则=||z A .0 B .12C .1 D2.设集合{})2(log |2x y x A -==,若全集A U =,{}21|<<=x x B ,则U C B = A . (),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x <-B .00x ∃>,001ln 1x x <-C .00x ∃≤,001ln 1x x <-D . 0x ∀>,1ln 1x x≤- 4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是 A .3 B .7 C .11 D .335.在区间[0,2]上随机取一个数x ,使232sin≥x π的概率为 A .13 B .12C .23D .346. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的体积为 A. 2 B.32C. 1D. 4+ 7.已知等比数列{a n }的前n 项和为S n ,2531=+a a 且4542=+a a ,则=nn a SA .14n -B .41n -C .12n -D .21n -8.已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,9.已知约束条件为32402020x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,若目标函数y kx z +=取最大值时的最优解有无数多个,则k 的值为A. 1B. 1-C.D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为A .4B .6C .8D .10的最大值是A. 24B. 2824-C. 2824+D. 2812.已知函数()(1)(2)e e xf x m x x =----,若关于x 的不等式0)(>x f 有且只有一个正整数解,则实数m 的最大值为A .3e e 2+B .2e e 2+C .3e e 2-D .2e e 2-二、填空题:本大题共4小题,每小题5分,共20分.13.若nxx )1(-的展开式中第3项和第5项的二项式系数相等,则展开式中的常数项为 .14.直线:2(l y x =-过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C只有一个公共点,则C 的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16.函数2()2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.(本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成如下频率分布直方图,已知实体店与网店销售量相互独立.实体店销售量(单位:件)0网店销售量(单位:件)(Ⅰ)若将上述频率视为概率,已知实体店每天销售量不低于50件可盈利,网店每天销量不低于45件可盈利,求任取一天,实体店和网店都盈利的概率;(Ⅱ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).(Ⅲ)若将上述频率视为概率,记该服装店未来三天实体店销售量不低于40件的天数为X ,求随机变量X 的分布列和数学期望.18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知4,2,2cos ,c b c C b === ,D E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(I)求线段AD 的长; (II)求ADE ∆的面积.19.(本小题满分12分)直播答题是最近很热门一款游戏,其答题规则如下:每次都有12道题,每题三个选项中恰有一个正确选项,若中途答错,则退出游戏,若正确回答完12题就可以平分当期奖金. 随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系?(II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答题游戏中,前8个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该网友本场答题个数X 的分布列,并求该网友当期可平分奖金的概率. 参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:20.(本小题满分12分)如图O 为坐标原点,圆 22:4,O x y +=点 ),(),,(030321F F -,以线段M F 1为直径的圆N 内切于圆O ,切点为P ,记点M 的轨迹为曲线C .(I )证明:12||||F M F M +为定值,并求曲线C 的方程;(II )设Q 为曲线C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与曲线C 的上半部分交于R 点,求四边形21F RQF 面积的取值范围.21.(本小题满分12分),()()1g x n x =-+,其中0mn ≠. (I )若m n =,讨论()()()h x f x g x =+的单调区间; (II )若()()0f x g x +=的两根为12,x x ,且12x x >,(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线),(:200παραθ<<≥=l 分别交21C C , 于N M ,两点,求||||OMON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试 数学参考答案(理科)1-5:CBBCA 6-10:ADDBA 11-12:CA 13、-20 14、5 15、13 16、7(3,]217解:(Ⅰ)由题意,任取一天,实体店盈利的概率1(0.0320.0200.0122)50.38P =++⨯⨯= 网店盈利的概率21(0.0040.020)50.88P =-+⨯= 由实体店和网店销售量相互独立, 故任取一天,实体店和网店都盈利的概率0.380.880.3344.P =⨯= .…………3分 (Ⅱ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>分(Ⅲ)由题意,实体店销售量不低于40件的概率31(0.0120.0140.024)54P =-++⨯=……7分故3~(3,)4X B ,X 的可能取值为0,1,2,3.相应的概率为()3033101464P X C ⎛⎫==⋅-= ⎪⎝⎭, ()2133********P X C ⎛⎫==⋅-=⎪⎝⎭, ()22333272()14464()P X C ==⋅-=, ()3333273()464P X C ==⋅=,分布列为…………11分因为3~(3,)4X B ,所以期望为39(X)344E =⨯=.…………12分18.解:(1)根据题意,2=b ,4=c ,b C c =cos 2,则412cos ==c b C ; 又由4141642cos 2222=-+=-+=a a ab c b a C ,解可得4=a即4=BC ,则2=CD , 在ACD ∆中,由余弦定理得:6cos 2222=⋅-+=C CD AC CD AC AD , 则6=AD ;…………………(6分)(2)根据题意,AE 平分BAC ∠,则21==AB AC BE CE , 变形可得:3431==BC CE ,41cos =C ,则415sin =C , 615=-=∆∆∆ACE ACD ADE S S S …………………(12分) 19、解析:(I )依题意,2K故可以在犯错误的概率不超过0.5%的前提下,认为对直播大题模式的态度与性别有关系;…………5分(Ⅱ)由题意X 的取值为10,11,12,且后四个题每个题答对的概率为13.………………6分224(X 10);339P ==⨯=2121228(X 11)33333327P ==⨯⨯+⨯⨯=;2233331217(X 12)()()33327P C C ==⨯+=.故X 的分布列为…………………………………………9分记该网友当期可平分奖金为事件A ,则3344441211()()()3339P A C C =⨯+=.故该网友当期可平分奖金的概率为19. ………………………12分20、解:(1)由题知:O ,P ,N 三点共线,连2MF则4222221=+=+=+||||||||||||ON NP ON MN MF MF , 所以点M 的轨迹是以21F F ,为焦点,长轴长为4的椭圆,其中,,,,则动点M 的轨迹方程是.……………………………………4分(2)如图:PR F QPR PQMR F PQF S S S S 12121===………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x , ),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:0132422=-++ty y t )(由弦长公式可得:41441616122222++=++⋅+=t t t t t PR )(||又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以],(20∈S ……………………12分21、解:分 当01x <<时,2210,ln 0,1ln 0x x x x ->->∴-->;当1x >时,2210,ln 0,1ln 0x x x x -<-<∴--<.……………3分 故若0m >,)(h x 的单调递增区间为()0,1,单调递减区间为()1,+∞;若0m <,)(h x 的单调递减区间为()0,1,单调递增区间为()1,+∞.……………5分()2111ln ...+m x n x x ∴=①, 同理,()2222+ln ...m x n x x =②由①-分分122112ln 20xx x x x x +<-+,即证:11212221ln+01x x x x x x ->+(),……………9分 令121x t x =>,即证()1ln +20,11t p t t t t -=>∀>+. ()1'p t t =分()p t ∴在区间[)1,∞+上单调递增,()()10,1p t p t ∴>=∀>成立.故原命题得证.……………12分22. 解:(1) 因为,,,所以 的极坐标方程为04=-+θρθρsin cos , 因为 的普通方程为 ,即,对应极坐标方程为.……………………5分(2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以- 11 - )cos (sin sin ||||αααρρ+==2112ON OM=414242+-)sin(πα又,),(43442πππα-∈-,所以当 242ππα=-,即83πα= 时,||||ON OM 取得最大值 412+……10分23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x .又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x .又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x .又∵3>x ,∴53≤<x .综上所得,51≤≤x .∴原不等式的解集为]5,1[.…………………(5分)(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m , n n m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=+≥n m ,原不等式得证.…………………(10分)。
