幂函数的性质
- 格式:doc
- 大小:487.50 KB
- 文档页数:8
幂函数是什么意思有什么特性及性质例如函数y=x0、y=x1、y=x2、y=x-1注:y=x-1=1/xy=x0时x≠0等都是幂函数。
当α取非零的有理数时是比较容易理解的,而对于α取无理数时,初学者则不大容易理解了。
因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。
幂函数的图像必须出现在第一象限,而不是第四象限。
它是否出现在第二和第三象限取决于函数的奇偶性;幂函数图像最多只能出现在两个象限;如果幂函数图像与坐标轴相交,则交点必须是原点取正值当α>0时,幂函数y=Xα它具有以下性质:a、图像都经过点1,10,0;b、函数的映像是[0,+∞;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;取负值当α<0时,幂函数y=xα有下列性质:a、所有图像都通过点1,1;b、图像在区间0,+∞上是减函数;内容补充:若为x-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间-∞,0上单调递增。
其余偶函数亦是如此c、在第一象限中,有两条渐近线,即坐标轴。
自变量接近0,函数值接近+∞, 自变量接近+∞, 函数值接近0。
取零当α=0时,幂函数y=XA具有以下特性:a、y=x0的图像是直线y=1去掉一点0,1。
它的图像不是直线。
x=0时,函数值没意义关于α,的值是一个非零有理数。
有必要在几种情况下讨论它们的特点:首先我们知道如果α=p/q,且p/q为既约分数即p,q互质,q和p都是整数,则x^p/q=q次根号下x的p次方,如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞。
当指数α是负整数时,设α=-k,则y=1/x^k,显然x≠0,函数的定义域是-∞,0∪0,+∞。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:α小于0时,X不等于0;α的分母为偶数时,x不小于0;α当的分母为奇数时,X取R。
第15讲幂函数及其性质【知识点梳理】(1)幂函数的定义:一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.(2)幂函数的特征:同时满足一下三个条件才是幂函数①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质常见的幂函数图像及性质:(4对幂函数性质的综合考查,主要体现为单调性、奇偶性,处理时要以常见的具体幂函数的图象和性质1.幂函数的单调性:在区间(0,)+∞上,当0α>时,y x α=是增函数;当0α<时,y x α=是减函数.2.幂函数的奇偶性:令qpα=(其中,p q 互质,*,,1p q N p ∈>).(1)若p 为奇数,则q py x =的奇偶性取决于q 是奇数还是偶数.当q 是奇数时,q py x =是奇函数;当q 是偶数时,q py x =是偶函数.(2)若p 为偶数,则q 必是奇数,此时qpy x =既不是奇函数,也不是偶函数.1.幂函数的凸性1.上凸函数、下凸函数的定义:设函数(x)f 在[,]a b 上有定义,若对[,]a b 中任意不同两点121212()(),,()22x x f x f x x x f ++≥都成立,则称()f x 在[,]a b 上是上凸的函数,即上凸函数.设函数()f x 在[,]a b 上有定义,若对[,]a b 中任意不同两点121212()(),,()22x x f x f x x x f ++≤都成立,则称()f x 在[,]a b 上是下凸的函数,即下凸函数.这个定义从几何形式上看就是:在函数()f x 的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的上方,那么这个函数就是上凸函数;如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是下凸函数.根据函数图象判断,一般开口向下的二次函数是上凸函数,开口向上的二次函数是下凸函数.2.幂函数的凸性(1)幂函数,(0,)y x x α=∈+∞,在1α>时,函数是下凸函数;(2)幂函数y x α=,(0,)x ∈+∞,在01α<<时,函数是上凸函数;(3)幂函数,(0,)y x x α=∈+∞,在0α<时,函数是下凸函数.【典型例题】题型一幂函数的概念【例1】在函数21y x=,22y x =,2y x x =+,1y =中,幂函数的个数为()A .0B .1C .2D .3【例2】已知()21212223m y m m x n -=+-⋅+-是幂函数,求m 、n 的值.【题型专练】1.现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为()A .1B .2C .3D .42.