地震折射波法、反射波法2010
- 格式:ppt
- 大小:14.32 MB
- 文档页数:85
地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。
本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。
1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。
纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。
当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。
2.地震波探测方法地震波探测方法包括折射波法和反射波法。
折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。
反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。
在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。
3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。
野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。
室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。
4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。
预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。
5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。
构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。
地震勘探的原理地震勘探的基本原理是利用人工激发的地震波在地下传播时,遇到不同性质的岩层会产生反射、折射和透射等现象。
通过对这些地震波信号进行接收、记录和处理,我们可以推断出地下岩层的性质、结构和形态。
具体来说,地震勘探通常包括以下几个步骤。
首先,通过炸药爆破、重锤敲击或振动器等设备在地面产生地震波。
接着,布设在地面的检波器接收地震波信号,将振动信号转化为电信号记录下来。
然后,利用计算机对记录下来的地震波信号进行处理和分析,提取出有关地下构造及岩层的信息。
最后,根据这些信息绘制出地下的构造图像,揭示地球内部的秘密。
地震勘探的方法地震勘探的方法多种多样,根据不同的勘探目的和地质条件可以选择适合的方法进行勘探。
以下是一些常用的地震勘探方法。
反射波法 这是地震勘探中最常用的方法之一。
通过在地面激发地震波,并接收来自地下岩层界面的反射波,从而推断出岩层的结构和性质。
反射波法适用于各种地质条件,特别是那些岩层界面较为清晰、反射波能量较强的地区。
折射波法 折射波法主要利用地震波在地下不同介质之间的折射现象进行勘探。
通过测量折射波的传播速度和方向,可以推断出地下介质的速度和密度分布。
折射波法适用于那些介质速度差异较大的地区,如沉积岩和基岩的交界处。
透射波法 透射波法是通过在地面两侧分别激发和接收地震波,测量波在地下介质中的传播时间和速度,从而推断出介质的性质。
透射波法对于了解地下岩层的连续性和完整性具有重要意义,但会受到地表条件和勘探深度的限制。
除了以上三种常用的方法外,还有微震监测、多分量地震勘探、VSP(垂直地震剖面)地震勘探等先进的技术手段,这些方法的应用进一步提高了地震勘探的精度和效率。
地震勘探的应用地震勘探在多个领域具有广泛的应用价值,以下是一些主要的应用方向。
油气勘探 地震勘探是石油和天然气勘探中最重要的技术手段之一。
通过地震勘探,技术人员可以了解地下岩层的分布、厚度、物性等信息,为油气藏的发现和开发提供重要依据。
地震勘探的主要方法嘿,咱今儿个就来讲讲地震勘探的主要方法哈!你说这地震勘探啊,就像是给地球做一次全面的身体检查。
那它主要有哪些方法呢?首先就是反射波法,这就好比是地球给我们发出的信号反射回来让我们去捕捉。
想象一下,地球内部就像一个神秘的大宝藏,反射波法就是我们寻找宝藏的重要线索呢!通过对反射回来的波进行分析,我们就能了解地下的结构啦。
还有折射波法呢,这就好像是光线在不同介质中折射一样。
地震波在地下传播时,遇到不同的地层也会产生折射现象,我们就可以根据这些折射的情况来推断地下的情况呀。
这是不是很神奇?另外呢,还有地震测井法。
这就像是给地球打个深井,直接去探测里面的情况。
通过在井中激发地震波,然后接收返回的信号,就能更准确地了解地层的特性啦。
你看哈,这些方法各有各的用处,就像我们生活中的各种工具一样。
反射波法能让我们大致了解地下的轮廓,折射波法能让我们知道地层的变化,地震测井法更是能让我们深入了解地下的细节。
那这些方法是怎么操作的呢?比如说反射波法,得先在地面上布置好多好多的检波器,就像一个个小耳朵在听地球的声音呢。
然后通过激发地震波,让这些小耳朵去接收反射回来的波,再经过复杂的处理和分析,才能得出有用的信息。
这可不是一件简单的事儿啊!折射波法呢,则需要我们仔细观察地震波的传播路径和折射情况,就像是侦探在寻找线索一样。
地震测井法就更不用说啦,得下到井里去操作,那可是很有技术含量的呢。
哎呀,说了这么多,你是不是对地震勘探的主要方法有了更清楚的认识啦?这可是地质勘探中非常重要的一部分呢!没有这些方法,我们怎么能了解地球内部的奥秘呢?怎么能找到那些隐藏的宝藏呢?所以啊,可别小看了这些方法,它们可是地质学家们的宝贝呢!总之呢,地震勘探的主要方法就像是一把钥匙,能打开地球内部奥秘的大门。
让我们一起好好利用这些方法,去探索地球更多的秘密吧!你说好不好呢?。
§地震波的反射、透射和折射序:在§中讨论了无限均匀完全弹性介质中波的传播情况。
当地震波遇到岩层界面时,波的动力学特点会发生变化。
地震勘探利用界面上的反射、透射和折射波。