成都石室中学高2020届2019—2020学年度上期入学考试化学试卷时间:100分钟满分100分试卷说明:请将答案写在答题卷上!可能用到的相对原子质量:H-1 Li-7 C-12N-14 O-16 Na-23 Mg-24 Cl-35.5S-32 Co-59 Mn-55Ⅰ卷(满分44分)一.选择题(本小题包括22个小题,每题2分,共44分,每小题只有一个....正确选项)1.化学与生活密切相关,下列有关说法正确的是( )A.《格物粗谈》记载“红柿摘下未熟,每篮用木瓜三枚放入,得气即发,并无涩味。
”文中的“气”是指乙烷B.SO2具有漂白性,工业上常用来漂白纸浆、毛、丝等。
此外,SO2还能用于杀菌、消毒等C.铁在潮湿的空气中放置,易发生化学腐蚀而生锈D.地球上99%的溴元素以Br2形式存在于海水中2.常温下,下列各组离子在给定条件下一定能大量共存的是( )A.由水电离的c(H+)=1.0×10-13mol/L的溶液的溶液中:Mg2+、Al3+、Cl-、S2O32-B.c(OH-)/c(H+)=1.0×1012的溶液中: Ca2+、NH4+、Fe3+、Cr2O72-C.澄清透明的溶液中:H+、Na+、NO3-、MnO4-D.滴加甲基橙显黄色的溶液中:Cu2+、Ba2+、HCO3-、AlO2-3.下列离子方程式或电离方程式正确的是( )A.NaHSO3溶液呈酸性:NaHSO3=Na++H++SO2-3B.在Na2S2O3溶液中滴加稀硝酸:2H++S2O2-3=S↓+SO2↑+H2OC.工业制漂白粉的反应:Cl2+2OH﹣=ClO﹣+Cl﹣+H2OD.向Na2SiO3溶液中通入少量CO2:SiO2-3+CO2+H2O=H2SiO3↓+CO2-34.柠檬酸是无色晶体,无臭、味极酸,分子结构如图所示。
广泛用于食品业、化妆业等。
其钙盐在冷水中比在热水中易溶解。
下列有关柠檬酸的说法正确的是( )A.易溶于水,其分子式为C6H6O7B.1mol该物质与足量的钠反应最多生成4molH2C.该物质可以发生取代反应生成环状化合物D.相同官能团的异构体有9种5.下列实验操作与现象都正确,且能得出对应结论的是( )32到一种黑色分散系,其中分散质粒子是直径约为9.3nm的金属氧化物,下列有关说法中正确的是( )A.可用过滤的方法将黑色金属氧化物与Na+分离开B.该分散系的分散质为Fe2O3,具有丁达尔效应C.加入NaOH时发生的反应可能为:Fe2++2Fe3++8OH—=Fe3O4+4H2OD.在电场作用下,阴极附近分散系黑色变深,则说明该分散系带正电荷7. 化学在日常生活和生产中有着重要的应用。
成都石室中学高2020届2019~2020学年上期入学考试数学试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足20171zi i ,其中i 为虚数单位,则z ()A. 1iB. 1iC. 1iD. 1i【答案】A【解析】【详解】由2017i 1i z,得50420174i 1i i i 1i 1z i ,则1i z ,故选:A.2.己知集合2ln 34A x y x x ,222x B y y ,则A B ()A. 0,1 B. 4,4 C. ,4 D. 4,【答案】B【解析】【分析】由二次不等式的解法可得:4,1A ,由指数函数的值域的求法可得:0,4B ,再结合并集的运算可得:4,4A B ,得解. 【详解】解:解不等式2340x x ,解得41x ,即4,1A ,又因为222x ,所以22024x ,即0,4B ,即4,4A B ,故选 B.【点睛】本题考查了二次不等式的解法、指数函数的值域的求法及并集的运算,属基础题.3.下列判断正确的是()A. 命题“0x,201920190x ”的否定是“00x ,020*******x ”B. 函数22199f x x x的最小值为 2 C. “2x ”是“22x x ”的充要条件D. 若0a b ,则向量a 与b 夹角钝角【答案】 C【解析】【分析】由全称命题的否定为特称命题可得:命题的否定是“00x ,020*******x ”,选项A 错误,由()g t 在3,为增函数,即min 10()3g t ,即B 错误;由根式方程的求法得“2x ”是“22xx ”的充要条件,即C 正确,由向量的夹角可得向量a 与b 夹角为钝角或平角,即D 错误,得解.【详解】解:对于选项A ,命题“0x ,201920190x ”的否定是“00x ,020*******x ”,即A 错误;对于选项B ,令29t x ,则3t ,则1()g t t t ,3t ,又()g t 在3,为增函数,即min 10()(3)3g t g ,即B 错误;对于选项C ,由“2x ”可得“22x x ”,由“22xx ”可得220x x ,解得“2x ”,即“2x ”是“22x x ”的充要条件,即C 正确,对于选项D ,若0a b ,则向量a 与b 夹角为钝角或平角,即D 错误,故选 C. 【点睛】本题考查了全称命题的否定、均值不等式的应用、根式方程的求法及向量的夹角,属基础题.。
四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题学校:___________姓名:___________班级:___________考号:___________. .. ..已知实数,x y 满足x a ,则下列关系式恒成立的是(.221111x y >++ln 2(1)x +>ln 2(yA .14B .128.已知函数()sin(4)(0f x A x ϕ=+<于直线π24x =-对称,将()f x 图象上所有点的纵坐标保持不变,得到函数()g x 的图象,则()g x 在区间A .12B .1二、填空题三、解答题(1)求证:AP CP ⊥;(2)求三棱锥P ADE -的体积.19.已知某绿豆新品种发芽的适宜温度在究温度x (℃)与绿豆新品种发芽数其中24y =,71()()70i i i x x y y =--=∑(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合参考答案:8.C【分析】根据已知条件求得求法求得正确答案.sin πA ϕ⎧=⎪因为M 为双曲线右支上一点,设12,MF m MF n ==,则m -故222224,m n mn a m +-=∴+在12F MF △中,2121|||F F MF =15.0【分析】设()()1122,,,A x y B x y ,联立直线与抛物线方程可得积的坐标运算公式求MA MB ⋅的值【详解】解:如图,设()11,,A x y B y y -317.(1)见解析(2)n T =【详解】试题分析:(1)题中所给的递推关系整理可得:{}n a n -是首项为2,公比为19.(1)可以用线性回归方程模型拟合(2)5722ˆyx =-,种子的发芽颗数为【分析】(1)根据已知数据代入相关系数公式计算即可作出判断;。
2019届四川省成都石室中学高三上学期入学考试数学(理)试题★祝考试顺利★ 注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i iiz 211++-=,则=||z A .0 B .12C .1 D2.设集合{})2(log |2x y x A -==,若全集A U =,{}21|<<=x x B ,则U C B = A . (),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x<-B .00x ∃>,001ln 1x x <-C .00x ∃≤,001ln 1x x <-D . 0x ∀>,1ln 1x x≤- 4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是A .3B .7C .11D .335.在区间[0,2]上随机取一个数x ,使232sin≥x π的概率为 A .13 B .12C .23D .346. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的体积为A. 2B.32C. 1D. 4+7.已知等比数列{a n }的前n 项和为S n ,2531=+a a 且4542=+a a ,则=n n a S A .14n - B .41n - C .12n - D .21n -8.已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,则下列结论正确的是A.B. C.D.9.已知约束条件为32402020x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,若目标函数y kx z +=取最大值时的最优解有无数多个,则k 的值为A. 1B. 1-C. D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为A .4B .6C .8D .1011是A. 24B. 2824-C. 2824+D. 2812.已知函数()(1)(2)e e x f x m x x =----,若关于x 的不等式0)(>x f 有且只有一个正整数解,则实数m 的最大值为A .3e e 2+B .2e e 2+C .3e e 2-D .2e e 2-二、填空题:本大题共4小题,每小题5分,共20分.13.若nxx )1(-的展开式中第3项和第5项的二项式系数相等,则展开式中的常数项为 .14. 直线:2(l y x =过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C 只有一个公共点,则C 的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16.函数2()2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成如下频率分布直方图,已知实体店与网店销售量相互独立.实体店销售量(单位:件)0网店销售量(单位:件)(Ⅰ)若将上述频率视为概率,已知实体店每天销售量不低于50件可盈利,网店每天销量不低于45件可盈利,求任取一天,实体店和网店都盈利的概率;(Ⅱ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01). (Ⅲ)若将上述频率视为概率,记该服装店未来三天实体店销售量不低于40件的天数为X ,求随机变量X 的分布列和数学期望.18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知4,2,2cos ,c b c C b === ,D E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(I)求线段AD 的长; (II)求ADE ∆的面积.19.(本小题满分12分)直播答题是最近很热门一款游戏,其答题规则如下:每次都有12道题,每题三个选项中恰有一个正确选项,若中途答错,则退出游戏,若正确回答完12题就可以平分当期奖金. 随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系?