已知函数()()()2211 nn f x n n xn Z -+=--∈为幂函数,则()2f =___.3.已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.题型二:幂函数的三要素【例1】幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为()A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭【例2】已知幂函数()22333mm y m m x--=-+的图象不过原点,则实数m 的取值可以为()A .5B .1C .2D .4【题型专练】1.若函数()f x 是幂函数,满足(4)8(2)f f =,则1(1)3f f ⎛⎫+= ⎪⎝⎭_________.2.已知幂函数()f x 的图象经过点22,2⎛⎫⎪ ⎪⎝⎭,则()4f 的值为___.3.设α∈11,132⎧⎫-⎨⎬⎩⎭,,,则使函数y =x α的定义域为R 的所有α的值为()A .1,3B .-1,1C .-1,3D .-1,1,3题型三:幂函数的性质【例1】幂函数()()2231mm f x m m x+-=--在x ∈(0,+∞)上是减函数,则m =()A .﹣1B .2C .﹣1或2D .1【例2】幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =()A .27B .9C .19D .127【例3】已知幂函数()f x 的图象经过点()9,3,则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当210x x >>时,()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭【例4】已知幂函数()()231mf x m m x =--在其定义域内不单调,则实数m =()A .23-B .1C .23D .1-【例5】若幂函数()()223,p p f x qx q R p Z -++=∈∈在()0,∞+上是增函数,且在定义域上是偶函数,则p q +=()A .0B .1C .2D .3【题型专练】1.若幂函数()()215m f x m m x -=+-在()0,∞+上单调递减,则m =()A .3-或2B .2C .3-D .2-2.已知幂函数()()()224210,m m f x m x ∞-+=-+在上单调递增,则m =()A .0B .13-C .103-或D .106-或3.已知幂函数()y f x =的图象过点24⎛ ⎝⎭,则下列关于()f x 说法正确的是()A .奇函数B .偶函数C .在(0,)+∞单调递减D .定义域为[0,)+∞4.已知幂函数()223()pp f x x p N --*=∈的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp aa -<+,则a 的取值范围是_____.5.写出一个具有性质①②③的函数()f x =______.①()f x 定义域为{}0x x ≠;②()f x 在(),0∞-单调递增;③()()()f ab f a f b =⋅.题型四:幂函数的图象【例1】幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a>>>D .b c d a>>>【例2】已知幂函数()f x 的图象为曲线C ,有下列四个性质:①()f x 为偶函数;②曲线C 不过原点O ;③曲线C 在第一象限呈上升趋势,④当1≥x 时,()1f x ≥.写出一个同时满足上述四个性质中三个性质的一个函数()f x ___________.【例3】如图所示是函数m ny x =(*N m n ∈、且互质)的图象,则()A .m n 、是奇数且1m n<B .m 是偶数,n 是奇数,且1m n>C .m 是偶数,n 是奇数,且1m n<D .m n 、是偶数,且1m n>【题型专练】1.图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是()A.12,3,1-B .1-,3,12C .12,1-,3D .1-,12,32.幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限:I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是()A . IV,VIIB . IV,VIIIC . III, VIIID . III, VII3.在同一直角坐标系中,二次函数2y ax bx =+与幂函数(0)ba y x x =>图像的关系可能为()A .B .C .D .题型五:幂函数的综合运用【例1】已知幂函数()()2144m f x m m x +=+-在区间()0,+¥上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减.