第十一章 机械波和电磁波习题参考答案
- 格式:doc
- 大小:203.50 KB
- 文档页数:4
一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为<A> )21(cos 50.0ππ+=t y , <SI>.<B> )2121(cos 50.0ππ-=t y , <SI>.<C> )2121(cos 50.0ππ+=t y , <SI>.<D> )2141(cos 50.0ππ+=t y ,<SI>.提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+.由图知,当t=2s 时,O 点的振动状态为:[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在"半波损失〞,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B.[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ B ]4.一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是<A> 动能为零,势能最大. <B> 动能为零,势能为零. <C>动能最大,势能最大. <D> 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零.[ B ]5. 在驻波中,两个相邻波节间各质点的振动<A> 振幅相同,相位相同. <B> 振幅不同,相位相同.<C>振幅相同,相位不同. <D> 振幅不同,相位不同.提示:根据驻波的特点判断.[ C ]6. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是<A> A 1 / A 2 = 16.<B> A 1 / A 2 = 4.<C> A 1 / A 2 = 2.<D> A 1 / A 2 = 1 /4.二. 填空题1. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J,则在)(T t +2. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u 与该平面的法线0n 的夹角为θ,则通过该平面的能流是cos IS θ.提示:θIScos IS ==⊥流过该平面的能流3. 如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3λ 和10 λ / 3 ,λ 为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P 点的振动频率相同,波源S 1 的相位比S 2 的相位领先43π.4.设沿弦线传播的一入射波的表达式为]2cos[1λωxt A y π-=,波在x = L 处〔B 点〕发生反射,反射点为自由端〔如图〕.设波在传播和反射过程中振幅不变,则反射波的表达式是y 2 = 24cos xL A t ππωλλ⎛⎫=+-⎪⎝⎭. 提示:因为反射点为自由端,所以反射波没有半波损失,反射波与入射波在B 点引起的振动同相.PS S5. 一静止的报警器,其频率为1000 Hz,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是1065Hz 和935Hz 〔设空气中声速为340 m/s 〕.6. 一球面波在各向同性均匀介质中传播,已知波源的功率为100W,若介质不吸收能量,则距波源10 m 处的波的平均能流密度为7.96×10-2 W/m 2.提示:根据平均能流密度I 和功率P 的关系,得7. 一弦上的驻波表达式为t x y 1500cos 15cos 100.22-⨯= <SI>.形成该驻波的两个反向传播的行波的波速为100 m/s .场强度为)312cos(300π+π=t E x ν<SI>,则O 点处磁场强度为0.796cos(2ππ/3) (A/m)y H t ν=-+.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.提示:根据电磁波的性质,E H S ⨯=,三者的关系如图所示.E H 和同相,H ∴三. 计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 <1> 坐标原点处介质质点的振动方程;<2> 该波的波动表达式.解:<1> 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播〔向x 轴负向传播〕.设坐标原点O 处质点的振动方程为()00,cos()y t A t ωϕ=+.