(2017-2019)最新高考文科数学真题总结归类专题(含解析)
- 格式:docx
- 大小:490.95 KB
- 文档页数:14
推理与证明1.(2019全国II 文5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >3.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 4.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩5.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .6.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________.7.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s t <时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).8*.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 9*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.答案1.解析:由题意,可把三人的预测简写如下:甲:甲>乙. 乙:丙>乙且丙>甲. 丙:丙>乙.因为只有一个人预测正确,如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙>乙,乙>甲,因为乙预测不正确,而丙>乙正确,所以只有丙>甲不正确, 所以甲>丙,这与丙>乙,乙>甲矛盾.不符合题意. 所以只有甲预测正确,乙、丙预测不正确, 甲>乙,乙>丙. 故选A .2.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .3.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a-的直线,当0a ≠时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D .解法二 若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .4.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 5.27【解析】所有的正奇数和2n(*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.6.6 12【解析】设男生数,女生数,教师数为,则①84a b >>>,所以max 6b =,②当min 1c =时,21a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 2c =时,42a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 3c =时,63a b >>>,此时5a =,4b =,满足题意. 所以12a b c ++=.7.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (4)n ≥的情形,逆序数为0的排列只有一个:12n ⋅⋅⋅,所以(0)1n f =. 逆序数为1的排列只能是将排列12n ⋅⋅⋅中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当5n ≥时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, ,,a b c 2,,,c a b c a b c >>>∈N因此,5n ≥时,(2)n f =222n n --.8.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.9.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .。
三角函数的图象与性质1.(2019浙江18)设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 2.(全国Ⅰ文15)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 3.(全国Ⅱ文8)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1 D .124.(2019天津文7)已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若(A )-2(B )(C(D )25.(2018全国卷Ⅰ)已知函数22()2cos sin 2=-+f x x x ,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为46.(2018全国卷Ⅱ)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π7.(2018全国卷Ⅲ)函数2tan ()1tan xf x x=+的最小正周期为A .4π B .2πC .πD .2π8.(2018天津)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函()sin()(0,0,||)f x A x A ωϕωϕπ=+>><()f x π()y f x =()g x 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭数A .在区间[,]44ππ-上单调递增B .在区间[,0]4π上单调递减 C .在区间[,]42ππ上单调递增 D .在区间[,]2ππ上单调递减9.(2017新课标Ⅰ)函数sin 21cos xy x=-的部分图像大致为10.(2017新课标Ⅱ)函数()sin(2)3f x x π=+的最小正周期为A .4πB .2πC .πD .2π11.(2017新课标Ⅲ)函数1()sin()cos()536f x x x ππ=++-的最大值为 A .65 B .1 C .35 D .1512.(2017天津)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||πϕ<.若5π()28f =,11π()08f =,且()f x 的最小正周期大于2π,则 A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==13.(2017山东)函数2cos 2y x x =+最小正周期为A .π2 B .2π3C .πD .2π14.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .15.(2017新课标Ⅱ)函数()2cos sin f x x x =+的最大值为 .16.(2018北京)已知函数2()sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 17.(2018上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-ππ-[,]上的解.18.(2017北京)已知函数())2sin cos 3f x x x x π=--.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,()12f x -≥.19.(2017浙江)已知函数22()sin cos cos f x x x x x =--()x ∈R .(Ⅰ)求2()3f π的值; (Ⅱ)求()f x 的最小正周期及单调递增区间.20.(2017江苏)已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈.(1)若∥a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.答案1.解析(I )因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (Ⅱ)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2136212sin 22222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎫⎝⎭⎝⎭=+=--⎪⎪⎝⎭π1cos 223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[1+. 2.解析 ()3πsin 23cos cos 23cos 2f x x x x x ⎛⎫=+-=-- ⎪⎝⎭22319172cos 3cos 12cos cos 2168x x x x ⎛⎫=--+=-+++ ⎪⎝⎭=23172cos 48x ⎛⎫-++ ⎪⎝⎭.因为[]cos 1,1x ∈-,当cos 1x =时,()f x 取得最小值,()()min 14f x f ==-. 3.解析 因为x 1=π4,x 2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,所以T =2(3π4−π4)=π=2πω所以ω=2, 故选A .4.