【例2】已知幂函数()y f x =经过点14,8⎛⎫⎪⎝⎭.(1)求此幂函数的表达式和定义域;(2)若()()232f a f a +<-,求实数a 的取值范围.【题型专练】1.若幂函数221()(22)m f x m m x +=+-在其定义域上是增函数.(1)求()f x 的解析式;(2)若2(2)(4)f a f a -<-,求a 的取值范围.2.已知幂函数()()22122m f x m m x +=+-在()0,∞+上是增函数(1)求()f x 的解析式(2)若(2)(1)f a f a -<-,求a 的取值范围.3.已知幂函数()()225222k k f x m m x -=-+(k ∈Z )是偶函数,且在()0,∞+上单调递增.(1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围;(3)若实数a ,b (a ,b +∈R )满足237a b m +=,求3211a b +++的最小值.。
幂函数指数函数与对数函数的性质与计算幂函数、指数函数与对数函数是数学中常见的函数类型,它们具有一些独特的性质以及特定的计算方式。
在本文中,我们将探讨这些函数的基本概念、性质以及如何进行计算。
一、幂函数的性质与计算幂函数是形如y=x^n的函数,其中n为实数。
幂函数的性质如下:1. 幂函数的定义域为实数集R,值域则取决于n的值。
- 当n为正奇数时,f(x)为增函数,值域为R+(正实数集);- 当n为正偶数时,f(x)为非负且有最小值0,值域为[0, +∞);- 当n为负数时,f(x)有正负之分,值域为R+和R-(负实数集),且在不同的定义域上具有不同的增减性;- 当n为0时,0的0次方没有定义。
2. 幂函数的图像特点:- 当n为正数时,随着x的增大,函数值也随之增大,图像呈现递增趋势;- 当n为负数时,随着x的增大,函数值递减,图像呈现递减趋势。
3. 幂函数的计算方法:- 幂函数的运算法则遵循指数运算法则,如x^m * x^n = x^(m+n),x^m / x^n = x^(m-n),(x^m)^n = x^(m*n)等。
二、指数函数的性质与计算指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。
指数函数的性质如下:1. 指数函数的定义域为实数集R,值域为正实数集R+。
2. 指数函数以a为底,随着自变量x的增大,函数值呈现指数增长的特征。
3. 指数函数的计算方法:- 当a为正数时,指数函数的运算法则与幂函数相似,如a^m *a^n = a^(m+n),a^m / a^n = a^(m-n)等。
- 当a为负数时,指数函数的运算方法可以通过转化为幂函数的形式进行计算。
三、对数函数的性质与计算对数函数是指数函数的逆运算,以b为底,记作y=logₐx。
对数函数的性质如下:1. 对数函数的定义域为正实数集R+,值域为实数集R。
2. 对数函数以b为底,将正实数x映射到实数y,即b^y=x。
3. 对数函数的计算方法主要包括:- 同底数的对数乘法法则:logₐ(x * y) = logₐx + logₐy;- 同底数的对数除法法则:logₐ(x / y) = logₐx - logₐy;- 对数的换底公式:logₐx = log_bx / log_ba,其中a、b为正实数且a≠1,b≠1。
幂函数的基本概念与性质幂函数是数学中一类重要的函数类型,其表示形式为$f(x) = ax^b$,其中a和b为常数,且b是实数。
幂函数的基本概念包括定义域、值域、图像特征等,而幂函数的性质则涉及到增减性、奇偶性、最值和渐近线等方面。
本文将详细探讨幂函数的基本概念与性质,以帮助读者更好地理解这一函数类型。
一、幂函数的基本概念1. 定义域:幂函数的定义域为所有使得底数$x$的幂指数$b$合法的实数。
通常来说,当$b$为有理数时,定义域为全体实数;若$b$为无理数,定义域则需根据具体情况进行讨论。
2. 值域:幂函数的值域根据幂指数$b$的正负以及常数$a$的正负可以得到不同的结果。
当$b$为正数时,如果$a$也为正数,则值域为全体正实数;若$a$为负数,则值域为全体负实数。
当$b$为负数时,根据奇偶性的不同,值域也有所不同。
3. 图像特征:幂函数的图像特征主要与幂指数$b$的正负、常数$a$的正负以及其他可能的变化因素有关。
当$b$为正数时,幂函数呈现递增趋势,且随着$b$的增大,图像会更加陡峭;当$b$为负数时,幂函数会呈现递减趋势,且随着$b$的增大,图像会更加平缓。
二、幂函数的性质1. 增减性:当幂函数的幂指数$b$为正数时,函数是递增的,即随着自变量$x$的增大,函数值$f(x)$也随之增大。
相反,当$b$为负数时,函数是递减的,即随着自变量$x$的增大,函数值$f(x)$会减小。
2. 奇偶性:幂函数的奇偶性取决于底数$x$的幂指数$b$的奇偶性。
当$b$为偶数时,函数是偶函数,即$f(-x) = f(x)$;当$b$为奇数时,函数是奇函数,即$f(-x) = -f(x)$。