(II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答题游戏中,前8个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该网友本场答题个数X 的分布列,并求该网友当期可平分奖金的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:20.(本小题满分12分)如图O 为坐标原点,圆 22:4,O x y +=点 ),(),,(030321F F -,以线段M F 1为直径的圆N 内切于圆O ,切点为P ,记点M 的轨迹为曲线C .(I )证明:12||||F M F M +为定值,并求曲线C 的方程;(II )设Q 为曲线C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与曲线C 的上半部分交于R 点,求四边形21F RQF 面积的取值范围.21.(本小题满分12分),()()1g x n x =-+,其中0mn ≠. (I )若m n =,讨论()()()h x f x g x =+的单调区间; (II )若()()0f x g x +=的两根为12,x x ,且12x x >,证明:(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线),(:200παραθ<<≥=l 分别交21C C , 于N M ,两点,求||||OM ON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试数学参考答案(理科)1-5:CBBCA 6-10:ADDBA 11-12:CA 13、-20 14、5 15、13 16、7(3,]217解:(Ⅰ)由题意,任取一天,实体店盈利的概率1(0.0320.0200.0122)50.38P =++⨯⨯= 网店盈利的概率21(0.0040.020)50.88P =-+⨯= 由实体店和网店销售量相互独立, 故任取一天,实体店和网店都盈利的概率0.380.880.3344.P =⨯= .…………3分 (Ⅱ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>…………6分(Ⅲ)由题意,实体店销售量不低于40件的概率31(0.0120.0140.024)54P =-++⨯=……7分故3~(3,)4X B ,X 的可能取值为0,1,2,3.相应的概率为()3033101464P X C ⎛⎫==⋅-= ⎪⎝⎭, ()2133********P X C ⎛⎫==⋅-=⎪⎝⎭, ()22333272()14464()P X C ==⋅-=, ()3333273()464P X C ==⋅=,分布列为…………11分因为3~(3,)4X B ,所以期望为39(X)344E =⨯=.…………12分18.解:(1)根据题意,2=b ,4=c ,b C c =cos 2,则412cos ==c b C ; 又由4141642cos 2222=-+=-+=a a ab c b a C ,解可得4=a即4=BC ,则2=CD , 在ACD ∆中,由余弦定理得:6cos 2222=⋅-+=C CD AC CD AC AD , 则6=AD ;…………………(6分) (2)根据题意,AE 平分BAC ∠,则21==AB AC BE CE , 变形可得:3431==BC CE ,41cos =C ,则415sin =C , 615=-=∆∆∆ACE ACD ADE S S S …………………(12分) 19、解析:(I )依题意,2K故可以在犯错误的概率不超过0.5%的前提下,认为对直播大题模式的态度与性别有关系;…………5分 (Ⅱ)由题意X 的取值为10,11,12,且后四个题每个题答对的概率为13.………………6分 224(X 10);339P ==⨯=2121228(X 11)33333327P ==⨯⨯+⨯⨯=;2233331217(X 12)()()33327P C C ==⨯+=.故X 的分布列为…………………………………………9分记该网友当期可平分奖金为事件A ,则3344441211()()()3339P A C C =⨯+=.故该网友当期可平分奖金的概率为19. ………………………12分 20、解:(1)由题知:O ,P ,N 三点共线,连2MF则4222221=+=+=+||||||||||||ON NP ON MN MF MF , 所以点M 的轨迹是以21F F ,为焦点,长轴长为4的椭圆,其中,,,,则动点M 的轨迹方程是.……………………………………4分(2)如图:PR F QPR PQMR F PQF S S S S 12121===………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x , ),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:32422++y t )(12⋅+=t PR ||由弦长公式可得:又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以],(20∈S ……………………12分21、解:……………2分 当01x <<时,2210,ln 0,1ln 0x x x x ->->∴-->;当1x >时,2210,ln 0,1ln 0x x x x -<-<∴--<.……………3分 故若0m >,)(h x 的单调递增区间为()0,1,单调递减区间为()1,+∞;若0m <,)(h x 的单调递减区间为()0,1,单调递增区间为()1,+∞.……………5分 ()2111ln ...+m x n x x ∴=①,同理,()2222+ln ...m x n x x =② 由①-……………7分……………8分122112ln20x x x x x x +<-+,即证:11212221ln+01x x x x x ->+(),……………9分()1'p t t =……………10分()p t ∴在区间[)1,∞+上单调递增,()()10,1p t p t ∴>=∀>成立.故原命题得证.……………12分22. 解:(1) 因为,,,所以 的极坐标方程为04=-+θρθρsin cos , 因为 的普通方程为,即,对应极坐标方程为.……………………5分(2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以)cos (sin sin ||||αααρρ+==2112ON OM=414242+-)sin(πα 又,),(43442πππα-∈-, 所以当 242ππα=-,即83πα=时,||||ON OM 取得最大值412+……10分- 11 - 23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x .又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x .又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x .又∵3>x ,∴53≤<x .综上所得,51≤≤x .∴原不等式的解集为]5,1[.…………………(5分)(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m ,n n m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=≥, 原不等式得证.…………………(10分)。
石室中学高2019届2018~2019学年上期入学考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i iiz 211++-=,则=||z A .0 B .12C .1D .2 2.设集合{})2(log |2x y x A -==,若全集A U =,{}21|<<=x x B ,则U C B = A . (),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x<- B .00x ∃>,001ln 1x x <- C .00x ∃≤,001ln 1x x <-D . 0x ∀>,1ln 1x x≤- 4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是 A .3 B .7 C .11 D .335.在区间[0,2]上随机取一个数x ,使232sin≥x π的概率为 A .13 B .12C .23D .346. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的体积为A. 2B.32C. 1D. 462+ 7.已知等比数列{a n }的前n 项和为S n ,2531=+a a 且4542=+a a ,则=n n a S A .14n - B .41n - C .12n - D .21n -8.已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,()11cos f x x=-,则下列结论正确的是 A. ()32129f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B. ()19322f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭C. ()22913f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭ D. ()19223f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭9.已知约束条件为32402020x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,若目标函数y kx z +=取最大值时的最优解有无数多个,则k 的值为A. 1B. 1-C. 32- D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为 A .4 B .6 C .8 D .1011.向量c b,a,满足:||4=a ,||42=b ,b 在a 上的投影为4,()()0-⋅-=a c b c ,则⋅b c 的最大值是A. 24B. 2824-C. 2824+D. 2812.已知函数()(1)(2)e e x f x m x x =----,若关于x 的不等式0)(>x f 有且只有一个正整数解,则实数m 的最大值为A .3e e 2+B .2e e 2+C .3e e 2-D .2e e 2-二、填空题:本大题共4小题,每小题5分,共20分.13.若nxx )1(-的展开式中第3项和第5项的二项式系数相等,则展开式中的常数项为 .14. 直线:2(5)l y x =-过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C 只有一个公共点,则C 的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16.函数2()3sin 2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成如下频率分布直方图,已知实体店与网店销售量相互独立.