九年级数学代数分类与方案设计
- 格式:ppt
- 大小:576.00 KB
- 文档页数:20
北师大新版九年级数学上册教案带教学反思一、内容概览本章节是北师大新版九年级数学上册的一部分内容,围绕核心数学主题进行展开,涉及重要的数学概念和应用技能的培养。
教学计划结合教学目标以及学生的实际认知发展水平和学习需求精心设计,目的是提高学生解决实际问题的能力。
这一章的主题包括了代数、几何、概率与统计等关键数学领域的内容。
每个小节都将包含新的知识点和关键技能,并围绕这些知识点展开一系列的学习活动。
代数部分将涵盖二次方程、不等式及其求解技巧等。
几何部分将探讨复杂的几何图形及其性质,包括三角形、四边形、圆的性质等。
概率与统计也将是本章节的重要部分,包括数据的收集、整理和分析方法,以及概率的基本概念和计算方法等。
本章节还将注重数学知识的实际应用,通过解决一系列实际问题来加强学生对数学知识的理解和应用能力的提升。
在现实生活中运用数学知识解决实际问题,以及如何利用数学模型预测未来的趋势等。
这种实践导向的教学方式将极大地提高学生解决问题的能力。
每一课都会根据新课标的要求进行设计,保证知识深度、难度的递进关系处理得当,有助于提高学生综合分析问题解决问题的能力。
通过这个过程,学生可以深化对数学的理解和认识,进而对更高层次的数学学习产生积极的影响。
对于这一阶段的教学过程,教师会进行详细的反思和总结,以便更好地调整教学策略和方案。
1. 介绍北师大新版九年级数学上册的教学目标和重要性。
北师大新版九年级数学上册的教学目标是全面提升学生的数学素养和综合能力。
该教材紧扣国家课程标准,遵循学生的认知规律,注重知识与能力、过程与方法、情感态度与价值观的有机结合。
主要教学目标包括:知识与能力:使学生掌握初中数学的基本概念、原理和方法,包括代数、几何、概率统计等领域的基础知识。
注重培养学生的计算能力、推理能力、空间想象能力和数据处理能力等。
过程与方法:引导学生通过探究、合作、实践等多种方式学习,培养学生的自主学习能力、创新意识和实践能力。
2024年新青岛版九年级上数学教学计划教学目标:1. 知识目标:掌握九年级上册数学的全部知识点,包括代数式与方程、平面图形的认识、平面图形的性质、带根式的运算、实数概念及运算、函数基本性质等。
2. 能力目标:培养学生数学思维和解决问题的能力,使学生能够熟练地运用所学知识解答问题,提高其数学应用能力。
3. 态度目标:培养学生对数学学习的兴趣,建立正确的数学学习态度,发展合作学习精神,培养学生分析问题、解决问题的能力。
教学内容及计划:第一章代数式与方程1. 代数式的含义与性质(4课时)教学内容:代数式的定义,基本运算法则,指数法则,化简与展开。
教学计划:第1课时:引入代数式的定义,让学生了解代数式的基本概念。
第2课时:介绍代数式的基本运算法则,引导学生进行代数式的简化。
第3课时:讲解指数法则,让学生掌握指数运算的规律。
第4课时:综合运用,让学生进行代数式的展开与合并。
2. 一元一次方程(4课时)教学内容:一元一次方程的定义、解法及实际应用。
教学计划:第5-6课时:引入一元一次方程的定义与解法,让学生学会使用逆运算解方程。
第7课时:讲解一元一次方程的实际应用,引导学生将数学知识应用于实际问题。
第8课时:巩固与综合运用,让学生解决一元一次方程实际问题。
第二章平面图形的认识1. 平面图形的定义及分类(4课时)教学内容:平面图形的分类及性质。
教学计划:第9-10课时:引入平面图形的定义及分类,让学生了解各种平面图形的基本特点。
第11课时:讲解平行四边形及其性质,引导学生运用性质进行证明。
第12课时:综合运用,让学生解决平面图形的真实问题。
2. 圆的相关概念与性质(4课时)教学内容:圆的定义、元素、性质及相关定理的应用。
教学计划:第13-14课时:引入圆的定义、元素及性质,让学生学会计算圆的周长和面积。
第15课时:介绍圆的切线及其性质,引导学生运用性质进行证明。
第16课时:巩固与综合运用,让学生解决圆相关问题。
九年级数学教学计划模板一、学情分析:本学期我担任初三年级两个班的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习用心性有所提高,也有不少学生自制潜力较差,个性是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同状况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。
二、教材分析本学期的资料只剩两章:圆与统计与概率。
圆这一章的主要资料是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,视图。
本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。
垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。
垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本几何体或实物原型,是本章的难点。
统计与概率这章有总体与样本、用样本估计这两节资料。