3. 最值:当幂函数的幂指数$b$为正数时,最小值为函数的定义域中最小的值,最大值为正无穷。
当幂指数$b$为负数时,最小值为负无穷,最大值为函数的定义域中最小的值。
同时,最值的具体取值还与常数$a$的正负有关。
4. 渐近线:当幂函数的幂指数$b$大于1时,函数的图像会趋近于$y=0$的水平渐近线;当幂指数$b$小于1时,函数的图像会趋近于$x$轴的正半轴。
幂函数的性质知识点总结定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
幂函数与根函数的定义与性质幂函数和根函数是高中数学中常见的函数类型,它们在数学和实际问题中有广泛的应用。
本文将重点讨论幂函数和根函数的定义和性质,并通过例子来进一步说明它们的特点和使用。
一、幂函数的定义与性质幂函数是指形如$f(x) = x^a$的函数,其中$a$为常数。
幂函数的定义域为实数集,当$a$为正数时,幂函数在定义域上是递增的;当$a$为负数时,幂函数在定义域上是递减的。
当$a$为0时,幂函数在定义域上恒为1,即$f(x) = 1$。
幂函数的性质如下:1. 幂函数的图像与参数$a$的取值有关。
当$a>1$时,幂函数的图像呈现出增长迅速的特点,图像向上开口;当$0<a<1$时,幂函数的图像呈现出增长缓慢的特点,图像向下开口。
2. 幂函数在$x=0$处通常有一个特殊点。
当$a>0$时,幂函数在$x=0$处的值为0;当$a<0$时,并不存在$x=0$处的点。
3. 幂函数可以通过变换(平移、伸缩)来得到新的函数。
如$f(x) =2x^3$,在幂函数$x^3$的基础上,将所有点的横坐标伸缩为原来的$\frac{1}{2}$倍,纵坐标伸缩为原来的2倍。
4. 幂函数的零点和极限。
当$a>0$时,幂函数的零点只有$x=0$;当$a<0$时,幂函数没有零点。
当$x$趋近于正无穷大时,幂函数的值趋近于正无穷大;当$x$趋近于负无穷大时,幂函数的值趋近于0。
例子1:考虑幂函数$f(x) = x^2$,它的图像呈现出开口向上的抛物线形状。
对于任意正数$x_1$和$x_2$,若$x_1 > x_2$,则$f(x_1) >f(x_2)$,说明该幂函数是递增的。
在$x=0$处,该幂函数取到最小值0。
当$x$趋近于正无穷大时,$f(x)$也趋近于正无穷大。
二、根函数的定义与性质根函数是指形如$f(x) = \sqrt[a]{x}$的函数,其中$a$为正整数且$a\geq 2$。
幂函数图像及性质总结篇1:幂函数图像及性质幂函数定义:一般的.,形如y=x^α(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。
例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。
当a取非零的有理数时是比较容易理解的,而对于α取无理数时,初学者则不大容易理解了。
因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。
篇2:幂函数的性质幂函数的性质正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α><1时,导数值逐渐减小,趋近于0(函数值递增);>负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为x-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的`图像是直线y=1去掉一点(0,1)。
它的图像不是直线。
篇3:二次函数图像性质总结二次函数简介①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称。
②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称。
③y=ax^2+bx+c与y=-ax^2-bx+c-b2/2a关于顶点对称。
④y=ax^2+bx+c与y=-ax^2+bx-c关于原点中心对称。
(即绕原点旋转180度后得到的图形)。
教学过程: 一、幂函数1.幂函数的定义⑴一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数; ⑵11234,,y x y x y x -===等都是幂函数,在中学里我们只研究α为有理数的情形; ⑶幂函数与一、二次函数,正、反比例函数及指、对数函数一样,都是基本初等函数. 2.幂函数的图像⑵归纳幂函数的性质: ① 当0α>时:ⅰ)图象都过()()0,0,1,1点。
ⅱ)在第一象限内图象逐渐上升,都是增函数,且α越大,上升速度越快。
ⅲ)当1α>时,图象下凸;当01α<<时,图象上凸。
② 当0α<时: ⅰ)图象都过()1,1点。
ⅱ)在第一象限内图象逐渐下降,都是减函数,且α越小,下降速度越快。