实体店销售量(单位:件)频率组距0.0400.0340.0320.0240.0200.0140.012706560555045403530250频率组距网店销售量(单位:件)70656055504540350.0680.0460.0440.0200.0100.0080.004(Ⅰ)若将上述频率视为概率,已知实体店每天销售量不低于50件可盈利,网店每天销量不低于45件可盈利,求任取一天,实体店和网店都盈利的概率;(Ⅱ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01). (Ⅲ)若将上述频率视为概率,记该服装店未来三天实体店销售量不低于40件的天数为X ,求随机变量X 的分布列和数学期望.18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知4,2,2cos ,c b c C b === ,D E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(I)求线段AD 的长; (II)求ADE ∆的面积.19.(本小题满分12分)直播答题是最近很热门一款游戏,其答题规则如下:每次都有12道题,每题三个选项中恰有一个正确选项,若中途答错,则退出游戏,若正确回答完12题就可以平分当期奖金. 随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:男 女 认为直播答题模式可持续 360 280 认为直播答题模式不可持续240120(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系? (II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答题游戏中,前8个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该网友本场答题个数X 的分布列,并求该网友当期可平分奖金的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82820.(本小题满分12分)如图O 为坐标原点,圆 22:4,O x y +=点 ),(),,(030321F F -,以线段M F 1为直径的圆N 内切于圆O ,切点为P ,记点M 的轨迹为曲线C .(I )证明:12||||F M F M +为定值,并求曲线C 的方程;(II )设Q 为曲线C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与曲线C 的上半部分交于R 点,求四边形21F RQF 面积的取值范围.21.(本小题满分12分)已知函数()ln m xf x x=,()()1g x n x =-+,其中0mn ≠. (I )若m n =,讨论()()()h x f x g x =+的单调区间; (II )若()()0f x g x +=的两根为12,x x ,且12x x >,证明:()121220g x x mx x ++<+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线),(:200παραθ<<≥=l 分别交21C C , 于N M ,两点,求||||OM ON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试数学参考答案(理科)1-5:CBBCA 6-10:ADDBA 11-12:CA 13、-20 14、5 15、13 16、7(3,]217解:(Ⅰ)由题意,任取一天,实体店盈利的概率1(0.0320.0200.0122)50.38P =++⨯⨯= 网店盈利的概率21(0.0040.020)50.88P =-+⨯= 由实体店和网店销售量相互独立, 故任取一天,实体店和网店都盈利的概率0.380.880.3344.P =⨯= .…………3分 (Ⅱ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故网店销售量的中位数的估计值为0.5-0.3450+552.350.34⨯≈(件)…………6分(Ⅲ)由题意,实体店销售量不低于40件的概率31(0.0120.0140.024)54P =-++⨯=……7分故3~(3,)4X B ,X 的可能取值为0,1,2,3.相应的概率为()3033101464P X C ⎛⎫==⋅-= ⎪⎝⎭, ()2133********P X C ⎛⎫==⋅-=⎪⎝⎭, ()22333272()14464()P X C ==⋅-=, ()3333273()464P X C ==⋅=,分布列为X 0 1 2 3 P16496427642764…………11分因为3~(3,)4X B ,所以期望为39(X)344E =⨯=.…………12分18.解:(1)根据题意,2=b ,4=c ,b C c =cos 2,则412cos ==c b C ; 又由4141642cos 2222=-+=-+=a a ab c b a C ,解可得4=a即4=BC ,则2=CD , 在ACD ∆中,由余弦定理得:6cos 2222=⋅-+=C CD AC CD AC AD , 则6=AD ;…………………(6分)(2)根据题意,AE 平分BAC ∠,则21==AB AC BE CE , 变形可得:3431==BC CE ,41cos =C ,则415sin =C ,615=-=∆∆∆ACE ACD ADE S S S …………………(12分) 19、解析:(I )依题意,2K 的观测值()210003601202402801257.87960040064036012k ⨯⨯-⨯==>⨯⨯⨯, 故可以在犯错误的概率不超过0.5%的前提下,认为对直播大题模式的态度与性别有关系;…………5分 (Ⅱ)由题意X 的取值为10,11,12,且后四个题每个题答对的概率为13.………………6分 224(X 10);339P ==⨯=2121228(X 11)33333327P ==⨯⨯+⨯⨯=;2233331217(X 12)()()33327P C C ==⨯+=.故X 的分布列为…………………………………………9分记该网友当期可平分奖金为事件A ,则3344441211()()()3339P A C C =⨯+=. 故该网友当期可平分奖金的概率为19. ………………………12分 20、解:(1)由题知:O ,P ,N 三点共线,连2MF则4222221=+=+=+||||||||||||ON NP ON MN MF MF , 所以点M 的轨迹是以21F F ,为焦点,长轴长为4的椭圆,其中,,,,则动点M 的轨迹方程是.……………………………………4分X 10 11 12 P49827727(2)如图:PR F QPR PQMR F PQF S S S S 12121===………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x , ),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:0132422=-++ty y t )(由弦长公式可得:41441616122222++=++⋅+=t t t t t PR )(||又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以],(20∈S ……………………12分21、解:(Ⅰ)由已知得()()()ln (1)xh x =f x +g x =m x x--,所以()2221ln 1(1ln )x h'x =m =x x x xm -⎛⎫---⎪⎝⎭,……………2分 当01x <<时,2210,ln 0,1ln 0x x x x ->->∴-->;当1x >时,2210,ln 0,1ln 0x x x x -<-<∴--<.……………3分 故若0m >,)(h x 的单调递增区间为()0,1,单调递减区间为()1,+∞;若0m <,)(h x 的单调递减区间为()0,1,单调递增区间为()1,+∞.……………5分 (Ⅱ)依题意()111ln 1x m n x x =+, ()2111ln ...+m x n x x ∴=①, 同理,()2222+ln ...m x n x x =②由①-②得,()()()221112212122l 1+nx m n x x x x n x x x x x =--=-++,……………7分 ()()121212ln1x m x n x x x x ∴++=-,()11212221ln g (1)xx x n x x x m m x x +-++==-,……………8分要证()121220g x x mx x ++<+,即证:122112ln20x x x x x x +<-+,即证:11212221ln+01x x x x x x ->+(),……………9分 令121x t x =>,即证()1ln +20,11t p t t t t -=>∀>+.()()()()222114'011t p t t t t t -=-=>++,……………10分()p t ∴在区间[)1,∞+上单调递增,()()10,1p t p t ∴>=∀>成立.故原命题得证.……………12分22. 解:(1)因为 ,,,所以 的极坐标方程为04=-+θρθρsin cos , 因为 的普通方程为,即,对应极坐标方程为.……………………5分(2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以)cos (sin sin ||||αααρρ+==2112ON OM=414242+-)sin(πα 又,),(43442πππα-∈-, 所以当 242ππα=-,即83πα=时,||||ON OM 取得最大值 412+……10分23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x . 又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x . 又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x . 又∵3>x ,∴53≤<x . 综上所得,51≤≤x .∴原不等式的解集为]5,1[.…………………(5分)(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m ,nn m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=+≥n m , 原不等式得证.…………………(10分)。
石室中学高2019届2018~20佃学年上期入学考试数学试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的.1•设复数z 满足z+i=3 - i ,则鼻二A .- 1+2iB . 1 - 2iC . 3+2iD . 3- 2i2•已知全集U = R ,集合A={xX v- 1或x > 1},则C u A 二值是D . 335.在区间[-3,5]上随机地取一个数 X ,若x 满足|x|祸(m > 0)的7概率为二,则m 的值等于7A . _B . 3C . 4D . - 21]A. (- a ,- 1) U (1,+8) B .(— g ,— 1] U [1, +8)C .(- 1,1)D . [ - 1,C . T x g 空0, In x _1 -丄”的否定是x1In x :: 1-一B . x o 0 , I n X 。
:: 1 一丄X o1ln 冷::1 -X 。