统计是统计理论和应用的一项重要资料,其基本思想是透过部分估计全体。
本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。
除了这两章,还要复习初中数学教材其他的资料。
三、教学目标:2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,透过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要资料进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。
3、情感目标及价值观:透过学习交流、合作、讨论的方式,用心探索,激发学生的学习兴趣,改善学生的学习方式,提高学习质量,逐步构成正确的教学价值观,使学生的情感得到发展。
四、教学重与难点重点:圆这章中垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。
九年级数学上册全册教案设计及练习题第一章:实数与代数式1.1 有理数教学目标:理解有理数的定义及其分类。
掌握有理数的运算方法,包括加法、减法、乘法和除法。
教学内容:有理数的定义及分类。
有理数的运算方法及运算律。
教学步骤:1. 引入有理数的概念,解释有理数的定义及其分类。
2. 通过示例演示有理数的加法、减法、乘法和除法运算。
练习题:1.2 代数式教学目标:理解代数式的定义及其组成。
掌握代数式的运算方法,包括加法、减法、乘法和除法。
教学内容:代数式的定义及其组成。
代数式的运算方法及运算律。
教学步骤:1. 引入代数式的概念,解释代数式的定义及其组成。
2. 通过示例演示代数式的加法、减法、乘法和除法运算。
练习题:第二章:方程与不等式2.1 方程教学目标:理解方程的定义及其分类。
掌握一元一次方程的解法。
教学内容:方程的定义及其分类。
一元一次方程的解法。
教学步骤:1. 引入方程的概念,解释方程的定义及其分类。
2. 通过示例演示一元一次方程的解法。
练习题:2.2 不等式教学目标:理解不等式的定义及其分类。
掌握一元一次不等式的解法。
教学内容:不等式的定义及其分类。
一元一次不等式的解法。
教学步骤:1. 引入不等式的概念,解释不等式的定义及其分类。
2. 通过示例演示一元一次不等式的解法。
练习题:第三章:几何基本概念3.1 点、线、面教学目标:理解点、线、面的定义及其性质。
掌握点、线、面之间的相互关系。
教学内容:点的定义及其性质。
线的定义及其性质。
面的定义及其性质。
点、线、面之间的相互关系。
教学步骤:1. 引入点、线、面的概念,解释点的定义及其性质。
2. 通过示例演示线的定义及其性质。
3. 引导学生理解面的定义及其性质。
4. 讲解点、线、面之间的相互关系。
练习题:3.2 平面几何基本元素教学目标:理解直线、射线、线段的定义及其性质。
掌握角的定义及其分类。
教学内容:直线、射线、线段的定义及其性质。
角的定义及其分类。
教学步骤:1. 引入直线、射线、线段的概念,解释它们的定义及其性质。
《代数式》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在第一课时所学的代数式基础知识,包括代数式的定义、分类、运算等,旨在培养学生掌握代数式的基本概念和基本技能,提高其代数运算能力和逻辑思维水平。
二、作业内容1. 基础练习:设计一系列代数式的基础练习题,包括代数式的定义、识别和分类等。
例如,给出一些代数式,让学生判断其是否符合代数式的定义,或者根据给定的条件对代数式进行分类。
2. 代数式化简:布置一些代数式化简的题目,要求学生熟练掌握代数式的化简方法,如合并同类项、去括号等。
3. 简单代数式运算:要求学生完成一些简单的代数式运算,如加减乘除、平方、开方等。
同时设计一些含有未知数的复合式子运算,让学生在解题中理解和运用代数式的性质。
4. 实际运用题:设置一些与生活相关的实际运用题,让学生在解题过程中感受代数式的实际意义和作用。
例如,利用代数式解决购物问题、速度与距离问题等。
5. 拓展延伸题:设计一些难度较高的拓展延伸题,供学有余力的学生挑战。
这些题目可以涉及到代数式的其他知识点,如二次根式的化简、高次方程的求解等。
三、作业要求1. 学生应按照规定的时间完成作业,并在作业纸上规范书写答案。
2. 学生在完成作业时,应认真审题,理解题目要求,准确运用所学知识进行解答。
3. 学生在完成基础练习和简单运算题时,应注意运算的准确性和速度,力求在短时间内准确完成。
4. 在解答实际运用题和拓展延伸题时,学生应运用所学知识,结合实际情况进行思考和解答。
5. 学生应独立完成作业,如有需要可适当参考教材或网络资源,但不得抄袭他人答案。
四、作业评价教师应对学生的作业进行认真批改和评价,对学生的正确答案给予肯定和鼓励,对错误答案进行指导和纠正。
同时,教师还应关注学生在解题过程中的思路和方法,对学生的优秀思路和方法给予表扬和推广。
五、作业反馈教师应对学生的作业情况进行及时反馈,对普遍存在的问题进行讲解和指导。
同时,教师还应根据学生的作业情况调整教学计划和教学方法,以更好地满足学生的学习需求。
