自组织神经网络方法及其应用
- 格式:ppt
- 大小:4.01 MB
- 文档页数:70
基于遗传算法优化的SOFM神经网络生成测试数据集的方法在当今科技飞速发展的时代,数据已成为驱动创新的重要燃料。
然而,高质量的测试数据集往往难以获取,尤其是在机器学习和人工智能领域。
传统的数据集生成方法往往存在效率低下、质量参差不齐等问题。
因此,寻找一种高效且可靠的数据集生成方法显得尤为重要。
本文将探讨一种基于遗传算法优化的自组织特征映射(SOFM)神经网络生成测试数据集的新方法。
首先,让我们来理解一下SOFM神经网络。
SOFM神经网络是一种无监督学习的神经网络模型,它能够将高维数据映射到低维空间,同时保持数据的内在结构。
这种特性使得SOFM神经网络在数据可视化、聚类分析等领域有着广泛的应用。
然而,SOFM神经网络的训练过程往往需要大量的计算资源和时间,这在一定程度上限制了其在大规模数据集生成中的应用。
为了解决这一问题,我们可以引入遗传算法来优化SOFM神经网络的训练过程。
遗传算法是一种模拟自然选择和遗传机制的全局优化算法,它具有并行性、鲁棒性和自适应性等特点。
通过将遗传算法与SOFM神经网络相结合,我们可以在训练过程中自动调整网络参数,从而提高训练效率和数据质量。
具体来说,我们可以将SOFM神经网络的权重矩阵作为遗传算法的个体编码,通过交叉、变异等操作产生新的个体,并根据适应度函数评估个体的优劣。
适应度函数可以根据数据集的质量指标(如聚类精度、信息熵等)来设计。
通过多代进化,我们可以找到一组最优的网络参数,从而生成高质量的测试数据集。
这种基于遗传算法优化的SOFM神经网络生成测试数据集的方法具有以下优势:1.高效性:通过遗传算法自动调整网络参数,可以大大减少人工调参的时间和精力,提高训练效率。
2.可靠性:遗传算法具有较强的全局搜索能力,可以避免陷入局部最优解,从而提高数据集的质量。
3.可扩展性:该方法可以应用于各种规模的数据集生成任务,只需调整遗传算法的参数即可。
当然,这种方法也存在一定的局限性。
人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
MATLAB中常见的神经网络模型介绍神经网络是一种模拟生物神经网络工作机制的数学模型。
它由许多人工神经元组成,这些神经元之间存在着连接,通过学习和优化,神经网络能够模拟和处理各种复杂的输入输出关系。
在MATLAB中,有许多常见的神经网络模型可供使用,下面将介绍其中几个。
一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最常见和基本的神经网络模型之一。
它的结构由多层神经元组成,每一层的神经元与下一层的神经元完全连接,信号只能从输入层传输到输出层,不会反向传播。
前馈神经网络适用于分类、回归等问题。
在MATLAB中,创建一个前馈神经网络可以使用“feedforwardnet”函数。
可以设置隐藏层的大小、传递函数类型、训练算法等参数。
通过训练数据,可以使用MATLAB提供的各种优化算法进行网络模型的训练和预测。
二、循环神经网络(Recurrent Neural Network)循环神经网络是一种具有回路结构的神经网络模型。
它的每一个神经元都接受来自上一时刻输出的信号,并将当前的输入和上一时刻的输出作为输入,进行计算。
循环神经网络能够处理具有时序关系的数据,例如序列预测、语言模型等。
在MATLAB中,创建一个循环神经网络可以使用“layrecnet”函数。
可以设置回路层的大小、传递函数类型、训练算法等参数。
通过训练数据,同样可以使用MATLAB提供的优化算法进行网络模型的训练和预测。
三、自组织映射网络(Self-Organizing Map)自组织映射网络是一种无监督学习的神经网络模型。
它通过将输入数据投影到一个低维的节点空间中,并学习节点之间的拓扑结构。
自组织映射网络在数据聚类、特征提取等领域有广泛的应用。
在MATLAB中,创建一个自组织映射网络可以使用“selforgmap”函数。
可以设置节点空间的维度、拓扑结构、距离度量等参数。
通过输入数据,可以使用MATLAB提供的训练算法进行网络模型的训练和预测。
神经网络理论基础§1 引言当你现在学习神经网络知识的时候,你实际上正在使用着一个复杂的生物神经网络。
神经生理学和神经解剖学证明,人的思维是由脑完成的。
神经元是组成人脑的最基本单元,能够接受并处理信息。
人脑约由101l~1012个神经元组成,其中,每个神经元约与104~105个神经元通过突触联接,形成极为错纵复杂而且又灵活多变的神经网络。
虽然,每个神经元都比较简单,但是,如此多的神经元经过复杂的联接却可以演化出丰富多彩的行为方式。
因此,人脑是一个复杂的信息并行加工处理巨系统。
探索脑组织的结构、工作原理及信息处理的机制,是整个人类面临的一项挑战,也是整个自然科学的前沿。
关于人脑的功能,一方面受先天因素的制约,即由遗传信息先天确定了其结构与特性,另一方面后天因素也起重要的作用,即大脑可通过其自组织(Self-Organization)、自学习(Self-Learning),不断适应外界环境的变化。
一般认为,包括记忆在内的所有生物神经功能,都存贮在神经元及其之间的连接上。
学习被看作是在神经元之间建立新的连接或对已有的连接进行修改的过程。