D . -x 0,ln x 「—丄x4.在如图的程m =77,n =33,则输出的n 的C . 11IN 視图6.《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,贝y 该 的体积为f X 二tanx ,则下列结论正确的是堑堵”A. 2B-IC. 1D. 4 6、27.已知等比数列{a n }满足 a 什a 2=6, a 4+a 5=48 , 则数列{a n }前8项的和S n 为A . 510B . 126C . 256D . 5128.已知函数 f X 是定义域为 R 的奇函数,f x 1二f —x1 ,且当0乞x 乞1时,A.「2B.■2f3:: f 3C. f 3 ::: ff「2D.9.已知a 0,实数x, y 满足< x + y 兰3y K a(x _3),若z =3x y 取最小值为1,则a 的值为A. -1B. 13 C.2D. -1或 110.已知抛物线 4x 的一条弦 AB 经过焦点F,O 为坐标原点,点 M 在线段0BOB =3OM 在射线OA 上,且ON =3OA ,过M , N 向抛物线的准线作垂线,,且 垂足分别为C,D ,则CD 的最小值为D . 1011.向量 a, b,c 满足:a = (4,0), b = (4,4), (a -c ) (b -c ) = 0,则 b c 的最大值是A. 24B. 24 - 8-2C. 24 8,2D. 8 -212.若关于x 的不等式e x ^-x 2 2 . m ex (其中e 为自然对数的底数, x . 0,m Z )2恒成立,则m 的最大值为C . 3只有一个公共点,则 C 的离心率为15.已知直三棱柱ABC -AQG 的6个顶点都在球0的球面上,若AB = 3,AC = 4,AB _ AC ,AA^ -12,则球 O 的直径为 __________________ .—2「" X : 2 :16.函数f(x) = 3 sin 「x-2cos (八>0),已知f (x)在区间(-一,)恰有三个零点,则2 3 3-■的范围为 ______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第 17-21题为必考题,每个试题考生都必须作答.第 22、23题为选考题,考生根据要求作 答.(一)必考题:共 60分17・(本小题满分12分)迈入2018年后,直播答题突然就火了 •在1月6号的一场活动中,最终仅有23人平分100万,这23人可以说是“学霸”级的大神•随着直播答题的发展,平台“烧钱大战”模式的可持 续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:男女、填空题:本大题共4小题,每小题5分,共20分.13. log 5 25+一3 2 二14.直线丨:y =2(x - . 5)过双曲线的右焦点F 且与双曲线认为直播答题模式可持续 360 280 认为直播答题模式不可持续240120(I)根据表格中的数据,能否在犯错误不超过 0.5%的前提下,认为对直播答题模式的态度与性别有关系?15%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率2疋 ______ n ad - be ________(a +b )[c +d ][a +c ](b +d )临界值表:2P(K 兰 k 。
成都石室中学高2019届2月开学考试数学参考答案(文科)1-5:DADCB 6-10:BBDDB 11-12:AC 13、12- 14、16 15、 4(0,]3 16、 4317.解:(1)由122++=+n n n a a a ,得212n n n a a a +++=,即211n n n n a a a a +++-=-,知数列{}n a 是等差数列,当{}n a 的公差为零时,10n n b b +==,数列{}n b 是等差数列,不是等比数列; 当{}n a 的公差不为零时,10n n b b +=≠,数列{}n b 既是等差数列也是等比数列;……6分 (2)若52=a ,由(1)知1212n n a a a a +-=-=,所以21n a n =+, 则*21,21,4,2n nn n k c k n k+=-⎧=∈⎨=⎩N ………8分24222+[3711...(41)][44...4][341]16(116)16(161)2211615n n n n S S S n nn n n n ==++++-+++++---=+=++-奇偶即数列{}n c 的前n 2项的和n S 2为216(161)215n n n -++. ………12分18.解:(1)依题意:,,. ………6分因为0.92非常趋近1,所以变量线性相关性很强,可用线性回归模型拟合y 与x 的关系. ………8分 (2)甲乙二顾客各有放回抽取一次所有结果如下:(1,1),(1,2),(1,3),(1,4)(2,1)(2,2)(2,3),(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共有16种。
其中甲乙各中二等奖,各3000元有(2,2)(2,4)(4,2)(4,4);甲乙一人一等奖6000元,一人不中奖有(3,1)(1,3)符合中奖6000元共有6种情况。
所以:中奖6000元概率83166==P .………12分19、解析:(1)因为21=λ,所以F 是AP 的中点,又因为N 是PB 的中点,所以//FN AB ,由四边形ABCD 是矩形,得//AB CD ,故//FN CD ,////FN CD CD PCD FN PCD FN PCD ⎧⎪⊂⇒⎨⎪⊄⎩面面面, ////FM DP DP PCD FM PCD FM PCD ⎧⎪⊂⇒⎨⎪⊄⎩面面面, //////,FM PCD FN PCDFMN PCD FM FN F FM FN FMN⎧⎪⎪⇒⎨=⎪⎪⊂⎩I 面面面面面; ………6分 (2)连接PM ,过M 作//ME CD 交BC 于E ,由PAD ∆是等边三角形,得PM AD ⊥, PAD ABCD PAD ABCD ADPM ABCD PM AD PM PAD⊥⎧⎪=⎪⇒⊥⎨⊥⎪⎪⊂⎩I 面面面面面面, ………8分 因为N 是PB 的中点,所以N 到面CDM 的距离等于P 到面CDM 的距离的一半,设11111(12236212N CDM P CDM CDM V V S MP --∆==⨯⋅=⨯. ………12分20、解:(1)由椭圆的定义知:5522=∴=a a .......(1分) 又当直径轴x AB ⊥时四边形B AA A 21的面积最大,最大为2,1522==∴=b c ac ............(3分)∴椭圆145:22=+y x C ......(4分) (2)因为直线)0(:1≠+=m m kx y l 与圆O 相切,11||2=+∴k m 1||2+=∴k m ...(6分)又设直线n kx y l +=:2,联立⎪⎩⎪⎨⎧+==+n kx y y x 14522消去y 有020510)45(222=-+++n knx x k 0)205)(45(4)10(222=-+-=∆∴n k kn 化简有4522+=k n .....(8分)因为|1|||||1||2m nm n m k n m d -=-=+-= 又2222541()511n k m k k +==-++Q .....(10分) 20k ≥Q ,11102≤+<k ,5)(42<≤∴mn 又由P O ,两点位于1l 的同侧,n m ,异号,25-≤<-∴mn)51,3[1+∈-=∴mnd .....(12分) 21、解:(1)函数()f x 定义域为(,1)-∞,且2'()11m x x mf x x x x-+-=-=--,10x ->,令20x x m -+-=,14m ∆=-, 当0∆≤,即14m ≥时,'()0f x ≤,∴()f x 在(,1)-∞上单调递减;·····2分 当0∆>,即14m <时,由20x x m -+=,解得1x =2x =, 若104m <<,则121x x <<,∴1(,)x x ∈-∞时,'()0f x <,()f x 单调递减; 12(,)x x x ∈时,'()0f x >,()f x 单调递增;2(,1)x x ∈时,'()0f x <,()f x 单调递减; ·····4分若0m ≤,则121x x <≤,∴1(,)x x ∈-∞时,'()0f x <,()f x 单调递减;11(,1)x x ∈时,'()0f x >,()f x 单调递增; ·····6分 综上所述:0m ≤时,()f x的单调递减区间为(-∞,单调递增区间为;104m <<时,()f x的单调递减区间为(-∞,,单调递增区间为11(22; 14m ≥时,()f x 的单调递减区间为(,1)-∞. ·····7分 (2)因为函数()f x 定义域为(,1)-∞,且2'()11m x x mf x x x x-+-=-=--, ∵函数()f x 存在两个极值点,∴'()0f x =在(,1)-∞上有两个不等实根1x ,2x ,记2()g x x x m =-+-,则140,11,2(1)(1)0,m g ⎧∆=->⎪⎪-<⎨⨯-⎪⎪<⎩∴104m <<,从而由12121,,x x x x m +=⎧⎨=⎩且12x x <,可得11(0,)2x ∈,21(,1)2x ∈, ·····9分()22221211221212111()()ln(1)ln(1)ln[(1)(1)]222f x f x x m x x m x x x m x x +=+-++-=++--()()21212121211[2]ln[1()]12ln 22x x x x m x x x x m m m =+-+-++=-+ ………10分 构造函数1()ln 2h x x x x =-+,1(0,)4x ∈,则'()ln 0h x x =<,∴()h x 在1(0,)4上单调递减,∴111()()ln 4444h x h >=-,即证. ····12分22. 解:(1)由已知),(y x Q 满足⎩⎨⎧====θθsin 632cos 300y y x x 即⎩⎨⎧==θθsin 3cos 3y x9:22=+∴y x E ....(5分)(2)由于l 的极坐标方程为)(4R ∈=ρπθ,即为x y =,A )0,5(25,6||==d MN ,221525621=⋅⋅=∴S ....(10分) 23、解:(1)(1)(21)121f x f x x x -+-=-+-,当1x >时,1211213222x x x x x x x -+-=-+-=-≤⇒≤,所以12x <≤,当112x ≤≤时,12112120x x x x x x x -+-=-+-=≤⇒≥,所以112x ≤≤, 当12x <时,21211122325x x x x x x x -+-=-+-=-≤⇒≥,所以2152x ≤<,综上:不等式(1)(21)2f x f x x -+-≤的解集为225x x ⎧⎫≤≤⎨⎬⎩⎭; ………5分 (2)由绝对值不等式的性质可得()()()()f x a f x b c x a x b c x a x b c a b c ++--=++--≥+---=++,因为0,0,0a b c >>>,且1491a b c ++=,所以()149a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭44991491436b c a c a b a b c +++=+++++≥+, 当且仅当2,3b a c a ==时,等号成立. 原命题得证. ………10分。