思考1:如何判断一个幂函数在其他象限内是否有图象? 思考2:如何作出一个幂函数在其他象限内是否有图象? 例题讲解:21x1-=x例1 写出下列函数的定义域和奇偶性(1)4y x = (2)14y x = (3)3y x -= (4)2y x -=例2 比较下列各组中两个值的大小: (1)11662,3 ;(2)4314.3-与43-π;(3)35)88.0(-与53(0.89)-.思考:.比较下列各数的大小:(1)2333441.1,1.4,1.1; (2) 3338420.16,0.5,6.25.--例3 已知函数()()2212.m m f x m m x+-=+则当m 为何值时,()f x 是(1)正比例函数;(2)反比例函数;(3)幂函数?例4 已知函数画出23y x -=的大致图象。
⑴求其定义域、值域;⑵判断奇偶性和单调性;⑶画出23y x -=的大致图象。
二、方程的根与函数的零点 1、函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点(zero point).方程f(x)=0有实数根函数y=f(x)的图象与x 轴 有交点函数y=f(x)有零点连续函数在某个区间上存在零点的判别方法:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c ∈(a,b),使得f(c )=0,这个c 也就是方程f(x)=0的根.2、二分法对于在区间[a,b]上连续不断、且f(a) · f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。
步骤:1、确定区间[a,b],验证f(a) · f(b)<0,给定精确度ε2、求区间(a,b)的中点x 13、计算f(x 1);(1) 若f(x 1)=0,则x 1就是函数的零点(2) 若f(a) · f(x 1)<0,则令b= x 1(此时零点x 0∈(a,x 1)) (3) 若f(b)· f(x 1)<0,则令a= x 1(此时零点x 0∈(x 1,b))4、判断是否达到精确度ε,即若|a-b|< ε,则得到零点的近似值a(或b);否则得复2~★典型例题例2、借助电子计算器或计算机用二分法求方程2x +3x=7的近似解(精确到0.1) 解:原方程即2x +3x=7,令 f(x)=2x +3x-7 ,用计算器或计算机作出函数f(x)=2x +3x-7 对应值表与图象(如下):此时区间(1.375,1.4375)的两个端点精确到0.1的近似值都是1.4,所以原方程精确到0.1的近似解为1.4。
★补充例题:例1.(1)方程lg x +x =3的解所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)(2)设a 为常数,试讨论方程)lg()3lg()1lg(x a x x -=-+-的实根的个数。
解析:(1)在同一平面直角坐标系中,画出函数y =lg x 与y =-x +3的图象(如图)。
它们的交点横坐标0x ,显然在区间(1,3)内,由此可排除A ,D 至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了。
实际上这是要比较0x 与2的大小。
当x =2时,lg x =lg2,3-x =1。
由于lg2<1,因此0x >2,从而判定0x ∈(2,3),故本题应选C 。
(2)原方程等价于⎪⎪⎩⎪⎪⎨⎧-=-->->->-xa x x x a x x )3)(1(00301即⎩⎨⎧<<-+-=31352x x x a构造函数)31(352<<-+-=x x x y 和a y =,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当31≤<a 或413=a 时,原方程有一解;②当4133<<a 时,原方程有两解;③当1≤a 或413>a 时,原方程无解点评:图象法求函数零点,考查学生的数形结合思想。
本题是通过构造函数用数形结合法求方程lg x +x =3解所在的区间。
数形结合,要在结合方面下功夫。
不仅要通过图象直观估计,而且还要计算0x 的邻近两个函数值,通过比较其大小进行判断。
(四)巩固提高一、选择题:1.已知幂函数()f x 的图象经过点22,2⎛ ⎝⎭,则()4f 的值等于( ) A. 16 B.116 C. 12D. 2 XY 12341234025=x ay =2.已知幂函数a y x =、b y x =、c y x =、 d y x = 在第一象限内的图象分别是1C 、2C 、3C 、4C , 则a 、b 、c 、d 的大小关系是____________.3.下列幂函数中,定义域为(0,+∞)的是( ) A. 23y x = B. 32y x = C. 23y x -= D. 32y x -= 4.若a<0,则下列不等式正确的是( )A. 220.2a a a ->>;B. 0.222a a a ->>;C. 20.22a a a ->>;D. 20.22a a a ->> 5.关于幂函数y x α=,下列结论正确的是( )A.图象都通过(0,0),(1,1)两点;B.当0α>时,幂函数为增函数;C.当0α=时,图象是一条直线;D.幂函数的图象不可能出现在第四象限。