中考专题讲解:分类讨论题(代数部分)安徽省无为县刘渡中心学校(238341) 丁浩勇有一类数学题,我们在解答时,需要根据研究对象性质的差异将它分为不同的情况加以分析考查.这一类试题,我们称之为分类讨论题.分类思考是解决数学问题的一种重要的思想方法,也是我们必须要掌握的一种解题策略.掌握好分类讨论的解题方法,非常有利于培养和发展我们思维的条理性、缜密性和灵活性,使我们能够完整地考虑问题,从而学会化整为零地解决问题.解决分类讨论题首先要弄清分类的方法和原则,分类时要考虑研究对象的相同点和差异点,将它划分为不同种类加以分析和研究.分类时必须遵循以下原则:(1)分类中的每个分支是相互独立的,不能有重复情况出现; (2)分类时标准要统一,不能有遗漏情况出现; (3) 分类讨论应逐级进行.解决分类讨论题的基本方法和步骤是:(1)确定研究对象的全体范围; (2)确定分类标准,合理地进行分类; (3)逐级对所分类别进行讨论,获取阶段性结果; (4) 综合各级结果,得出最终结论.近年来中考数学试题中分类讨论题(代数部分)一般有概念型分类讨论题、性质型分类讨论题、参数型分类讨论题、解集型分类讨论题、统计型分类讨论题和方案设计型分类讨论题等几种类型.类型一 概念型分类讨论题 有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】(2009·孝感)若m n n m -=-,且4m =,3n =,则2()m n += . 【分析与解答】由m n n m -=-,得n ≥m .而由4=m ,3=n ,得4±=m ,3±=n .下面分情况进行讨论.(1)当3,4±==n m 时,有m >n ,这与n ≥m 相矛盾,所以不成立; (2)当4-=m ,3=n 时,满足n ≥m ,那么()()13422=+-=+n m ; (3) 当4-=m ,3-=n 时,满足n ≥m ,那么()()493422=--=+n m . 综合上面的讨论可知()2n m +的值为1或49.【点拨】每年的中考题都会出现一些考查基础知识、基本技能、基本思想方法的问题,这类题主要集中在数与式的一些基本概念与运算方面.因此我们一定要牢固掌握好这些分类定义的概念,并能灵活运用.否则的话对于这类题目我们容易丢解.类型二 性质型分类讨论题有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】(2008·威海)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【分析与解答】因为A (1,2)、B (3,2)两点的纵坐标相等,所以抛物线c bx ax y ++=2的对称轴方程是231+=x ,即2=x .又因为点C (5,7)也在抛物线上,所以抛物线的开口向上.下面就对称轴的两边分两种情况讨论二次函数的性质.(1)当x <2时,此二次函数是单调递减函数.由于2-<1-,所以有1y >2y . (2) 当x >2时,此二次函数是单调递增函数.而M (1,2y -)关于对称轴2=x 的对称点的坐标为(1,6y ),由于6<8,所以有1y <3y .综合(1)、(2)可得2y <1y <3y ,故选B .【点拨】解决此类问题时,我们一定要分类讨论二次函数的性质:(1)当a >0时,对称轴的左边单调递减,对称轴的右边单调递增;(2)当a <0时,对称轴的左边单调递增,对称轴的右边单调递减.【例3】(2008·株州)已知函数1y x =的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥ 【分析与解答】由于反比例函数1y x=的性质是分段描述的:当x >0时,反比例函数1y x =的图象在第一象限y 随着x 增大而减小,且y >0;当x <0时,反比例函数1y x=的 O -1 -1 X图象在第三象限y 随着x 增大而减小,且y <0.本题中1x ≥-,必须分为x ≤-1<0和x >0两种情况进行考查.(1) 当x ≤-1<0时,由反比例函数1y x =的性质可知1-≤y ; (2) 当x >0时,由反比例函数1y x=的性质可知y >0. 所以本题的正确答案是选C .【点拨】本题主要考查反比例函数的增减性,理解反比例函数的增减性主要存在以下两方面的误区:一是片面地理解反比例函数的增减性,没有分x >0和x <0两个区间分别讨论;二是错误地认为反比例函数是单纯的递增函数或单纯的递减函数.类型三 参数型分类讨论题解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题.【例4】(2009·凉山州)若0ab <,则正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象可能是( )【分析与解答】要确定正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象,首先要知道a 、b 的取值范围.由于0ab <,所以要分a >0,b <0和a <0,b >0两种情况进行讨论.(1) 当a >0,b <0时,正比例函数y ax =的图象在一、三象限,反比例函数by x=的图象在二、四象限.图中的四个选择支没有一个符合条件; (2) 当a <0,b >0时,正比例函数y ax =的图象在二、四象限,反比例函数by x =的图象在一、三象限.