常微分方程(王高雄)第三版
- 格式:ppt
- 大小:1.67 MB
- 文档页数:39
习题1.2 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x +y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy −1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。
5.(y+x)dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +−令x y =u 则dx dy =u+x dxdu代入有: -112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y. 6. xdxdy-y+22y x −=0 解:原方程为:dx dy =x y +x x ||-2)(1xy − 则令x y =u dx dy =u+ x dxdu 211u − du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +y e xy 32+=0解:原方程为:dx dy =ye y 2e x32 ex3-3e 2y −=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy ln x y令x y =u ,则dxdy =u+ x dxduu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx − 解:原方程为:dxdy =e x e y− e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u+du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+−+−y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25−−+−y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c.15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y)2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y (1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。
常微分方程王高雄第三版答案_百度文库百度首页 | 百度知道 | 百度文库首页 | 手机文库 | 注册 | 登录新闻网页贴吧知道MP3 图片视频百科文库帮助全部 DOC PDF PPT XLS TXT百度文库 > 高等教育下载收藏分享加入文辑常微分方程王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案<<隐藏下载本文档需要登录,并付出相应财富值。
如何获取财富值?大小: 638.1KB所需财富值: 20喜欢此文档的人还喜欢4268人阅读常微分方程第三版答案(王高雄) 19829人阅读常微分方程王高雄第三版答案6103人阅读常微分方程(第三版)课后答案 1570人阅读常微分方程第三版——答案 1192人阅读第三版常微分方程答案.doc 文库书店等你来逛点击进入书店 prevnext当前文档信息4.5已有160人评价浏览:10591次下载:1285次贡献时间:2010-02-13贡献者: dengliang19854 手不释卷四级文档关键词文档关键词暂无收录此文档的文辑信息与计算科学专业电子资...创建者:某某丙哥收藏量:2常微分,微分几何,数学建模...创建者:nazai娜收藏量:0家教创建者:gaojunzi0830 收藏量:0更多相关推荐文档常微分方程答案4.114人评 2页常微分方程08秋重修11人评 4页常微分方程答案 4.212人评 6页常微分方程试题参考答案计分...5人评 5页高雄餐旅大学发展5人评 1页更多同分类热门文档政治无敌笔记43139人评 27页处理人际关系的55个绝招37631人评 9页新东方美文背诵30篇38598人评 25页16天记住7000考研单词18523人评 30页Excel的使用方法与技巧49012人评 68页如要投诉或提出意见建议,请到百度文库投诉吧反馈。
©2011 Baidu使用百度前必读文库协议iPhone2.0震撼升级文库iPhone华丽升级2.0,超逼真3D翻页,支持多格式、原文档下载,享受原汁原味的文档盛宴…马上体验。
21常微分方程习题 2.11.dy = 2xy ,并求满足初始条件:x=0,y=1 的特解.dx解:对原式进行变量分离得1 dy y= 2 xdx , 两边同时积分得: ln y = x 2 + c ,即 y = c e x 2把 x = 0, y = 1代入得 c = 1, 故它的特解为 y = e x 2。
2. y dx + (x + 1)dy = 0, 并求满足初始条件:x=0,y=1 的特解.解:对原式进行变量分离得:-1 x + 1 dx = 1 dy ,当y ≠ 0时,两边同时积分得;ln x + 1 = 1 + c ,即y = y 2y 1 c + ln x + 1当y = 0时显然也是原方程的解。
当x = 0, y = 1时,代入式子得c = 1,故特解是 y =1 + ln1 + x 。