2019届四川省成都石室中学高三适应性考试(一)数学(文)试题一、单选题1.已知集合{}2=|20A x x x -≤,{}1,0,1,2B =-,则A B I 等于( )A .[]0,2B .{}0,1,2C .()1,2-D .{}1,0,1-【答案】B【解析】Q 220x x -≤,02x ∴≤≤,{}0,1,2A ⋂=,选B 2.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】利用复数的除法运算化简z ,求得z 对应的坐标,由此判断对应点所在象限. 【详解】()()()2121111i z i i i i +===+--+Q ,∴对应的点的坐标为()1,1,位于第一象限. 故选:A. 【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题. 3.计算2543log sin cosππ⎛⎫⎪⎝⎭等于( ) A .32-B .32C .23-D .23【答案】A【解析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值. 【详解】 原式2221log cos 2log cos log 332πππ⎤⎤⎤⎛⎫⎛⎫=-==⎥⎥⎥⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦3223log 22-==-. 故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.4.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .【答案】D【解析】 根据四个列联表中的等高条形图可知, 图中D 中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D . 5.设 2.71828...e ≈为自然对数的底数,函数()1xxf x e e-=--,若()1f a =,则()f a -=( )A .1-B .1C .3D .3-【答案】D【解析】利用()f a 与()f a -的关系,求得()f a -的值. 【详解】依题意()11,2aaa a f a e ee e --=--=-=,所以()()11213aa a a f a e e e e ---=--=---=--=-故选:D 【点睛】本小题主要考查函数值的计算,属于基础题.6.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B【解析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】 执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环; 第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.7.已知平面向量,a b v v 满足2,1,a b a ==v v v 与b v 的夹角为120°,且()()2a b a b λ+⊥-v v v v ,则实数λ的值为() A .7- B .3-C .2D .3【答案】D【解析】由题意可得:21cos1201a b ⋅=⨯⨯=-o v v ,利用平面向量垂直的充要条件可得:()()222220a b a b a a b a b b λλλ+⋅-=+⋅-⋅-=v v v v v v v v v v ,即:()()222221110λλ⨯-⨯----⨯=,求解关于实数λ的方程可得:3λ=. 本题选择D 选项.点睛:(1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a·b =0. (3)数量积的运算a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a ⊥b .8.已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为( )A .B .C .132D .【答案】C【解析】因为直三棱柱中,AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =13,即R =1329.若函数()222y sin x ϕϕπ⎛⎫<⎪⎝+⎭=的图象经过点012π⎛⎫⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( )A .24x π=-B .3724x π=C .1724x π=D .1324x π=-【答案】B 【解析】由点012π⎛⎫⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项. 【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=- 所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B 【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.10.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( ) A .12 B .10 C .9 D .8【答案】C【解析】求得A 点坐标,由此求得直线AF 的方程,联立直线AF 的方程和抛物线的方程,求得B 点坐标,进而求得AB 【详解】抛物线焦点为()2,0F ,令1x =,28y =,解得y =±(A ,则直线AF 的方程为))2212y x x =-=---,由)228y x y x⎧=--⎪⎨=⎪⎩,解得((,4,A B -,所以9AB ==.故选:C 【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.11.过点P 的直线l 与曲线y =交于A B ,两点,若25PA AB =u u u r u u u r,则直线l 的斜率为( )A .2B .2C .2或2D .2-1【答案】A【解析】利用切割线定理求得,PA AB ,利用勾股定理求得圆心到弦AB 的距离,从而求得30APO ∠=︒,结合45POx ∠=o ,求得直线l 的倾斜角为15o ,进而求得l 的斜率. 【详解】曲线y =2213x y +=的上半部分,圆心为()0,0设PQ 与曲线y =相切于点Q , 则()2PQ PA PB PA PA AB =⋅=⋅+2225375PA PO OQ -=== 所以5,2PA AB ==,O 到弦AB =1sin2OP APO ===∠,所以30APO ∠=︒,由于45POx ∠=o ,所以直线l 的倾斜角为453015-=o o o ,斜率为()tan 45tan 30tan15tan 453021tan 45tan 30-=-==-+⨯o ooooo o故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题. 12.若函数()()2(2 2.71828 (x)f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( ) A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫⎪⎝⎭【答案】B【解析】求得()f x 的导函数()'fx ,由此构造函数()()222g x x m x m =+-+-,根据题意可知()g x 在(12),上有变号零点.由此令()0g x =,利用分离常数法结合换元法,求得m 的取值范围. 【详解】()()2'22x f x e x m x m =+-+-⎡⎤⎣⎦,设()()222g x x m x m =+-+-,要使()f x 在区间[]1,2上不是单调函数,即()g x 在(12),上有变号零点,令()0g x =, 则()2221x x m x ++=+,令()12,3t x =+∈,则问题即1m t t =+在()2,3t ∈上有零点,由于1t t+在()2,3上递增,所以m 的取值范围是510,23⎛⎫⎪⎝⎭. 故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.二、填空题13.双曲线2213y x -=的离心率为_________.【答案】2【解析】1,2,2ca b c e a======Q 14.直线2y ex b =+是曲线()0y lnx x =>的一条切线 2.7182(8e =⋅⋅⋅为自然对数的底数),则实数b =__________. 【答案】1-【解析】根据切线的斜率为e ,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得b 的值. 【详解】1y e x '==,则1x e =,所以切点为1,1e ⎛⎫- ⎪⎝⎭,故切线为11y e x e ⎛⎫ ⎪⎝+-⎭=,即2y ex =-,故1b =-. 故答案为:1- 【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题. 15.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥面,4,,,ABCD PA AB E F H ==分别是棱,,PB BC PD 的中点,过,,E F H 的平面交棱CD 于点G ,则四边形EFGH 面积为__________.【答案】 【解析】【详解】设G 是CD 中点,由于,,E F H 分别是棱,,PB BC PD 的中点,所以11//,,//,22EF PC EF PC HG PC HG PC ==,所以//,EF HG EF HG =,所以四边形EFGH 是平行四边形.由于PA ⊥平面ABCD ,所以PA BD ⊥,而BD AC ⊥,PA AC A =I ,所以BD ⊥平面PAC ,所以BD PC ⊥.由于//FG BD ,所以BG PC ⊥,也即FG EF ⊥,所以四边形AFGH 是矩形.而1123,2222EF PC FG BD ====. 从而232246EFGH S =⨯=. 故答案为:46.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.16.已知数列{}n a 满足11,a =对任意2N*n n ≥∈,,11112n n n a a ---=,则数列{}n a 的通项公式n a =__________.【答案】121n - 【解析】利用累加法求得数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,由此求得{}n a 的通项公式. 【详解】由题,11221111111111n n n n n a a a a a a a a ---⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 21122221n n -=+++⋅⋅⋅+=-所以121n na =-故答案为:121n- 【点睛】本小题主要考查累加法求数列的通项公式,属于基础题.三、解答题17.在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:已知变量,x y 且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲453y x =+; 乙4105y x =-+;丙 4.6104y x =-+,其中有且仅有一位同学的计算结果是正确的. (1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则称该检测数据是“理想数据”,现从检测数据中随机抽取3个,求“理想数据”的个数为2的概率. 【答案】(1)乙同学正确;(2)920. 