在t = 0时刻,O 处质点的振动状态为:0(0,0)cos 0y A ϕ==,00v sin 0A ωϕ=->, 故02ϕ=-π又t = 2 s,O 处质点位移为/cos(2)2A A ω=-π,且振动速度>0,所以224ω-=-ππ, 得 8ω=π∴振动方程为()0,cos()82y t A t =-ππ<SI><2> 由图中可见,波速为u = 20 /2 m/s = 10 m/s,向x 轴负向传播;又有()0,cos()82y t A t =-ππ ∴波动表达式为(),cos 8102x y x t A t ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππ 〔SI 〕2. 一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示. <1> 求P 处质点的振动方程; <2> 求此波的波动表达式;<3> 若图中λ21=d ,求坐标原点O 处质点的振动方程.解:<1> 设P 处质点振动方程为0()cos()P y t A t ωϕ=+,由振动曲线可知,在t = 0时刻,0cos A A ϕ-=,∴0ϕπ=; t=1s 时,0cos()A ωπ=+,且振动速度>0,∴32πωπ+=,2πω=; ∴cos()2P y A t π=+π <SI><2> 设波速为u,则24u Tλωλλπ===,且波沿Ox 轴的负方向传播, ∴波动表达式为2(,)cos cos ()22x d y x t A t A t x d u λ⎡π-⎤ππ⎛⎫⎡⎤=++π=+-+π ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦<SI> <3> λ21=d 时,将x=0代入波动表达式,即得O 处质点的振动方程3. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动初相位分别为10ϕ和20ϕ,在x 1点两波因干涉而静止,所以在x 1点两波引起的振动相位差为π的奇数倍,即()()12010112πd x x ϕϕϕλ∆=----⎡⎤⎣⎦π+=)12(K ① 同理,在x 2点两波引起的振动相位差()()22010222πd x x ϕϕϕλ∆=----⎡⎤⎣⎦π+=)32(K ② ②-①得:214()2x x λ-=ππ, ∴6)(212=-=x x λm ;由①得:120102(21)2(25)d x K K ϕϕλ--=++=+πππ;当K = -2、-3时相位差最小:2010ϕϕ-=±π4. 一平面简谐波在介质中以速度u = 20 m/s 自左向右传播.已知在传播路径上的某点A 的振动方程为)4cos(3.0π-π=t y <SI>.另一点D 在A 点右方9米处.<1> 若取x 轴方向向左,并以A 为坐标原点,试写出波的表达式,并求出D 点的振动方程.<2> 若取x 轴方向向右,以A 点左方5米处的O 点为x 轴原点,再写出波的表达式与D 点的振动方程.解:该波波速u = 20 m/s,(1) 若取x 轴方向向左,并以A 为坐标原点,则由已知条件知:)4cos(3.0),0(ππ-=t t y 〔m 〕所以,波的表达式为⎥⎦⎤⎢⎣⎡-+=-+=πππ)20(4cos 3.0))(4cos(3.0),(x t u x t t x y π〔m 〕 D 点的坐标为x D = -9 m 代入上式有)544cos(3.0)5144cos(3.0)209(4cos 3.0),(ππππππ-=-=⎥⎦⎤⎢⎣⎡--+=t t t t x y D 〔m 〕(2) 若取x 轴方向向右,以A 点左方5米处的O 点为x 轴原点,则由已知条件知:)4cos(3.0),5(ππ-=t t y 〔m 〕所以,波的表达式为)54cos(3.0)5(4cos 3.0),(x t u x t t x y πππ-=⎥⎦⎤⎢⎣⎡---=π〔m 〕 D 点的坐标为x D = 14 m 代入上式, 有)544cos(3.0)5/144cos(3.0ππ-=-=t t y D ππ<m>此式与<1> 结果相同.5. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 cm .波在弦上的速度为320 m/s .<1> 求此弦线的长度.<2> 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.解:<1> 23λ⨯=Lλν = u∴20.14003202323=⨯==νu L m 〔2〕设驻波的表达式为)cos()cos(103),('3ϕωϕ++⨯=-t kx t x y πππνλπ25320400222=⨯===u k 〔m -1〕πππνω80040022=⨯== 〔rad/s 〕弦的中点x=0是波腹, 故πϕϕϕor kx x 0,1cos )cos(''0'=∴==+=所以)800cos(25cos 100.3),(3ϕπ+⨯±=-t x t x y π <m>式中的ϕ由初始条件决定.[选做题]1.如图,一角频率为ω,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4〔λ为该波波长〕;设反射波不衰减,求: <1> 入射波与反射波的表达式;;<2> P 点的振动方程.