图中的四个选择支只有B 符合条件.综合(1)、(2)可知,本题的正确答案是B .【点拨】解决这类问题,关键要把握两点:一是判断正比例函数y ax =中a 的取值,确定图象所在象限及增减性;二是判断反比例函数b y x=中b 的取值,确定图象所在象限及xxxx B .每一象限中的增减性.【例5】(2008·贵阳)对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【分析与解答】平面直角坐标系中,每一象限内点的坐标的正负性有如下规律:由于点P (1)当x <0时,()222-=-x x x x >0,点2(2)P x x x -,在第二象限; (2)当0=x 时,022=-x x ,点2(2)P x x x -,为原点; (3)当0<x <2时,()222-=-x x x x <0,点2(2)P x x x -,在第四象限; (4) 当x >2时,()222-=-x x x x >0,点2(2)P x x x -,在第一象限. 综上所述,点2(2)P x x x -,一定不在第三象限,故选C .【点拨】解决这类问题首先应熟练掌握每一象限内点的横、纵坐标的正负性,以及在坐标轴上的点的坐标特点,然后根据参数的不同取值分段讨论.【例6】(2009·荆门)关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为 ( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.【分析与解答】关于x 的方程ax 2-(a +2)x +2=0中参数a 的取值不同,方程的性质也会发生变化,下面分别讨论.(1)当0=a 时,原方程变为一元一次方程022=+-x ,此方程只有一个解; (2) 当0≠a 时,原方程ax 2-(a +2)x +2=0是一元二次方程,由()[]02422=⨯-+-=∆a a ,得2=a .综合(1)、(2)得0=a 或2=a ,所以本题选择D .【点拨】因为题目中相同解算作一解,所以一元一次方程和一元二次方程都有可能符合条件,因此,我们在解答类似题目时一定要考虑周全,不要漏解.类型四 解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】(2009·深圳)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->.解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有(1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-. 问题:求分式不等式51023x x +<-的解集. 【分析与解答】阅读例题可知,把()3+x 和()3-x 看成两个数,它们的积为正,则这两个数同号,由此类推不难解决给出的问题.由有理数的除法法则“两数相除,异号得负”可知()15+x 和()32-x 异号,下面分情况讨论即可.(1)当15+x >0,32-x <0时,解不等式组510230x x +>⎧⎨-<⎩得135x -<<;(2)当15+x <0,32-x >0,时,解不等式组510230x x +<⎧⎨->⎩无解. 综合(1)、(2)两种情况,得分式不等式51023x x +<-的解集为135x -<<. 【点拨】本例先根据乘法法则用分组的方法结出了一个一元二次不等式的求解过程,然后要求我们用类比的方法求解一个分式不等式.解决这类问题的关键是要弄清解题原理,能够“现学现用”,分析并解决问题.类型五 统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】(2009·牡丹江)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .【分析与解答】设这三个不相等的正整数从小到大排列为a ,3,b .根据题意,a 的取值可以是1和2.下面我们分别讨论:(1)当1=a 时,由333⨯=++b a 得5=b ; (2) 当2=a 时,由333⨯=++b a 得4=b .综上所述,这三个数分别为1,3,5或2,3,4.【点拨】由于数据的不确定性,需要对它进行分类讨论.如果我们不能有条理地进行思考,就可能有遗漏的情况出现.分类讨论的思想非常有利于克服思维的片面性,防止漏解.类型六 方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】(2009·绥化)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A .4种B .3种C .2种D .1种【分析与解答】设需二人间x 间,三人间y 间,则需四人间为()y x --7间.根据题意,得()207432=--++y x y x ,化简,得x y 28-=.由于x 、y 、y x --7皆为正整数.下面分别讨论.(1)当1=x 时,628=-=x y ,07=--y x ,不符合要求; (2)当2=x 时,428=-=x y ,17=--y x ,符合要求; (3)当3=x 时,228=-=x y ,27=--y x ,符合要求; (4) 当4=x 时,028=-=x y ,37=--y x ,不符合要求;故符合条件的方案有2种,即C 是正确答案.【点拨】利用不定方程解决日常生活中的实际问题是近年来中考题中的常见题型之一.本题的误区是往往由于读题不细心,审题不严谨,从而容易忽视x 、y 、y x --7是正整数这个隐含条件,导致4种方案都符合要求的结论.总之,分类讨论是一种非常重要,也是很常见的数学解题方法,在中考试卷中,命题者经常利用分类讨论题来加大试卷的区分度.因此,我们一定要牢固掌握分类的技能技巧,做到举一反三,触类旁通.。
