最优潮流算法综述
- 格式:pdf
- 大小:385.05 KB
- 文档页数:5
最优潮流算法综述万黎,袁荣湘(武汉大学电气工程学院,湖北武汉430072)摘要:最优潮流是一个典型的非线性优化问题,且由于约束的复杂性使得其计算复杂,难度较大。
虽然人们已经提出了许多种方法,并且在部分场合有所应用,但是要大规模实用化,满足电力系统的运行要求还有不少问题要解决。
此文总结了现今有关最优潮流的几个方面,从优化方法和所遇到的新问题出发,对主要的优化方进行了介绍和简要的分析,以供从事无功优化的人员参考,同时还对最优潮流的进一步发展做了一些探讨。
关键词:最优潮流; 线性规划; 牛顿法; 内点法; 遗传算法; 并行算法中图分类号:T M71 文献标识码:A 文章编号:100324897(2005)11200802080 引言最优潮流OPF(Op ti m al Power Fl ow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
通常优化潮流分为有功优化和无功优化两种,其中有功优化目标函数是发电费用或发电耗量,无功优化的目标函数是全网的网损。
由于最优潮流是同时考虑网络的安全性和经济性的分析方法,因此在电力系统的安全运行、经济调度、电网规划、复杂电力系统的可靠性分析、传输阻塞的经济控制等方面得到广泛的应用。
优化潮流的历史可以追溯到1920年出现的经济负荷调度。
20世纪20年代在电力系统功率调度开始使用等耗量微增率准则E I CC(Equal I ncre men2 tal Cost Criteria)。
至今等耗量微增率准则仍然在一些商用OPF软件中使用。
现代的经济调度可以视为OPF问题的简化,它们都是优化问题,使某一个目标函数最小。
经济调度一般关注发电机有功的分配,同时考虑的约束多仅为潮流功率方程等式约束。
1962年,J.Car pentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束,这种考虑更为周全的经济调度问题就是最优潮流(OPF)问题的最初模型。
含风电场的电力系统最优潮流算法综述
一、引言
随着风电场的快速发展,以风电为主体的电力系统最优潮流(OPF)分
析已经成为一个重要的研究热点和工程实践应用。
风电的调度问题的复杂
性主要取决于风力无法准确预测,这使得传统的OPF算法无法有效地解决
风电场调度问题,需要采用更为合适的最优潮流算法。
本文旨在概述和总
结风电场的最优潮流算法,以期能够加深对相关技术的理解,为提高风电
场最优潮流算法的性能和应用准备好一个参考框架。
二、基本原理
最优潮流算法是一种复杂的技术,它的基本原理是通过求解满足一定
约束条件下目标函数最优解的算法求解系统运行最优模式。
最优潮流算法
可以使电网的负荷得到最优的满足,而且在保证系统安全性前提下,尽可
能地使得水电、燃料等消耗资源的最小,实现最佳运行状态。
为了更好地
分析满足要求的最优模式,需要对模型进行优化,以求最小误差的负荷满
足条件及最小资源消耗的最优模式调度。
三、OPF算法类型
可以将OPF算法划分为有约束优化算法和受限优化算法,其中约束优
化算法又可分为具有线性等式约束条件和不具有线性等式约束条件的算法。
最优化潮流算法综述施建鸿【期刊名称】《中国科技信息》【年(卷),期】2016(000)001【总页数】3页(P59-61)【作者】施建鸿【作者单位】上海申通地铁集团有限公司【正文语种】中文目前针对潮流计算,提出了很多种方法,有些方法在有些场合已经得到使用,但要满足现有的电力系统还有许多问题需要研究和解决。
本文描述了目前的几种潮流计算,对这些算法进行了分析和比较,并针对如今潮流计算的方法对其未来发展趋势进行了预估。
在社会发展的同时,我国电力系统规模不断变大,对电力系统稳定性,可靠性,经济性的要求也越来越高,对电力系统的优化也越来越受到重视,最优潮流指的是从所有潮流计算的方法中在满足安全性前提下综合经济性选出相适应的潮流计算方法。
最优潮流是指在给定了各个结构参数和负荷的电力系统中,优化选择控制变量,在符合约束条件的前提下达到使目标函数最小化的目的的过程。
最优潮流在电力系统的电网规划、经济调度、安全运行方面发挥了重要作用,广泛运用在复杂电力系统的传输阻塞的经济控制,可靠性分析中。
目前的最优潮流算法主要分为最优潮流的经典算法和经典潮流的现代算法,经典算法包括简化梯度法,牛顿法,内点法,解耦法,现代算法有遗传算法,模拟退火算法等。
根据潮流计算优化方法的不同,可将其分为经典算法和现代优化算法两个种类。
经典算法包含简化梯度法,牛顿法,内点法,解耦法等等,这几种算法是目前用得最广的。
最优潮流的一般数学模型:在此模型中,f是所需要的目标函数,u是系统中的控制变量,x是状态变量。
等式g是等式约束条件。
在最优潮流计算过程中,要满足基本的潮流方程,这些所要满足的基本潮流方程就是等式约束条件。
式子h是不等式约束条件,同样在最优潮流中,可控控制变量并不是任意变化的,有他本身的取值范围,不等式约束条件是用来约束控制变量以及潮流计算中得到的其他量。
f,g是非线性函数,h中的大多数约束也是非线性的,可以看出求解最优潮流计算就求解是一个有约束的非线性规划问题。
最优潮流算法概述摘要:最优潮流是一类典型的非线性规划问题, 在电力系统中求解最优潮流是一项基本而重要的工作。