解:<1> 设O 处振动方程为00cos()y A t ωϕ=+当t = 0时,y 0 = 0,v 0 < 0,∴012ϕπ=∴)21cos(0π+=t A y ω入射波朝x 轴正向传播,故入射波表达式为)22cos(2)(cos ),πλωπω+-=⎥⎦⎤⎢⎣⎡+-=x t A ux t A t x y π(入在O ′处入射波引起的振动方程为由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴)cos(t 47π+π-=t A y ωλ),(反t A ωcos = 所以反射波表达式为<2> 合成波为),(),(),(t x y t x y t x y 反入+=]22cos[π+π-=x t A λω]22cos[π+π++x t A λω 将P 点坐标λλλ234147=-=x 代入上述方程,得P 点的振动方程为)2cos(2π+-=t A y P ω。
一、单选题(选择题)1. 关于电场和磁场,以下说法正确的是()A.磁场中某点的磁感应强度的方向与放在该点小磁针极受力方向相同B.电场中某点的电场强度的方向与放在该点的试探电荷所受电场力方向相同C.通电导线在磁场中某点不受磁场力作用,则该点的磁感应强度一定为零D.试探电荷在电场中某点不受电场力的作用,则该点的电场强度一定为零2. 麦克斯韦通过对电磁场统一理论的研究,预言了电磁波的存在。
下列有关电磁波的理解正确的是()A.电磁波在任何介质中传播速度都是相同的B.电磁波和机械波一样,都依靠介质传播振动形式和能量C.太空中传送至地面的无线电波是横波D.电磁波与机械波一样可以发生反射、折射等现象,但不会产生干涉现象3. 通电螺线管的电流方向如图所示,内部产生的磁场可认为匀强磁场,磁感应强度大小为B。
在螺线管的中轴线上有一沿轴线向上的很长的直线电流,以O点为圆心垂直于轴线的平面内有一圆,圆直径上有a、b两点,直线电流在a、b两点产生的磁感应强度大小也为B,下列说法正确的是()A.通电螺线管产生的磁场方向沿轴线向下B.a、b两点合磁场的方向相反C.a、b两点合磁场的磁感应强度大小均为0D.a、b两点合磁场的磁感应强度大小均为4. 关于物理学史下列说法正确的是()A.法拉第提出在电荷的周围存在由它产生的电场这一观点B.电子是由英国物理学家卢瑟福发现的C.牛顿利用扭秤装置成功测出万有引力常量的数值D.奥斯特发现了电流的磁效应现象,并提出了分子电流假说5. 如图所示,在空间三维直角坐标系中过轴上两点,沿平行于轴方向放置两根长直导线,导线中均通有相等的沿轴负方向的恒定电流。
已知通电长直导线周围某点磁场的磁感应强度与电流成正比,与该点到导线的距离成反比,即。
则下列描述坐标轴上各点磁场磁感应强度的图像中一定错误的是()A.B.C.D.6. 下列关于电场和磁场的说法中,正确的是()A.磁场与电场一样都是客观不存在的B.奥斯特发现了通电导线周围存在磁场C.电场线从正电荷出发,终止于负电荷;磁感线从磁体的N极出发,终止于S极D.电流间的相互作用是通过电场发生的;磁极间的相互作用是通过磁场发生的7. 某LC电路的振荡频率为520 kHz,为能使其提高到1 040 kHz,以下说法正确的是()A.调节可变电容,使电容增大为原来的4倍B.调节可变电容,使电容减小为原来的C.调节电感线圈,使线圈电感变为原来的4倍D.调节电感线圈,使线圈电感变为原来的8. 如图所示,将带铁芯的线圈A通过滑动变阻器和开关连接到电源上,把线圈A 放进螺线管B的里面,开关闭合瞬间电流计指针向右摆动,则开关闭合以后()A.将线圈A拔出过程中指针向左偏转B.滑片P快速向右移动指针向右偏转C.向线圈A中插入铁芯指针向左偏转D.再断开开关的瞬间指针不偏转9. 磁场中某区域的磁感线如图所示,则()A.a、b两处的磁感应强度大小均为0B.a处的磁感应强度大于b处的磁感应强度C.a处的磁感应强度小于b处的磁感应强度D.无法判断a、b两处的磁感应强度大小10. 近几年,无线电能传输技术发展迅速,越来越多的智能手机开始配备无线充电功能,如图所示为手机无线充电的原理图,下列哪种装置的工作原理与其相同()A.电磁炉B.质谱仪C.速度选择器D.回旋加速器11. 有一种磁悬浮地球仪,通电时地球仪会悬浮在空中,如图甲所示。
第2课时机械波一、机械波1.机械波的形成条件(1)有发生机械振动的波源。
(2)有传播介质,如空气、水等。
2.传播特点(1)机械波传播的只是振动的形式和能量,质点只在各自的平衡位置附近做简谐运动,并不随波迁移。
(2)介质中各质点的振幅相同,振动周期和频率都与波源的振动周期和频率相同。
(3)一个周期内,质点完成一次全振动,通过的路程为4A,位移为零。
3.机械波的分类(1)横波:质点的振动方向与波的传播方向相互垂直的波,有波峰(凸部)和波谷(凹部)。
(2)纵波:质点的振动方向与波的传播方向在同一直线上的波,有密部和疏部。
二、波长、频率和波速1.波长λ:在波动中,振动相位总是相同的两个相邻质点间的距离。