九年级数学上册全册教案设计及练习题第一章:实数与代数式1.1 实数教学目标:理解实数的概念,掌握有理数和无理数的分类。
能够进行实数的加减乘除运算。
教学内容:实数的定义及分类。
实数的加减乘除运算规则。
教学方法:采用讲解法,通过举例解释实数的概念和运算规则。
利用数轴辅助学生理解实数的相对位置。
教学练习题:a) 所有整数都是有理数。
b) 根号2是无理数。
c) 实数包括有理数和无理数。
1.2 代数式教学目标:理解代数式的概念,掌握代数式的运算规则。
能够进行代数式的化简和求值。
教学内容:代数式的定义及分类。
代数式的运算规则。
教学方法:采用讲解法,通过举例解释代数式的概念和运算规则。
利用示例进行代数式的化简和求值练习。
教学练习题:填空题:请将下列代数式化简。
a) 2(x + 3) 3(x 1)b) (2x 5)(3x + 2)第二章:方程与不等式2.1 方程教学目标:理解方程的概念,掌握一元一次方程的解法。
能够解简单的一元一次方程。
教学内容:方程的定义及分类。
一元一次方程的解法。
教学方法:采用讲解法,通过举例解释方程的概念和解法。
利用示例进行一元一次方程的解法练习。
教学练习题:解方程题:请解下列一元一次方程。
a) 2x + 5 = 15b) 3x 4 = 72.2 不等式教学目标:理解不等式的概念,掌握一元一次不等式的解法。
能够解简单的一元一次不等式。
教学内容:不等式的定义及分类。
一元一次不等式的解法。
教学方法:采用讲解法,通过举例解释不等式的概念和解法。
利用示例进行一元一次不等式的解法练习。
教学练习题:解不等式题:请解下列一元一次不等式。
a) 2x + 5 > 15b) 3x 4 ≤7九年级数学上册全册教案设计及练习题第六章:函数与图像6.1 函数的概念教学目标:理解函数的定义,掌握函数的表示方法。
能够识别和理解函数的图像。
教学内容:函数的定义及表示方法。
函数图像的特点及识别。
教学方法:采用讲解法,通过举例解释函数的概念和表示方法。
九年级数学题型归纳总结在九年级的数学学习中,我们接触到了许多不同类型的数学题目。
这些题目形式各异,题型也有很多变化。
为了更好地掌握和应对这些数学题型,我们需要对它们进行归纳总结。
下面将对九年级数学题型进行分类,并分别进行详细介绍。
一、代数题型1. 一次函数:包括求解一次方程、一次函数的图像、一次函数的性质等内容。
2. 二次函数:包括求解二次方程、二次函数的图像、二次函数的性质等内容。
3. 幂函数和指数函数:包括幂函数和指数函数的性质、图像、解决幂函数和指数函数问题的方法等内容。
4. 对数函数:包括对数函数的性质、图像、求解对数函数方程等内容。
二、几何题型1. 三角形和四边形:包括三角形和四边形的性质、面积计算、相似三角形、等腰三角形、直角三角形等内容。
2. 圆:包括圆的性质、圆的面积计算、圆的切线、弦长等内容。
3. 三维几何:包括长方体、正方体、棱锥、棱柱、球体等立体几何图形的性质、计算等内容。
三、概率与统计题型1. 事件与概率:包括事件的概率计算、事件之间的关系、加法原理、乘法原理等内容。
2. 统计与图表分析:包括统计数据的收集、整理和分析,如频数表、频率表、柱状图、折线图、饼图等内容。
四、函数题型1. 函数的概念与性质:包括函数的定义、函数的性质、函数表达式的求解等内容。
2. 复合函数与反函数:包括复合函数的概念、求解复合函数的方法、反函数的概念、求解反函数的方法等内容。
五、方程与不等式题型1. 一元二次方程和一元二次不等式:包括求解一元二次方程和一元二次不等式的方法、方程根的判别式、不等式的解集表示等内容。
2. 分式方程和分式不等式:包括求解分式方程和分式不等式的方法、分式方程和分式不等式的根的限制等内容。
六、三角函数题型1. 三角函数的定义与性质:包括正弦函数、余弦函数和正切函数的定义、性质、图像等内容。
2. 角度制与弧度制:包括角度制与弧度制的转换、弧度制下三角函数值的计算等内容。
3. 三角函数的运算:包括三角函数的加减倍角公式、和差化积公式等内容。
2020中考数学:代数式的定义及分类一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数……表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
代数式的分类【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式。
【无理式】根号下含有字母的代数式叫做无理式。
【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式。