一、平面波的反射及透射同光线在非均匀介质中传播一样,地震波在遇到弹性分界面时,也要发生反射和透射。
首先讨论平面波的反射与透射。
(一)斯奈尔(snell)定律1.费马原理(最小时间原理)波从一点传播到另一点,以所需时间最小来取传播路径。
如图,波从P1点传到P2点。
速度均匀时,走路径①,直线,t最小,s也最小。
速度变化时,走路径②,曲线,t最小,s不最小。
注意:时间最小,不一定路程最小(取决于速度)。
P 1 P2路径①路径②例1:人要去火车站(见图)。
方法①从A步行到B,路程短,用时却多。
方法②从A步行到C,再坐车到B,路程长,用时却少。
步行速度V 1 V 2>>V 1 汽车速度V 2 例2:尽快地将信从A 送到B① 傻瓜路径 ② 经验路径③ 最小时间路径,满足透射定律:21sin sin V V βα=②A2.反射定律、透射定律、斯奈尔定律波遇到两种介质的分界面,就发生反射和透射(注:地震透射、物理折射)。
(1) 反射定律:反射波位于法平面内,反射角=入射角。
注:法平面——入射线与界面法线构成的平面,也叫入射平面或射线平面。
O S地面 入射角=反射角与下式等价:111sin sin V V αα= (1) (2) 透射定律透射线位于法平面内,入射角与透射角满足下列关系:221sin sin V V αα= (2) (3) 斯奈尔定律综合(1)和(2)式,有P V V V ===22111sin sin sin ααα 这就是斯奈尔定律,P 叫射线参数....。
推广到水平层状介质有:P V V V nn ====αααsin ......sin sin 2211 () 注:斯奈尔定律满足费马原理,上例2中把信由A 送到B 路径③是最小时间路径,它满足透射定律(用高等数学求极值可证明)。
实验一地震勘探实验(折射波法)一、实验原理地震勘探是根据人工激发(爆炸或撞击地面)的地震波在地下传播过程中,遇到弹性性质不同的地震界面后,在地层中产生反射和折射,部分地传回地表,用专门的仪器记录返回地面的波的旅行时间,研究振动的特征,来确定产生反射或折射的界面的埋深和产状,并根据所观测的地震波在介质中传播速度及波的振幅与波形变化,探讨介质的物性与岩性。
就波的传播特点而言,地震勘探一般可分为反射波勘探和折射波勘探。
二、实验目的1.了解地震勘探的原理;2.了解地震勘探工作布置及观测方法;3.掌握地震勘探数据采集、处理和解释,熟练操作相关软件。
三、实验仪器Strata Visor NZⅡ数字地震勘探仪。
Strata Visor NZⅡ地震勘探系统一般由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等。
四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。
使用皮尺标注检波器位置与激发点位置。
2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。
注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。
禁止暴力插拔各插头、插槽,以防仪器损坏。
3.采集开机后,直接进入SCS软件。
(1)survey--new survey菜单:设置测区名称和测线号;(2)system--set date/time菜单:设置时间、日期;(3)geom--survey mode菜单:设置地震勘探类型,本次实验为折射波勘探,即refraction;geom--geophone interval菜单:设置检波器距离,即道间距,本次实验设为2m;geom--group/shot location菜单:设置shot coordinate炮点坐标、geophone coordinate检波器坐标(自动或手动设置)、gain增益(本次实验设为HIGH 36)、use道设置(可选DATA、INACTIVE等,本次实验设为DATA)、freeze道冻结(叠加冻结,本次实验设为NO)等;(4)acquisition--sample interval/record length菜单:设置时间采样间隔、记录长度(时窗)和delay延迟,本次实验sample interval设为0.25ms,record length设为0.25m,delay 设为0;acquisition--filter菜单:滤波器设置,本次实验屏蔽采集滤波器,设为FILTER OUT;acquisition--correlation菜单:相关设置,本次实验屏蔽相关,设为OFF;acquisition--stack option菜单:叠加设置,本次实验设为auto stack,即自动叠加;acquisition--specify channels菜单:选定某些道,屏蔽某些道。
地震勘探折射波法
摘要:
一、地震勘探折射波法简介
1.折射波法的概念
2.折射波法在地震勘探中的应用
二、折射波法的原理
1.地震波的传播
2.折射波的形成
3.折射波的接收与分析
三、折射波法的实际应用
1.折射波法的优点
2.折射波法在地震勘探中的实际案例
四、折射波法的发展趋势
1.折射波法的改进与优化
2.折射波法在我国地震勘探领域的发展
正文:
地震勘探折射波法是一种重要的地震勘探方法,它通过研究地震波在地下介质中的传播特性,来推测地下的地质结构。
折射波法在地震勘探中具有广泛的应用,为我国的地震勘探事业发展做出了重要贡献。
地震波在地下介质中传播时,会发生反射和折射。
折射波法主要研究地震波在介质界面的折射现象。
根据折射波法原理,地震波在两种介质之间传播
时,由于介质密度的差异,地震波的传播速度会发生改变,从而使地震波的传播方向发生偏转。
通过对折射波的接收与分析,可以获得地下介质的折射参数,从而推测出地下的地质结构。
折射波法在地震勘探中具有许多优点。
首先,折射波法可以有效地消除地表影响,提高地震勘探的准确性。
其次,折射波法可以充分利用地震波在地下介质中的传播特性,提高地震波的接收效率。
此外,折射波法还可以与其他地震勘探方法相结合,提高地震勘探的综合效果。
折射波法在我国地震勘探领域取得了显著的成果。
例如,在我国的某地震勘探项目中,利用折射波法成功地推测出了地下油藏的位置和规模,为我国石油资源的开发提供了重要依据。