2.波速v:波在介质中的传播速度,由介质本身的性质决定。
3.频率f:由波源决定,等于波源的振动频率。
4.波长、波速和频率的关系:v=λf=λT。
三、波特有的现象1.波的叠加几列波相遇时,每列波都能够保持各自的状态继续传播而不互相干扰,只是重叠的区域里,任一个质点的总位移等于各列波分别引起的位移的矢量和。
2.波的干涉和衍射3.多普勒效应(1)条件:声源和观察者之间有相对运动。
(2)现象:观察者感到频率发生变化。
(3)实质:声源频率不变,观察者接收到的频率变化。
四、惠更斯原理1.内容:介质中任一波面上的各点,都可以看作发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。
2.应用:如果知道某时刻一列波的某个波面的位置,还知道波速,利用惠更斯原理可以得到下一时刻这个波面的位置,从而确定波的传播方向。
【思考判断】1.在水平方向传播的波为横波( × )2.在机械波中各质点不随波的传播而迁移( √ )3.通过波的图象可以找出任一质点在任意时刻的位移( √ )4.机械波在传播过程中,各质点振动的周期、起振方向都相同( √ )5.机械波在一个周期内传播的距离就是振幅的4倍( × )6.波速表示介质中质点振动的快慢( × )7.两列波在介质中叠加,一定产生干涉现象( × )8.一切波都能发生衍射现象( √ )9.多普勒效应说明波源的频率发生变化( × )10.发生多普勒效应时,波源发出的频率不变( √ )考点一波的形成和传播、波的图象(-/b)[要点突破]1.波动图象的信息(如图所示)(1)直接读取振幅A和波长λ,以及该时刻各质点的位移。
《机械波》测试题(含答案)一、机械波选择题1. 一简谐横波沿水平绳向右传播,波速为v, 周期为T, 振幅为A. 绳上两质点M、N 的平衡位置相距四分之三波长,N 位于M 右方. 设向上为正,在t=0 时刻M 位移)且向上运动;经时间t(t<T),M 位移仍;,但向下运动,则()A. 在t 时刻,N 恰好在波谷位置B. 在t 时刻, N 位移为负,速度向上C. 在t 时刻,N 位移为负,速度向下D. 在 2t 时刻,N 位移,速度向下2. 一列简谐波某时刻的波形如图中实线所示。
经过0.5s后的波形如图中的虚线所示。
已知波的周期为T, 且0.25s<T<0.5s, 则( )A. 不论波向x轴哪一方向传播,在这0.5s 内,x=1m 处的质点M 通过的路程都相等B. 当波向+x方向传播时,波速等于10m/sC. 当波沿+x方向传播时,x=1m 处的质点M 和x=2.5m 处的质点N 在这0.5s 内通过的路程相等D. 当波沿-x方向传播时,经过0. 1s 时,质点M 的位移一定为零3. 一列波长大于3m 的横波沿着x轴正方向传播,处在x₁=1m 和x₂=4 m 的两质点A、B 的振动图象如图所示,由此可知()A. 波长为4mB. 波速为2m/sC. 3s 末A 、B 两质点的位移相同D. 1s 末A 点的速度大于B 点的速度4. 如图,a、b、c、d 是均匀媒质中x轴上的四个质点,相邻两点的间距依次为2m 、4m 和 6m 。
一列简谐横波以2m/s 的波速沿x轴正向传播,在t=0 时刻到达质点a 处,质点由平衡位置开始竖直向下运动,t=3s 时 a 第一次到达最高点。
下列说法正确的是( )A. 在 t=6s 时刻波恰好传到质点d 处B. 在 t=5s 时刻质点 C 恰好到达最高点C. 质点b 开始振动后,其振动周期为4sD. 在 4s<t<6s 的时间间隔内质点 C 向上运动E.当质点d 向下运动时,质点b 一定向上运动5. 如图甲,介质中两个质点A 和 B 的平衡位置距波源O 的距离分别为 1m 和 5m 。
第一节波的形成和传播学习目标:1.理解波的形成和传播.2.知道横波和纵波,理解波峰和波谷、密部和疏部.3.知道机械波,理解机械波传播形式.重点难点:1.认识波的形成和波的传播特点.2.准确理解质点振动和波的传播的关系.易错问题:不能正确理解质点的振动与波的传播关系及区别.基础知识梳理一、波的形成和传播1.波的形成过程(1)波各部分看成由许多_____组成,各部分之间存在着相互作用的______.(2)沿波的传播方向,后一个质点开始振动总比前一个质点迟一些,这样质点就依次被____.2.振动的______逐渐传播开去形成波.二、横波和纵波1.横波:质点的振动方向跟波的传播方向相互____的波,叫做横波.(1)波峰:在横波中,凸起的最高处叫做波峰.(2)波谷:在横波中,凹下的最低处叫做波谷.2.纵波:质点的振动方向跟波的传播方向______________的波,叫做纵波.(1)密部:在纵波中,____________________叫做密部.(2)疏部:在纵波中,____________________叫做疏部.三、机械波1.介质:能传播波的物质叫做介质.2.机械波:________在介质中传播形成了机械波.3.产生机械波的条件:同时存在____和____.说明:有振动不一定存在波,但有波一定存在振动.4.机械波传播的只是振动的运动形式,介质中的各质点并不随波迁移.5.