解析 因为(f x 0=,又()f x 的最小正周期为π, 所以2ωπ=π,得2ω=,所以()sin 2f x A x =.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,则()sin g x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,则332sin 22sin 28842f ππ3π⎛⎫⎛⎫=⨯==⨯=⎪ ⎪⎝⎭⎝⎭故选C .5.B 【解析】易知222233()2cos sin 23cos 1(2cos 1)122f x x x x x =-+=+=-++ 35cos 222x =+,则()f x 的最小正周期为π,当x k π=()k ∈Z 时,()f x 取得最大值,最大值为4.6.C 【解析】解法一()cos sin )4πf x x x x =-+,当[0,]x a ∈时,[,]444x a πππ+∈+,所以结合题意可知4a ππ+≤,即34a π≤,故所求a 的最大值是34π,故选C . 解法二()sin cos )4f x x x x π'=--=+,由题设得()0f x '≤,即sin()04x π+≥在区间[0,]a 上恒成立,当[0,]x a ∈时,[,]444x a πππ+∈+, 所以4a ππ+≤,即34a π≤,故所求a 的最大值是34π,故选C . 7.C 【解析】22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan cos sin 21cos x x x x x f x x x x x x x x x =====+++, 所以()f x 的最小正周期22T ππ==.故选C .8.A 【解析】把函数sin(2)5y x π=+的图象向右平移10π个单位长度得函数 ()sin[2()]sin 2105g x x x ππ=-+=的图象, 由22222k x k ππππ-++≤≤(k ∈Z ),得44k x k ππππ-++≤≤(k ∈Z ),令0k =,得44x ππ-≤≤,即函数()sin 2g x x =的一个单调递增区间为[,]44ππ,故选A .9.C 【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin20>,cos20<,故0y >,排除A .故选C .10.C 【解析】由222T πππω===,选C . 11.A 【解析】∵cos()cos[()]sin()6233x x x ππππ-=-+=+, 则 16()sin()sin()sin()53353f x x x x πππ=+++=+,函数的最大值为65.12.A 【解析】由题意5π8x =取最大值,11π8x =与x 相交,设()f x 周期为T ,所以11538844T πππ-==或34T ,所以3T π=或T π=,又()f x 的最小正周期大于2π,所以3T π=,所以223T πω==,排除C 、D ; 由5π()28f =,即252sin()238πϕ⨯+=,102242k ππϕπ+=+,即212k πϕπ=+,令0k =,12πϕ=.选A .13.C 【解析】∵2sin(2)6y x π=+,∴2T ππω==,选C .14.π6-【解析】由函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,得2sin()13πϕ+=±,因为22ϕππ-<<,所以27636πππϕ<+<, 则232ππϕ+=,6πϕ=-.15x ∈R ,由辅助角公式())f x x ϕ=+≤16.【解析】(1)1cos 211()22cos 222222x f x x x x -=+=-+ π1sin(2)62x =-+,所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3. 17.【解析】(1)若()f x 为偶函数,则对任意∈R x ,均有()()=-f x f x ;即22sin 22cos sin 2()2cos ()+=-+-a x x a x x , 化简得方程sin 20=a x 对任意∈R x 成立,故0=a ;(2)2()sin(2)2cos ()11444πππ=⨯+=+=f a a ,所以=a故2()22cos =+f x x x .则方程()1=f x 222cos 1+=x x222cos 1+-=x x 2sin(2)6π+=x即sin(2)62π+=-x ,解得1124ππ=-+x k 或524ππ'=-+x k ,,'∈Z k k 若求该方程在[,]ππ-上有解,则1335[,]2424∈-k ,1929[,]2424'∈-k , 即0=k 或1;0'=k 或1, 对应的x 的值分别为:1124π-、1324π、524π-、1924π.18.【解析】(Ⅰ)3()2sin 2sin 22f x x x x =+-1πsin 22sin(2)23x x x =+=+ 所以()f x 的最小正周期2ππ2T ==. (Ⅱ)证明:由(Ⅰ)知()sin(2)3f x x π=+因为ππ44x -≤≤, 所以ππ5π2636x -+≤≤.当236x ππ+=-,即4x π=-时,()f x 取得最小值12-. 所以当ππ[,]44x ∈-时,1()2f x -≥.得证.19.【解析】(Ⅰ)由2sin3π=21cos 32π=-,2()3f π2211()()22=---- 得2()23f π=. (Ⅱ)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 222sin(2)6f x x x x π=--=-+所以()f x 的最小正周期是π 由正弦函数的性质得3222262k x k πππππ+++≤≤,k ∈Z 解得263k x k ππππ++≤≤,k ∈Z所以()f x 的单调递增区间是2[,]63k k ππππ++(k ∈Z ).20.【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,∥a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[0,]x π∈,所以56x π=.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[0,]x π∈,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-。
(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改)的全部内容。
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A. B.C.D.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,12.则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
第三讲 函数的概念和性质1.(2019江苏4)函数y =的定义域是 .2. (2019全国Ⅱ文6)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+3.(2019北京文14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白 梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明 对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾 客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.4.(2019北京文3)下列函数中,在区间(0,+∞)上单调递增的是 (A )12y x =(B )y =2x -(C )12log y x =(D )1y x=5.(2019全国Ⅲ文12)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 6.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞7.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .8.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=L fA .50-B .0C .2D .509.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为10.(2017新课标Ⅰ)函数sin 21cos xy x=-的部分图像大致为11.(2017新课标Ⅲ)函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .12.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2xf x a +≥在R 上恒成立,则a 的取值范围是 A .[2,2]- B.[2]- C.[2,- D.[- 13.(2017山东)设1()2(1),1x f x x x <<=-⎪⎩≥,若()(1)f a f a =+,则1()f a =A .2B .4C .6D .8答案1.