【解析】(1)根据变量,x y 且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点(),x y ,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率. 【详解】(1)已知变量,x y 具有线性负相关关系,故甲不正确,6.5,79x y ==Q ,代入两个回归方程,验证乙同学正确,故回归方程为:4105y x =-+(2)由(1)得到的回归方程,计算估计数据如下表:由上表可知,“理想数据”的个数为3.用列举法可知,从6个不同数据里抽出3个不同数据的方法有20种.从符合条件的3个不同数据中抽出2个,还要在不符合条件的3个不同数据中抽出1个的方法有339⨯=种. 故所求概率为920P = 【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.18.已知在平面四边形ABCD 中,3,,1,4ABC AB AD AB ABC π∠=⊥=V 的面积为12.(1)求AC 的长;(2)已知CD =ADC ∠为锐角,求tan ADC ∠.【答案】(1(2)4.【解析】(1)利用三角形的面积公式求得BC ,利用余弦定理求得AC .(2)利用余弦定理求得cos CAB ∠,由此求得sin DAC ∠,进而求得sin ADC ∠,利用同角三角函数的基本关系式求得tan ADC ∠. 【详解】(1)在 ABC V 中,由面积公式:11sin 242ABC S AB BC ABC BC =⨯⨯⨯∠==VBC ∴=在 ABC V 中,由余弦定理可得:22225AC AB BC AB BC cos ABC +⋅∠-⋅==5AC ∴=(2)在 ABC V 中,由余弦定理可得:222252AB AC BCcos CAB AB BC+-∠==⋅ ()2sin DAC sin DAB CAB sin CAB π⎛⎫∠=∠-∠=-∠ ⎪⎝⎭255sin DAC cos CAB ∴∠=∠=在 ADC V 中,由正弦定理可得:sin sin AC CD ADC DAC =∠∠,417sin ADC ∴∠= ADC ∠Q 为锐角217cos 1sin 17ADC ADC ∴∠=-∠=. tan 4ADC ∴∠=【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.19.如图,在四面体DABC 中,AB BC DA DC DB ⊥==,.(1)求证:平面ABC ⊥平面ACD ;(2)若22 30AD AB BC CAD ==∠=︒,,,求四面体ABCD 的体积. 【答案】(1)证明见解析;(2)45. 【解析】(1)取AC 中点F ,连接,FD FB ,根据等腰三角形的性质得到DF AC ⊥,利用全等三角形证得DF FB ⊥,由此证得DF ⊥平面ABC ,进而证得平面ABC ⊥平面ACD .(2)由(1)知DF ⊥平面ABC ,即DF 是四面体ABCD 的面ABC 上的高,结合锥体体积公式,求得四面体ABCD 的体积. 【详解】(1)证明:如图,取AC 中点F ,连接,FD FB ,由,DA DC =则,DF AC ⊥AB BC ⊥Q ,则FA FB FC ==,故DFA DFB DFC V V V ≌≌ 故2DFB DFA π∠=∠=,,,DF AC DF FB AC FB F ⊥⊥⋂=QDF ⊥∴平面ABC .又DF ⊂平面ACD , 故平面ABC ⊥平面ACD(2)由(1)知DF ⊥平面ABC , 即DF 是四面体ABCD 的面ABC 上的高, 且301,303DF ADsin AF ADcos =︒==︒=在Rt ABC V 中,2232AC AF AB BC ===,,由勾股定理易知2151555BC AB ==故四面体ABCD 的体积111415215413325ABC V S DF =⋅=⨯=V【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.20.已知1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左,右焦点,点2()P -在椭圆E 上,且抛物线24y x =的焦点是椭圆E 的一个焦点. (1)求a ,b 的值:(2)过点2F 作不与x 轴重合的直线l ,设l 与圆2222x y a b +=+相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当111F A F B ⋅=u u u v u u u v时,求△1F CD 的面积. 【答案】(1)1a b ==;(2. 【解析】(1)由已知根据抛物线和椭圆的定义和性质,可求出a ,b ;(2)设直线l 方程为1x ty =+,联立直线与圆的方程可以求出2t ,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积. 【详解】(1)24y x =焦点为F (1,0),则F 1(1,0),F 2(1,0),122P F +P F a ==,解得a =c =1,b =1,(Ⅱ)由已知,可设直线l 方程为1x ty =+,11(,)A x y ,22(,)B x y联立2213x ty x y =+⎧⎨+=⎩得22(1)220t y ty ++-=,易知△>0,则1221222t t +12t +1y y y y ⎧+=-⎪⎪⎨⎪=-⎪⎩11 F A F B ⋅u u u v u u u v=1122(1)(1)x x y y +++=1212(ty +2)(ty +2)+y y=22121222-2t t +1y y +2t y +y +4t +1()()= 因为111F A F B =⋅u u u r u u u r ,所以222-2t t +1=1,解得21t 3= 联立22112x ty x y +⎧⎪⎨+⎪⎩== ,得22t +2y +2ty-10()=,△=82t +1()>0 设3344C ,),(,)x y B x y (,则3423422t y +y t +21y y 2t -⎧⎪⎪⎨⎪-⎪+⎩==1F CD12341S F F y-y23∆⋅==【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考查学生的数学运算能力.21.已知函数()2, 2.718282af x xlnx x x a R e=--∈≈⋅⋅⋅,是自然对数的底数.(1)若a e=-,讨论()f x的单调性;(2)若()f x有两个极值点12,x x,求a的取值范围,并证明:1212x x x x>+.【答案】(1)减区间是10,e⎛⎫⎪⎝⎭,增区间是1,e⎛⎫+∞⎪⎝⎭;(2)10,e⎛⎫⎪⎝⎭,证明见解析.【解析】(1)当a e=-时,求得函数()f x的导函数()'f x以及二阶导函数()''f x,由此求得()f x的单调区间.(2)令()'0f x=求得ln xax=,构造函数()ln xg xx=,利用导数求得()g x的单调区间、极值和最值,结合()f x有两个极值点,求得a的取值范围.将12,x x代入()f x lnx ax'=-列方程组,由()()1212212212ln lnlnx x x xxax x x x x+<==++证得1212x x x x>+. 【详解】(1)()'f x lnx ax lnx ex=-=+Q,1ef⎛⎫⎪⎝⎭'∴=,又()1"0f x ex=+>,所以()'f x在(0)+∞,单增,从而当10,ex⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x<递减,当1,xe⎛⎫∈+∞⎪⎝⎭时,()f x递增.(2)()f x lnx ax'=-.令()ln'0xf x ax=⇒=,令()ln x g x x =,则()21ln xg x x-'= 故()g x 在()0,e 递增,在(,)e +∞递减, 所以()()max 1g x g e e==.注意到当1x >时()0g x >, 所以当0a <时,()f x 有一个极值点, 当10a e<<时,()f x 有两个极值点, 当1a e≥时,()f x 没有极值点, 综上10,a e ⎛⎫∈ ⎪⎝⎭因为12,x x 是()f x 的两个极值点,所以11112222ln 0ln ln 0ln x ax x ax x ax x ax -==⎧⎧⇒⎨⎨-==⎩⎩ 不妨设12x x <,得121x e x <<<,因为()g x 在(,)e +∞递减,且122x x x +>,所以()()1212212212ln ln ln x x x x x a x x x x x ++<⇒<++ 又()()12121212ln ln ln x x x x a x x a x x +=+⇒=+所以()()121212121212ln ln x x x x x x x x x x x x +<⇒>+++ 【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.22.在平面直角坐标系xOy 中,直线1l 的倾斜角为30°,且经过点()2,1A .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线2:cos 3l ρθ=,从原点O 作射线交2l 于点M ,点N 为射线OM 上的点,满足12OM ON ⋅=,记点N 的轨迹为曲线C .(Ⅰ)求出直线1l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)设直线1l 与曲线C 交于P ,Q 两点,求AP AQ ⋅的值.【答案】(Ⅰ)2112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),()22400.x x y x -+=≠;(Ⅱ)3. 【解析】(Ⅰ)直接由已知写出直线l 1的参数方程,设N (ρ,θ),M (ρ1,θ1),(ρ>0,ρ1>0),由题意可得1112ρρθθ=⎧⎨=⎩,即ρ=4cosθ,然后化为普通方程;(Ⅱ)将l 1的参数方程代入C 的直角坐标方程中,得到关于t 的一元二次方程,再由参数t 的几何意义可得|AP |•|AQ |的值. 【详解】(Ⅰ)直线l 1的参数方程为x 2tcos30y 1tsin30=+⎧⎪=+⎨⎪⎩oo,(t 为参数)即2112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).设N (ρ,θ),M (ρ1,θ1),(ρ>0,ρ1>0), 则1ρρ121θθ=⎧=⎨⎩,即3ρ12cos θ⋅=,即ρ=4cosθ, ∴曲线C 的直角坐标方程为x 2-4x+y 2=0(x≠0). (Ⅱ)将l 1的参数方程代入C 的直角坐标方程中,得221(242(1t)02⎛⎫-++= ⎪ ⎪⎝⎭,即2t t 30+-=,t 1,t 2为方程的两个根, ∴t 1t 2=-3,∴|AP|•|AQ|=|t 1t 2|=|-3|=3. 【点睛】本题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,训练了直线参数方程中参数t 的几何意义的应用,是中档题. 23.已知函数()|2||4|f x x x =++-. (1)求不等式()3f x x ≤的解集;(2)若()|1|f x k x ≥-对任意x ∈R 恒成立,求k 的取值范围.【答案】(1)[)2,+∞;(2)(],2-∞.【解析】(1)通过讨论x 的范围,分为4x >,2x <-,24x -≤≤三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为331111k x x ≤++---,根据绝对值不等式的性质求出最值即可得到k 的范围. 【详解】(1)当4x >时,原不等式等价于243x x x ++-≤,解得2x ≥-,所以4x >, 当2x <-时,原不等式等价于243x x x ---+≤,解得25x ≥,所以此时不等式无解,当24x -≤≤时,原不等式等价于243x x x +-+≤,解得2x ≥,所以24x ≤≤ 综上所述,不等式解集为[)2,+∞. (2)由()1f x k x ≥-,得241x x k x ++-≥-,当1x =时,60≥恒成立,所以R k ∈; 当1x ≠时,24131333111111x x x x k x x x x ++--++--≤==++-----.因为3333111121111x x x x ⎛⎫⎛⎫++-≥++-= ⎪ ⎪----⎝⎭⎝⎭当且仅当3311011x x ⎛⎫⎛⎫+-≥ ⎪⎪--⎝⎭⎝⎭即4x ≥或2x -≤时,等号成立,所以k 2≤;综上k 的取值范围是(],2-∞. 【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.。