波是传递_______的一种方式,而且可以传递_______.核心要点突破一、机械波的形成与特点1.机械波的形成(1)实质:介质质点间存在相互作用力,介质中前面的质点带动后面的质点振动.(2)质点间的作用:相邻的质点相互做功,同时将振动形式与波源能量向外传播.(3)介质质点的振动:从波源开始,每一个质点都由前面的质点带动做受迫振动.2.波的特点(1)振幅:像绳波这种一维(只在某个方向上传播)机械波,若不计能量损失,各质点的振幅相同.(2)周期:各质点振动的周期均与波源的振动周期相同.(3)步调:离波源越远,质点振动越滞后.(4)各质点只在各自的平衡位置振动,并不随波逐流.(5)机械波向前传播的是振动这种运动形式,同时也传递能量和信息.二、对横波和纵波的理解横波只能在固体中传播,而纵波可以在固、液、气三种状态的物质中传播.1.横波是物体的形状发生了变化而产生弹力作用所致,由于只有固体才有固定的形状,也只有发生形变时才产生弹力,所以只有在弹性固体里才能产生横波.2.产生纵波时,物体的各部分经常在压缩和拉长,也就是说经常在改变自己的体积,在体积改变时,固体内固然要产生弹力,液体和气体也要产生弹力,所以纵波在这三种状态的介质中都能传播.3.纵波和横波可同时存在于同一种介质中,如地震波,既有横波,又有纵波,横波和纵波同时在地壳中传播.特别提醒1.绳波和声波分别是典型的横波和纵波,水波是比较复杂的机械波,不是横波.2.在纵波中各质点的振动方向与波的传播方向在同一直线上,而不是方向相同.三、振动与波动的关系类型一波的形成和传播例1关于机械波的形成,下列说法中正确的是()A.物体做机械振动,一定产生机械波B.后振动的质点总是跟着先振动的质点重复振动,只是时间落后一步C.参与振动的质点都有相同的频率D.机械波是介质随波迁移,也是振动能量的传递变式11.(2010年西安高二检测)关于机械振动和机械波下列叙述不正确的是() A.有机械振动必有机械波B.有机械波必有机械振动C.在波的传播中,振动质点并不随波的传播发生迁移D.在波的传播中,如果振源停止振动,波的传播并不会立即停止类型二横波和纵波的区别例题2关于横波和纵波,下列说法正确的是()A.质点的振动方向和波的传播方向垂直的波叫横波B.质点振动方向跟波的传播方向在同一直线上的波叫纵波C.横波有波峰和波谷,纵波有密部和疏部D.地震波是横波,声波是纵波变式22.下列有关横波和纵波的说法,正确的是()A.振源上下振动所形成的波是横波B.振源水平振动所形成的波是纵波C.波沿水平方向传播,质点沿竖直方向振动,这类波是横波D.横波的质点不随波迁移,但纵波的质点将随波迁移类型三振动与波动的关系例题3(2009年高考全国卷Ⅱ)下列关于简谐运动和简谐波的说法,正确的是() A.介质中质点振动的周期一定和相应的波的周期相等B.介质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和介质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍变式3关于振动和波的关系,下列说法中正确的是()A.振动是波的成因,波是振动的传播B.振动是单个质点呈现的运动现象,波是许多质点联合起来呈现的运动现象C.波的传播速度就是质点振动的速度D.波源停止振动时,波立即停止传播第二节横波的图像一、波的图象1.用横坐标表示在波传播方向上各质点的平衡位置2.用纵坐标表示某时刻各质点偏离平衡位置的位移波的图象有时也称波形图.简称波形(1)如果波的图象是正弦曲线,这样的波叫做正弦波,也叫简谐波(2)介质中有正弦波传播时,介质的质点在做简谐振动(3)简谐波是一种最基本、最简单的波.二、波的图象的物理意义1、波的图象的物理意义:反映介质中各个质点某一时刻偏离平衡位置的位移由波的图象的画法可以知道:对横波而言图象反映了某时刻介质中各个质点在空间的实际分布情况。
一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为(A) )21(cos 50.0ππ+=t y , (SI).(B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y ,(SI).提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+。
由图知,当t=2s 时,O 点的振动状是正确的。
[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B 。
[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是ωSAϖO ′ωSA ϖO ′ωϖO ′ωSAϖO ′(A)(B)(C)(D)S[ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。