解析 由2760x x +-…,得2670x x --„,解得17x -剟.所以函数y =[1,7]-. 2.解析 设x <0,则−x >0,所以f (-x )=e 1x --,因为设f(x)为奇函数,所以()e 1x f x --=-, 即()e 1x f x -=-+. 故选D .3.解析 ①草莓和西瓜各一盒的价格为6080140120+=>,则支付14010130-=元; ②设促销前顾客应付y 元,由题意有()80%70%y x -…,解得18x y „,而促销活动条件是120y …,所以max min 111201588x y ⎛⎫==⨯=⎪⎝⎭. 4.解析 由基本初等函数的图像与性质可知,只有12y x =符合题意.故选A. 5.解析 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =, 因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .6.D 【解析】当0x ≤时,函数()2x f x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .7.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .8.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C .9.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D . 10.C 【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin20>,cos20<,故0y >,排除A .故选C .11.D 【解析】当1x =时,(1)2sin12f =+>,排除A 、C ;当x →+∞时,1y x →+,排除B .选D .12.A 【解析】由题意0x =时,()f x 的最小值2,所以不等式()||2xf x a +≥等价于 ||22xa +≤在R 上恒成立.当a =0x =,得|22x+>,不符合题意,排除C 、D ;当a =-0x =,得|22x->,不符合题意,排除B ;选A .13.C 【解析】由1x ≥时()()21f x x =-是增函数可知,若,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =, 则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C .。
2017-2019高考文数真题分类解析----数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++L()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L()2123613233n n n =+⨯+⨯++⨯L .记1213233nn T n =⨯+⨯++⨯L ,① 则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n n n n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即12k c c c +++<L . 那么,当1n k =+时,121k k c c c c +++++<<L<==.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式12n c c c +++<L 对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{b n }的通项公式,借助于{b n }的通项公式求得数列{a n }的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n aa a +++L .【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-L L L . ∴12e e e n a a a +++L 1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---L L 由12()4n n n n S T T T a b ++++=+L 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-L23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+L .设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥L ,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅L 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅L ,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立. 因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). 75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+L 2,3,,1n m =+L 1111211n n q q b d b n n ---≤≤--q ∈112n m qq -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+L 2,3,,1n m =+L 12{}1n q n ---1{}1n q n --2,3,,1n m =+L①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21xf x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. (1)由等比数列通项公式解得2q =-,12a =-即可求解; (2)利用等差中项证明S n +1,S n ,S n +2成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)b n =2n−1;(2)当q =−5时, S 3=21.当q =4时, S 3=−6. 【解析】设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d , b n =q n−1. 由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1.(2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和. 27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2, 所以a n =22n−1 (n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n−1.(2)记{an2n+1}的前n 项和为S n ,由(1)知a n2n+1 =2(2n+1)(2n−1) =12n−1−12n+1.则 S n = 11 − 13 + 13 − 15 +…+ 12n−1 − 12n+1 = 2n2n+1 .【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n Λ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式;(2)求和:13521n b b b b -++++L .【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=L L .【名师点睛】本题考查了数列求和,一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式;②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【答案】(1)2nn a =;(2)2552n nn T +=-【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2nn a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,1+=n n n a a cc nn c c n ++=1令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n nn n T c c c --+=+++=+++++L L又234113572121222222n n n n n T +-+=+++++L , 两式相减得2111311121()222222n n n n T -++=++++-L , 所以2552n nn T +=-. 【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2n n b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯L ,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23112(12)42626262(62)24(612n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----L122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d , 则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 【名师点睛】本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.。