3dy =1 + y 2dx xy + x 3 y解:原式可化为:22dy = 1 + y • 1 显然1 + y ≠ 0,故分离变量得 y dy = 1dxdx y x + x 3 y1 + y x + x 3两边积分得 1 ln1 + y 2 = ln x - 1 ln1 + x 2 + ln c (c ≠ 0),即(1 + y 2)(1 + x 2) = c x 22 2故原方程的解为(1 + y 2)(1 + x 2) = c x24:(1 + x ) ydx + (1 - y )xdy = 0解:由y = 0或x = 0是方程的解,当xy ≠ 0时,变量分离1 + x dx =1 - y dy = 0x y两边积分ln x + x + ln y - y = c ,即ln xy + x - y = c , 故原方程的解为ln xy = x - y = c ; y = 0; x = 0.2x2(1 - u 2) u c21 : = 5 : ( y + x )dy + ( y - x )dx = 0dy = y - x ,y = , =, dy = + du解: 令 dx y + x xu y ux u xdx dx 则u + x du = u + 1 , 变量分离,得:- u + 1 du = 1dxdx u + 1 u2 + 1x 两边积分得:arctgu + 1ln(1 + 2) = - ln x + c 。
第1章 绪 论一、填空题1.微分方程(y'')2+(y')5 sin x+2x cos3y'''=0的阶数是______.【答案】三阶【解析】微分方程的阶是指这个方程中出现未知函数的最高阶导数的阶数.2.具有特定解y1(x)=x,y2(x)=sin x的最低阶实常系数线性齐次微分方程是______.【答案】y(4)+y''=0.【解析】所求方程有特征根为λ1,2=0,λ3,4=±i5.令X=x-1,y=y+1,原方程可化为克莱罗方程y=x y'+(y')2其通解为y=yc+(C)2.二、名词解释1.常微分方程.答:常微分方程是指含有一个自变量、未知函数以及未知函数的某些阶导数的关系式.三、解答题1.指出下列微分方程的阶数解:(1)一阶微分方程;(2)二阶微分方程;(3)二阶微分方程;(4)一阶微分方程;(5)四阶微分方程.2.求下列两个微分方程的公共解:解:两方程的公共解满足条件即所以或代入检验可知不符合.所以两方程的公共解为3.利用等倾线作下列方程的方向场,并且描出经过指定点的积分曲线(1)(2)(3)(4)(5)(6)解:(1)所求方向场和经过(1,1)的积分曲线如图1-1所示图1-1(2)所求方向场及经过(0,0),(0,1)的积分曲线如图1-4所示图1-2(3)所求方向场,及过点(1,0)的积分曲线如图1-3所示图1-3(4)所求的方向场及过点的积分曲线如图1-4所示图1-4(5)所求的方向场及经过点(0,0),(0, 1)的积分曲线如图1-5所示图1-5(6)所求的方向场及过点(1,2)的积分曲线如图1-6所示图1-64.当方程的等倾线就是积分曲线时,应满足什么条件?解:由于方程的等倾线就是积分曲线,所以即f(x,y)应满足的条件为5.若方程的等倾线就是积分曲线时,试证此方程必为克莱罗(Clairaut)方程.证明:由于是方程的解;于是是所要求的满足的曲线方程,该曲线具有与切线有关而与切点无关的性质,则=0一定是克莱罗方程.事实上,设切点(x,y),切线动点坐标为(X,Y),有或于是切线的性质可以用与关系式表示,由此解出可得到:或(克莱罗方程).6.求微分方程的通解,并分别求满足下列条件的特解.(1)通过点(2,1);(2)与直线y=x相切;(3)与直线y=-3x+1正交.解:直接积分得方程的通解为(1)将x=2,y=1代入通解中得C=-7,则通过点(2,1)的解为(2)与直线y=x相切的解满足在切点处斜率相同,有即得切点坐标为和同(1)的解法,与直线y=x相切的解为和(3)与直线y=-3x+1正交的解在正交点处斜率满足即得正交点坐标为和同(1)的解法所求方程的解为和7.求微分方程y'+xy'2-y=0的直线积分曲线.解:设直线积分曲线为y=ax+b,则y'=a,代入原方程得。
第二章目录内容提要及其它 (1)第二章一阶微分方程的初等解法(初等积分) (2)第一节变量分离方程与变量变换 (2)一、变量分离方程 (2)二、可化为变量分离方程的类型 (6)1、齐次方程 (6)2、可化为变量分离方程 (7)三、应用例题选讲 (10)第二节线性方程与常数变易法 (11)第三节恰当方程与积分因子 (15)一、恰当方程 (15)二、积分因子 (20)第四节一阶隐含方程与参数表示 (23)一、可以解出y(或x)的方程 (24)二、不显含y(或x)的方程 (25)本章小结及其它 (27)内容提要及其它授课题目(章、节)第二章:一阶微分方程的初等解法教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p1-70[2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20[3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004,p1-12[4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169[5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999,p15-158[6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124目的与要求:掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法.能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.教学内容与时间安排、教学方法、教学手段:教学内容:第1节变量分离方程与变量变换;第2节线性方程与常数变易法;第3节恰当方程与积分因子;第4节一阶隐方程与参数表示:可以解出(或y x)的方程、不显含(或y x)的方程.时间安排:8学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合。