[ B ]5. 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同.(B) 振幅不同,相位相同.(C) 振幅相同,相位不同.(D) 振幅不同,相位不同.提示:根据驻波的特点判断。
[ C ]6. 在同一媒质中两列相干的平面简谐波的强度之比是I1 / I2 = 4,则两列波的振幅之比是(A) A1 / A2 = 16.(B) A1 / A2 = 4.(C) A1 / A2 = 2.(D) A1 / A2 = 1 /4.二.填空题1. 一平面简谐机械波在媒质中传播时,若一媒质质元在t时刻的总机械能是10 J,则(t+在2. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u ϖ与该平面的法线0n v的夹角为θ,则通过该平面的能流是cos IS θ。
篇一:选修(xuǎnxiū)3-4 第十二章机械波教案篇二:3-4机械振动及机械波复习题和答案(dá àn)(二)最新机械波复习(fùxí)一、机械波的传播(chuánbō)1.一列简谐横波沿x轴负方向(fāngxiàng)传播,图1是t=1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同一时间起点),则图2可能是图1中哪个质元的振动图线?A.x=0处的质元 B.x=1m处的质元C.x=2m处的质元 D.x=3m处的质元2.一列沿着x正方向传播的横波,振幅为A,波长为λ,某时刻的波形如图所示。
该时刻某一质点的坐标为(5λ,0),经过T/4的时间,该质点的坐标为 435A.(λ,0)B. (λ,-A) 2453C. (λ,A) D. (λ,A) 244.如图所示,一根张紧的水平弹性长绳上的 a、b两点,相距14.0 m ,b 点在 a点的右方.当一列简谐横波沿此绳向右传播时,若 a点的位移达到正极大时,b点的位移恰为零,且向下运动.经过1.00 s 后,a点的位移为零,且向下运动,而 b点的位移恰达到负极大.则这简谐横波的波速可能等于A.14 m/sB.10 m/sC.6 m/sD.4.67 m/s5.简谐横波在某时刻的波形图线如图所示,由此图可知A.若质点 a向下运动,则波是从左向右传播的B.若质点b向上运动,则波是从左向右传播的C. 若波从右向左传播,则质点 c向下运动D.若波从右向左传播,则质点d向上运动6.如图所示,O是波源,a、b、c、d是波传播方向上各质点的平衡位置,且Oa=ab=bc=cd=3 m,开始各质点均静止在平衡位置,t=0时波源O开始向上做简谐运动,振幅是0.1 m,波沿Ox 方向传播,波长是8 m,当O 点振动了一段时间后,经过的路程是0.5 m ,各质点运动的方向是A.a 质点向上 B.b质点向上 C.c质点向下 D.d质点向下7.如图在x y平面内有一沿x轴正方向传播的简谐横波,波速为1 m/s,振幅为4 cm,频率为2.5 Hz.在t=0时刻,P点位于其平衡位置上方最大位移处,则距P为0.2 m的Q点A.在0.1 s时的位移是4 cm B.在0.1 s时的速度最大C.在0.1 s时的速度向下 D.在0到0.1 s时间内的路程是4 cm8.一列简谐横波,在t=0时刻的波形如图8-13所示,自右向左传播,已知在t1=0.7 s时,P点出现(chūxiàn)第二次波峰(0.7 s内P点出现两次波峰),Q点的坐标是(-7,0),则以下(yǐxià)判断中正确的是A.质点A和质点B在t=0时刻的位移是相等B.在t=0时刻,质点C向上(xiàngshàng)运动C..在t2=0.9 s 末Q点第一次出现(chūxiàn)波峰D.在t3=1.26 s 末Q点第一次出现波峰二、波的特性(tèxìng)1.类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。
第十一章 机械波一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 (A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y ,(SI).提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+。
由图知,当t=2s 时,O 点的振动状态为:O 0(2)cos(2)=0 0y A v ωϕ=+>,且,∴0322πωϕ+=,0322πϕω=-,将0ϕ代入振动方程得:O 3()cos(2)2y t A t πωω=+-。
由题中所给的四种选择,ω取值有三种:,,24πππ,将ω的三种取值分别代入O 3()cos(2)2y t A t πωω=+-中,发现只有答案(C )是正确的。
[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B 。
[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是提示:由图可知,P 点的振动在t=0[ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。