大脑的自组织、自学习性,来源于神经网络结构的这种可塑性(Plasticity),它主要反映在神经元之间联接强度是可变的。
既然我们已经对生物神经网络有一个基本的认识,那么能否利用一些简单的人工“神经元”构造一个小神经网络系统,然后对其进行训练,从而使它们具有一定有用功能呢?答案是肯定的。
当然,人工神经元不是生物神经元,它们是对生物神经元极其简单的抽象,可以用程序或硅电路实现。
虽然由这些神经元组成的网络的能力远远不及人脑的那么强大,但是可以对其进行训练,以实现一些有用的功能。
§2神经网络模型2.1 生物神经网络的启示前面分析可知,人脑由大量的、高度互连的神经元组成。
神经元主要由三部分组成:树突、细胞体和轴突。
树突是树状的神经纤维接收网络,它将电信号传送到细胞体,细胞体对这些输入信号进行整合并进行阈值处理。
人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。
2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。
3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。
生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。
轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。
它们是细胞的输入端,接受来自其它神经元的冲动。
突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。
对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。
当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。
细胞进入抑制状态,此时无神经冲动输出。
“兴奋”和“抑制”,神经细胞必呈其一。
人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。
4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。
(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。
5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。
(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。
6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。
人工神经网络人工神经网络(Artificial Neural Network-ANN),简称为神经网络(NN):是以计算机网络系统模拟生物神经网络的智能计算系统,是对人脑或自然神经网络的若干基本特性的抽象和模拟。
生物神经系统1生物神经元●树突:接受刺激并将兴奋传入细胞体;每个神经元可以有多个;●轴突:把细胞体的输出信号导向其他神经元;每个神经元只有一个;●突触:是一个神经细胞的轴突和另一个神经细胞树突的结合点。
神经元的排列和突触的强度确立了神经网络的功能。
神经元主要由细胞体、树突、轴突和突触组成。
每个神经元约与104-105个神经元通过突触联接。
突触A B生物神经元1.1 生物神经网生物神经网络的六个基本特征:1)神经元及其联接;2)神经元之间的联接强度决定信号传递的强弱;3)神经元之间的联接强度是可以随训练改变的;4)信号可以是刺激作用的,也可以是抑制作用的;5)一个神经元接受的信号的累积效果决定该神经元的状态;6)每个神经元可以有一个“阈值”。
2019/6/107生物神经元人工神经元抽象1+n i i i v w x b==∑()y f v =1.2 人工神经网阈值M-P模型●w称为权重(weight),一个input(输入)都与一个权重w相联系;如果权重为正,就会有激发作用;权重为负,则会有抑制作用.●圆的‘核’是一个函数,确定各类输入的总效果,它把所有经过权重调整后的输入全部加起来,形成单个的激励值。
1n i i i v w x b==+∑()y f v =●阈值/偏置:决定神经元能否被激活,即是否产生输出。
●激活函数/传递函数/转移函数:神经元的信息处理特性,对所获得的输入的变换。
()y f v=1,0()0,0x f x x ≥⎧=⎨<⎩1n i i i v w x b ==+∑1()n i i i f y w x b ==+∑单层感知器☐感知器的模式识别超平面(分类边界)是:1Ni i i w x b =+=∑11220w x w x b ++=当N维数是2是,分类的超平面是一条直线☐感知器实质是一个分类器。