石室中学高2019届2018~2019学年上期入学考试数学试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足z +i =3﹣i ,则=-zA .﹣1+2iB .1﹣2iC .3+2iD .3﹣2i2.已知全集U =R ,集合A={x |x <﹣1或x >1},则=A C UA.(﹣∞,﹣1)∪(1,+∞) B .(﹣∞,﹣1]∪ [1,+∞) C .(﹣1,1) D .[﹣1,1]3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x <-B .00x ∃>,001ln 1x x <- C .00x ∃≤,001ln 1x x <- D . 0x ∀>,1ln 1x x≤-4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是A .3B .7C .11D .335. 在区间[﹣3,5]上随机地取一个数x ,若x 满足|x |≤m (m >0)的 概率为,则m 的值等于 A . B .3 C .4 D .﹣26. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的体积为A. 2B.32C. 1D. 4+7.已知等比数列{a n }满足a 1+a 2=6,a 4+a 5=48,则数列{a n }前8项的和S n 为 A .510B .126C .256D .5128. 已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,()tan f x x =,则下列结论正确的是A.9.已知0>a ,实数y x ,满足⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=3取最小值为1,则a 的值为A. 1-B. 1C. D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为A .4B .6C .8D .1011.向量c b,a,满足:)0,4(=a ,)4,4(=b ,0)()(=-⋅-c b c a ,则c b ⋅的最大值是 A. 24 B. 2824- C. 2824+ D. 2812.若关于x 的不等式12e e2e 2x x m x +-+>+(其中e 为自然对数的底数,0,x m >∈Z )恒成立,则m 的最大值为A .4B .5C .3D .2二、填空题:本大题共4小题,每小题5分,共20分.13. 5log .14. 直线:2(l y x =过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C只有一个公共点,则C 的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16. 函数2()2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17. (本小题满分12分)迈入2018年后,直播答题突然就火了.在1月6号的一场活动中,最终仅有23人平分100万,这23人可以说是“学霸”级的大神.随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系?(II)已知在参与调查的1000人中,有20%曾参加答题游戏瓜分过奖金,而男性被调查者有15%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2cos 2a C c b -=. (I)求角A 的大小;(II)若6ABC π∠=,AC 边上的中线BD ABC ∆的面积.19. (本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:实体店销售量(单位:件)0网店销售量(单位:件)(Ⅰ)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;(Ⅱ)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;(Ⅲ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).20.(本小题满分12分)已知椭圆 C 的两个顶点分别为),(),,(0202B A- ,焦点在 x 轴上,离心率为23.(I )求椭圆 C 的方程(II )设21F F ,为C 的左、右焦点,Q 为C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与C 的交点为P 、R ,求三角形PQR 面积的最大值.21. (本小题满分12分)()()1g x n x =-+,其中0mn ≠ (I )若1m n ==,求()()()h x f x g x =+的单调区间; (II )若()()0f x g x+=的两根为12,x x ,且12x x >,证明:(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线:(0,0)2l πθαρα=≥<<分别交21C C , 于N M ,两点,求||||OM ON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试数学参考答案(文科)1-5:CDBCC 6-10:AADBA 11-12:CA 13、5 14、5 15、13 16、7(3,]217、解:(I )依题意,2K 故可以在犯错误的概率不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系;……………6分(Ⅱ)由题意,参与答题游戏获得过奖励的人数共有100020%200⨯=人; 其中男性被调查者获得过奖励的人数为60015%90⨯=人,故女性调查者获得过奖励人数为110人,记女性被调查者参与游戏瓜分过奖励为事件A , 则110(A)0.275400P ==. 所以女性被调查者参与游戏瓜分过奖金的概率为0.275.……………………12分 18.解:由b c C a 2cos 2=-.正弦定理,可得B C C A sin 2sin cos sin 2=- 即)sin(2sin cos sin 2C A C C A +=- 可得:A C C cos sin 2sin =-sin ≠C 21cos -=∴A),0(π∈A 则32π=A …………………(6分) (2)由(1)可知32π=A .6π=∠ABC 6π=C则AB AC =.设x AD =,则x AB 2=,在ABD ∆中利用余弦定理:可得.A AD AB AD AB BD cos 2222⋅-+= 即3572=x 7,可得5=x ,故得ABC ∆的面积3532sin 4212=π⨯⨯=x S .…………………(12分)19、解(Ⅰ)由题意,网店销量都不低于50件共有(0.0680.0460.0100.008)510066+++⨯⨯=(天),实体店销售量不低于50件的天数为(0.0320.0200.0122)510038++⨯⨯⨯=(天),实体店和网店销售量都不低于50件的天数为1000.24=24⨯(天),故实体店和网店至少有一边销售量不低于50的天数为66+382480-=(天)……………4分 (Ⅱ)由题意,设该门市一天售出x 件,则获利为50170080050x x -≥⇒≥ .…………6分 设该门市一天获利不低于800元为事件A ,则(A)(50)(0.0320.0200.0120.012)50.38P P x =≥=+++⨯=.故该门市 一天获利不低于800元的概率为0.38..…………8分(Ⅲ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>…………12分20、解:(1)232==a c a ,∴13==b c ,∴…………………………………………4分(2)因为PR F Q PR S S 1=………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x ,),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:0132422=-++ty y t )(由弦长公式可得:41441616122222++=++⋅+=t t t t t PR )(|| 又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以2=max S ……………………12分210,x -> 210,x -<-的单调递增区间为(0,1分 1ln x mn x =分……………8分 122112ln20x x x x x +<-+, 即证:1121221ln +01x x x x x ->+(),……………9分 ()1'p t t =分 ()p t ∴在区间()p t ∴>分22. 解:(1) 因为 ,,,所以 的极坐标方程为04=-+θρθρsin cos , 因为 的普通方程为,即,对应极坐标方程为.……………………5分(2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以)cos (sin sin ||||αααρρ+==2112ON OM=414242+-)sin(πα 又,),(43442πππα-∈-, 所以当 242ππα=-,即83πα=时,||||ON OM 取得最大值 412+……10分 23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x . 又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x . 又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x . 又∵3>x ,∴53≤<x .综上所得,51≤≤x . ∴原不等式的解集为]5,1[.…………………(5分) (Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m ,nn m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=+≥n m ,原不等式得证.…………………(10分)。