专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 8.【2018年高考全国Ⅲ卷文数】已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()y x t =---d 的取值范围.13.【2018年高考浙江】已知函数f (x ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.19.【2017年高考浙江】已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.1.【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值. 2.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析.【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011ln x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞). (2)由1(1)2f a≤,得0a <≤当04a <≤时,()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =…令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦, 则()10q'x=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭„.由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x „.综上所述,所求a 的取值范围是4⎛ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 7.【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥. 【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.10.【答案】(1)在(–∞,3-3++∞)单调递增,在(3-3+减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-,3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-,3+(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证. 11.【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e x xf x ax a x ax x '=-++=--.若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞. 方法二:()(1)(1)e xf x ax x '=--. (1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥,∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【答案】(I )x +y =0;(II )函数f (x )的极大值为f (x )的极小值为−;(III )d 的取值范围为(,)-∞+∞U .【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2x =t 2 当x 变化时,()f x ',f (x )的变化如下表:所以函数f (x )的极大值为f (t 2)=(3−9×(f (x )的极小值为f (t 2)3−9×−(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u .设函数g (x )=x 3+(1−d 2)xy =f (x )与直线y =−(x −t 2)−y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意. 当d 2>1时,()g'x =0,解得x 1=x 2.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增.g (x )的极大值g (x 1)=g(+. g (x )的极小值g (x 2)=g)=−3221)9d -+ 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||d >,此时2||d x >,(||)||0,g d d =+>且312||,(2||)6||2||0d x g d d d -<-=--+<-<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d的取值范围是(,)-∞+∞U .【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)函数f (x)的导函数1()f x x'=, 由12()()f x f x ''=1211x x =, 因为12x x ≠12=.=≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则 f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n-≤)n k <0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x a k x-=.设()h x =则22ln )1)((12x ag x x x a x h '=--+--+=, 其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f(θ)=sinθcosθ+cosθ,θ∈[θ0,π2 ],则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 15.【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2ax =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【答案】(1)在(,1-∞--和(1)-++∞单调递减,在(11---单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得1x x =--=-当(,1x ∈-∞--时,()0f x '<;当(11x ∈--+时,()0f x '>;当(1)x ∈-+∞时,()0f x '<.所以()f x 在(,1-∞-和(1)-++∞单调递减,在(11---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h′(x )= −x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x −1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取0x =,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析【解析】(1)()f x 的定义域为(0,+),()()1211()221x ax f x ax a x x++'=+++=. 若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【答案】(1)1())2x f x x -'=>;(2)121[0,e ]2-.【解析】(1)因为(1x '-=-,(e )e x x'--=-,所以()(1(x xf x x --'=--1)2x =>.(2)由()0xf x -'==,解得1x =或52x =.因为又21()1)e 02x f x -=≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果.21.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()ex x x x g g'⎧=⎪⎨=⎪⎩, 所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--, 令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【答案】(1)2239a b a=+,定义域为(3,)+∞;(2)见解析;(3)(36],. 【解析】(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a abf -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1x 2x列表如下:故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(2)由(129. 设23()=9t g t t +,则22223227()=99t g t t t-'-=.当()2t ∈+∞时,()0g t '>,从而()g t 在)+∞上单调递增.因为3a >,所以>故(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,a .故6,.因此a的取值范围为(36]【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的、号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部分图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为AB C D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