基于神经网络专家系统的研究与应用目录一、内容描述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状 (4)1.3 论文结构安排 (5)二、神经网络基础理论 (7)2.1 人工神经网络概述 (8)2.2 神经网络的基本模型 (9)2.3 神经网络的学习算法 (10)2.4 神经网络的性能优化 (12)三、专家系统基础理论 (13)3.1 专家系统概述 (14)3.2 专家系统的基本结构 (14)3.3 专家系统的知识库与推理机 (16)3.4 专家系统的开发与实现 (17)四、神经网络与专家系统的结合 (18)4.1 结合方式概述 (19)4.2 神经网络在专家系统中的应用 (20)4.3 专家系统在神经网络中的应用 (22)4.4 混合系统的优势与挑战 (23)五、基于神经网络专家系统的研究方法 (25)5.1 数据预处理与特征提取 (26)5.2 神经网络模型的构建与训练 (27)5.3 专家规则的引入与优化 (28)5.4 混合系统的集成与测试 (29)六、基于神经网络专家系统的应用案例 (31)6.1 案例一 (32)6.2 案例二 (33)6.3 案例三 (34)6.4 案例四 (35)七、结论与展望 (36)7.1 研究成果总结 (37)7.2 存在的问题与不足 (38)7.3 未来研究方向与展望 (40)一、内容描述本文档主要研究了基于神经网络的专家系统在各个领域的应用,并对相关技术进行了深入探讨。
本文介绍了神经网络的基本概念和原理,包括神经元、激活函数、前向传播、反向传播等基本操作。
本文详细阐述了神经网络在模式识别、分类、回归等问题上的应用,以及在图像识别、语音识别、自然语言处理等领域的成功案例。
在此基础上,本文进一步探讨了基于神经网络的专家系统的研究与应用。
本文介绍了专家系统的基本概念和结构,包括问题求解器、知识库、推理引擎等组成部分。
本文分析了神经网络在专家系统中的优势和局限性,以及如何将神经网络与传统专家系统相结合,以提高系统的性能和效率。
神经网络算法分类及概念:生物神经网络生物体的每个神经元有数以千计的通道同其它神经元广泛相互连接,形成复杂的生物神经网络。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,就称为人工神经网络(Artificial Neural Network,缩写ANN)。
·神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,该系统是靠其状态对外部输入信息的动态响应来处理信息的。
·人工神经网络是一个由许多简单的并行工作的处理单元组成的系统,其功能取决于网络的结构、连接强度以及各单元的处理方式·人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。
BP神经网络一种按误差逆传播算法训练的多层前馈网络。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
神经网络的基本特征:神经网络的基本功能:输入的样本经过自动提取,经过非线性映射规则处理输出需要的样本。
分类与识别功能:优化计算功能:神经网络的应用领域:医学领域1.检测数据分析2.生物活性研究3.医学专家系统神经网络建模:思考方法:用生物神经网络类比人工神经网络生物神经元在结构上由四部分组成1.胞体2.树突3.轴突4.突触神经元的状态分为:静息兴奋抑制信息的传递过程:电信号沿着轴突到突触前膜,期间,突触小泡释放神经递质(兴奋性或抑制性)到突触间隙,作用于突触后膜的受体,使下一个神经元兴奋或抑制。
从而完成此次信号的传递。
PS:可能有多个神经元同时作用于一个神经元。
生物神经元的信息整合度:同一时刻多个神经元所产生的刺激所引起的膜电位变化,大致等于个单独刺激引起膜电位点位的代数和。
Kohonen算法实现自组织特征映射神经网络Kohonen算法实现自组织特征映射神经网络2010-12-23 14:28设有现有一个样本数据集,含有4个模式类,,,,各个类别含有5个数据,每个数据是一个二维向量[x,y]。
则需要设定4个输出层神经元来构建SOM网络,由于输入数据是二维的向量,所以输入层神经元有2个。
为了使SOM网络的设计和实行过程在作图中清晰可见,对输入的样本数据集均进行归一化处理。
:A =0.8776 0.47940.8525 0.52270.8253 0.56460.7961 0.60520.7648 0.6442:B=-0.6663 0.7457-0.7027 0.7115-0.7374 0.6755-0.7702 0.6378-0.8011 0.5985:C=-0.5748 -0.8183-0.5332 -0.8460-0.4903 -0.8716-0.4461 -0.8950-0.4008 -0.9162:D=0.9602 -0.27940.9729 -0.23110.9833 -0.18220.9911 -0.13280.9965 -0.0831 第一步:设定初始初始权值w,暂时设定为位于极坐标0°,90°,180°,270°角处的四个单位向量;设定初始学习率rate1max和学习率最小值rate1min;设定初始领域半径r1max和领域半径截止值r1min;设定输出层神经元个数为4。
第二步:输入新的模式向量X,即输入以上四类数据样本集A,B,C,D为X。
接着开始Kohonen算法的迭代运算过程,求解最佳权值w即聚类中心第三步:每次计算输入模式到输出神经元之间的距离之前,对学习率和领域半径均进行自适应修改。
随机抽取一个输入模式x,计算x与神经元之间的欧氏距离。
第四步:选取距离最小的神经元节点为最优神经元。
第五步:在规定的领域范围类对神经元的权值w按照公式进行修改。