【分式】除式中含字母的有理式叫分式。
2019-2020学年数学中考模拟试卷一、选择题1.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )A .11B .13C .11或13D .不能确定 2.化简(﹣a 2)•a 5所得的结果是( )A.a 7B.﹣a 7C.a 10D.﹣a 10 3.如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4;②4a+2b+c <0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( ).A.1个B.2个C.3个D.4个4.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .217B .25C .42D .75.如图,边长为正整数的正方形ABCD 被分成了四个小长方形且点E ,F ,G ,H 在同一直线上(点F 在线段EG 上),点E ,N ,H ,M 在正方形ABCD 的边上,长方形AEFM ,GNCH 的周长分别为6和10.则正方形ABCD 的边长的最小值为( )A .3B .4C .5D .不能确定6.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x为()A.10m或5m B.5m或8m C.10m D.5m7.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是lkm/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个8.甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确B.只有乙的画法正确C.甲,乙的画法都正确D.甲,乙的画法都不正确9.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EFB.AB=2DEC.△ADF 和△ADE 的面积相等D.△ADE 和△FDE 的面积相等10.若点()1A 1,y -,()2B 1,y ,()3C 3,y 在反比例函数6y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .321y y y <<D .231y y y << 11.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .25412.如果关于x 的不等式﹣3x+2a≥0的解能中仅含有两个正整数解,且关于x 的分式方程212x a x -=-有非负数解,则整数a 的值( )A .2或3或4B .3C .3或4D .2或3二、填空题13.若23(1)0m n -++=,则m -n 的值为_____. 14.用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x 块,单色地砖y 块,则根据题意可列方程组为_______________.15.命题:“若a=b ,则a 2=b 2”,写出它的逆命题:______.16.如图,在矩形ABCD 中,4,6AB BC ==,过矩形ABCD 的对角线交点O 作直线分别交AD 、BC 于点E F 、,连接AF ,若AEF 是等腰三角形,则AE =____.17.某种病毒变异后的直径约为0.000 000 56米,将这个数用科学记数法表示为_____米.18.已知抛物线y =﹣x 2+2x+8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是_____.三、解答题19.为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .(4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.20.(1)2201911|32|2sin602-︒⎛⎫-+--- ⎪⎝⎭(2)化简:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,并从0≤x<5中选取合适的整数代入求值. 21.计算:﹣12018+4cos45°﹣211()321--++. 22.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC ,交AC 于点E ,AC 的反向延长线交⊙O 于点F .(1)求证:DE 是⊙O 的切线;(2)若DE+EA =8,AF =16,求⊙O 的半径.23.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =, 4PC =.(1)求证: PC是O的切线.的值,(2)求tan CAB24.学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x-1|,小荣根据学校函数的经验,对函数y=|x-1|的图象与性质进行了探究。
第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。