6.若幂函数q py x =(p 、q Z ∈且p 、q 互质)的图象过点(-1,1),则( ) A .p 为奇数,q 为偶数,0p q ⋅> B. q 为奇数,p 为偶数,0p q ⋅> C. p 为奇数,q 为偶数,0p q ⋅< D. q 为奇数,p 为偶数,0p q ⋅< 7、已知031log 31log >>b a,则下列不等式成立的 ( ) A 、10<<<a b B 、10<<<b a C 、1>>a b D 、1>≥b a8、方程x x 3)4(log 2=+的实根个数为 ( ) A 、0 B 、1 C 、2 D 、39、设6log ,7.0,67.067.0===c b a ,则 ( ) A .c b a << B .a c b << C .a b c << D .b a c <<一、选择题1.函数2)(-+=x e x f x的零点所在的区间是( )(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)2.函数f(x)=23xx +的零点所在的一个区间是 ( )(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)3.若函数)(x f y =在区间[],a b 上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;B .若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c f ;C .若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;D .若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f ; 4.方程0lg =-x x 根的个数为( )A .无穷多B .3C .1D .05.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( )A .()6,2-B .[]6,2-C .{}6,2-D .()(),26,-∞-+∞6.函数132)(3+-=x x x f 零点的个数为 ( )A .1B .2C .3D .47.设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定 8.直线3y =与函数26y x x =-的图象的交点个数为( ) A .4个 B .3个 C .2个 D .1个9.若方程0xa x a --=有两个实数解,则a 的取值范围是( ) A .(1,)+∞ B .(0,1) C .(0,2) D .(0,)+∞10.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 11.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 ( )(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2) 12.已知x 0是函数f(x)=2x +11x-的一个零点.若1x ∈(1,0x ),2x ∈(0x ,+∞),则 (A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>013.若1x 是方程lg 3x x +=的解,2x 是310=+x x的解,则21x x +的值为( )A .23 B .32 C .3 D .3114.函数5()3f x x x =+-的实数解落在的区间是( )A .[0,1]B .[1,2]C .[2,3]D .[3,4]15.在,,log ,222x y x y y x ===这三个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0个B .1个C .2个D .3个16.若函数()f x 唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数()f x 在区间(0,1)内有零点B .函数()f x 在区间(0,1)或(1,2)内有零点C .函数()f x 在区间[)2,16内无零点D .函数()f x 在区间(1,16)内无零点 17.求3()21f x x x =--零点的个数为 ( )A .1B .2C .3D .418.若方程310x x -+=在区间(,)(,,1)a b a b Z b a ∈-=且上有一根,则a b +的值为( )A .1-B .2-C .3-D .4-二、填空题19.已知函数()35xf x x =+-的零点[]0,x a b ∈,且1b a -=,a ,b N *∈,则a b +=20.用“二分法”求方程0523=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的区间是 。