专题10 解三角形1.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =14-,则b c= A .6 B .5 C .4D .32.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β3.【2018年高考全国Ⅲ文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =A .2π B .3πC .4πD .6π4.【2018年高考全国Ⅱ文数】在ABC △中,5cos25C =,1BC =,5AC =,则AB = A .2 B 30C 29D .255.【2017年高考全国Ⅰ文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.7.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.8.【2018年高考北京卷文数】若ABC △)222a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________.9.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.10.【2018年高考全国Ⅰ文数】ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.11.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .12.【2017年高考全国Ⅱ卷文数】ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .13.【2017年高考全国Ⅲ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =_________.14.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.15.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 16.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值.17.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 18.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.20.【2018年高考天津卷文数】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B –π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A –B )的值.21.【2017年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.22.【2017年高考山东卷文数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S △,求A 和a .23.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.1.【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 2.【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β, 所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=,由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =, 故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.解三角形的题型一般有两类:一是边角关系的转化,考生需对所给的边角关系进行恒等变形;二是有几何背景的题型,难点在于涉及两个或两个以上的三角形,解决此类问题可利用正、余弦定理进行求解,同时要重视三角函数的知识在解三角形中的运用. 4.【答案】A【解析】因为cos25C =,所以cos C =22cos 2C −1=2×25−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC × BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =故选A.【名师点睛】本题主要考查二倍角公式、余弦定理,考查考生的运算求解力,考查的数学核心素养是数学运算.解三角形是近几年高考中的高频者点,将解三角形与其他知识巧妙地融合在一起,既体现了试题设计的亮点,又体现了对所学知识的交汇考查. 5.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin sin 4C =,即1sin 2C =, 因为c <a ,所以C<A , 所以π6C =,故选B . 【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角. 7.【答案】1225,7210【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 8.【答案】60︒,()2,+∞【解析】)22231sin 2ABC S a c b ac B =+-=△, 22223a c b ac +-∴=,即cos 3B =,sin π3,cos 3B B B ∴=∠=,则2π1sin cos sin sin 1132sin sin sin tan 2A A Ac C a A A A A ⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∠为钝角,ππ,036B A ∠=∴<∠<,)1tan 0,,3tan A A ⎛⎫∴∈∈+∞ ⎪ ⎪⎝⎭,故()2,ca∈+∞.故答案为60︒,()2,+∞.【名师点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角πA B C ++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键. 9.【答案】7,3 【解析】由正弦定理得sin sin a A b B =,所以πsin sin ,37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c . 10.【解析】根据题意,由sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin B C C B +4sin sin sin A B C =,即1sin 2A =, 由2228b c a +-=,结合余弦定理可得2cos 8bc A =,所以A为锐角,且cos A =,从而求得3bc =,所以ABC △的面积为111sin 22323S bc A ==⨯=,.【名师点睛】本题主要考查正、余弦定理的应用与三角形的面积公式,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是数学运算.解答本题时,利用正弦定理,通过sin sin b C c B +=4sin sin a B C ,可以求出1sin 2A =,再利用余弦定理求出bc =,然后利用三角形的面积公式求解即可. 11.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线的性质和三角形的面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c+=,因此1144(4)()559c a a c a c a c a c +=++=++≥+=,当且仅当23c a ==时取等号,则4a c +的最小值为9.【名师点睛】本题主要考查三角形的面积公式、基本不等式,考查分析问题、解决问题的能力,考查的核心素养是数学运算.应用基本不等式求解最值时,要注意对条件“一正、二定、三相等”进行检验,尤其是等号成立的条件. 12.【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 故答案为π3. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 13.【答案】75°【解析】由正弦定理sin sin b c B C=,得sin 2sin 32b C Bc ===,结合b c <可得45B =,则18075A B C =--=.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.14.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 2△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 的面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.15.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=.因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 16.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin B =.由正弦定理得sin sin a A B b ==在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力. 17.【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 18.【答案】(1)3c =(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.19.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 20.【答案】(1)π3;(2)b;sin(2A –B【解析】(1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b.由πsin cos()6b A a B =-,可得sin A =因为a <c,故cos A =.因此sin 22sin cos 7A A A ==,21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=1127-= 【名师点睛】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 21.【答案】(1)2). 【解析】(1)由sin 4sin a A b B =及sin sin a bA B=,得2a b =.由222)ac a b c =--及余弦定理,得2225cos 2acb c aA bcac -+-=== (2)由(1)可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(1)知A 为钝角,所以cos B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55555B A B A B A -=-=⨯--⨯=-. 【名师点睛】利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.解答本题时,(1)首先根据正弦定理sin sin a bA B=得到2a b =,再根据余弦定理即可求得cos A 的值;(2)根据(1)的结论和条件,由cos A 求得sin A ,然后根据sin 4sin a A b B =求得sin B ,再求cos B ,然后由二倍角公式求sin 2,cos 2B B ,最后代入sin(2)B A -的展开式即可.22.【答案】3=π,4A a 【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又3ABC S =△,所以sin 6bc A =, 因此tan 1A =-,又0πA <<, 所以3π4A =,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(2a =+-⨯⨯-,所以a =【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. 23.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ ∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.。
(2017-2019)最新高考文科数学真题总结归类专题(含解析)专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U B A =I ð{6,7}. 故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解. 2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-I . 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)A B =-+∞U . 故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-I ð. 故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I UA .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件; 由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得U ∩U ={0,2}. 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】∵U ={1,3,5,7},U ={2,3,4,5},∴U ∩U ={3,5}. 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I . 故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A=,{1,0,2,3}=∈-≤<R,B=-,{|12}C x x则()A B C=U IA.{1,1}-B.{0,1}C.{1,0,1}-D.{2,3,4}【答案】C【解析】由并集的定义可得:U∪U={−1,0,1,2,3,4},结合交集的定义可知:(U∪U)∩U={−1,0,1}.故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.(2)等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件.18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式U 3>8可得U >2, 求解绝对值不等式|U |>2可得U >2或U <−2,据此可知:“U 3>8”是“|U |>2” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当U =4,U =1,U =1,U =14时,U ,U ,U ,U 不成等比数列,所以不是充分条件; 当U ,U ,U ,U 成等比数列时,则UU =UU ,所以是必要条件.综上所述,“UU =UU ”是“U ,U ,U ,U 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“U ⇒U ”以及“U ⇒U ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<I I .故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U . 故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I , 故A B I 中元素的个数为2. 所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =U , 所以{}()1,2,4A B C =U I . 故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =U (1,2)-. 故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I . 故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =I .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.【答案】1,−1(答案不唯一)【解析】使“若U >U ,则1U <1U ”为假命题,则使“若U >U ,则1U ≥1U ”为真命题即可,只需取U =1,U =−1即可满足,所以满足条件的一组U ,U 的值为1,−1(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。