本文论述了最优潮流算法问题, 对其中经典的简化梯度法、牛顿法、内点法、序列二次规划法、以及混合序列法做了详细介绍,并对智能化的潮流算法,如遗传算法、模拟退火法等进行了探讨,同时做了相应的比较。
然后结合最优潮流在电力市场下的应用进行了分析,最后指出最优潮流发展所面临的问题,并深入研究。
一引言最优潮流OPF (Optima l Power Flow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
它将电网的经济调度、质量控制和安全运行统一协调起来,对电力系统的规划和运行有着重要意义。
最优潮流能够统一考虑电力系统在安全、经济和电压质量各方面的要求。
最优潮流问题,实质上是在满足一定的安全约束条件下,使目标函数达到最优的非线性规划问题。
具体地说,最优潮流是研究当系统的结构参数及负荷情况给定时,通过系统变量的优选,所能找到的能满足所有指定的约束条件,并使系统的一个或多个目标达到最优时的潮流分布。
1962年, J. Carpentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束。
电力系统最优潮流是经过优化的潮流分布, 其数学模型可以表示为:,min(,)..(,)0(,)0fs t gh⎧⎪⎪=⎨⎪≤⎪⎩u xu xu xu x(1.1)其中目标函数f 及等式、不等式约束g 及h中的大部分约束都是变量的非线性函数, 因此电力系统的最优潮流计算是一个典型的有约束非线性规划问题。
本文论述了最优潮流算问题, 对其中的简化梯度法、牛顿法、内点法、序列二次规划法、遗传算法模拟退火法等进行了详细的比较。
二经典的最优潮流计算方法电力系统最优潮流的经典解算方法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。
---------------------------------------------------------------范文最新推荐------------------------------------------------------ Matlab电力系统最优潮流算法研究电力系统最优潮流于1962 年由法国学者J.Carpentier最先提出。
最优潮流是在保证系统安全运行的前提下,实现系统经济运行的问题。
在向电力市场化改革的今天,如何将最优化原理应用到电力系统调度中,谋求获得最大的经济效益,一直是人们关注的课题。
本文综述了常见最优潮流的算法。
编制了基于内点法的最优潮流程序,结合Matlab 求解最优潮流。
利用IEEE.14 节点试验系统实现最优潮流的仿真并分析了仿真结果,得出内点法在求解大规模非线性系统时具有快速性,迭代次数少的优点,是一种比较理想的方法。
7985关键词:电力系统最优潮流内点法Matlab TitleTheResearchOfOptimalPower FlowProblemOnPowerSystem1 / 11AbstractPower system optimal power flow(OPF) was first advanced by French scholarJ.Carpentier in 1962.OPF is to run power system in security and economy.Nowwith the deregulation of power industry innovation,it is an attentionalproblem to use the optimization theory into power system dispatch andobtain the maximum economic benefit.This article reviews the common optimal power flow algorithm and programmedthe optimal power flow program based on interior point method and particle---------------------------------------------------------------范文最新推荐------------------------------------------------------swarm optimization algorithm, combined with Matlab for sloving OptimalPower Flow. To achieve optimal power flow simulation by IEEE.14 node testsystem and analysis of simulation results. Proof of interior point method有需要一种能够在规定时间和精度下进行优化潮流计算的算法。
电力系统最优潮流算法综述摘要:本文阐明了电力系统最优潮流研究目的及意义,总结了国内外关于电力系统最优潮流算法的研究现状,介绍了求解最优潮流的经典算法,智能优化方法,同时指出了各种算法的优缺点;并根据目前最优潮流存在的问题提出了今后的研究方向。
电力系统最优潮流问题是一个复杂的非线性规划问题,40多年来,研究人员对其进行了大量的研究,提出了最优潮流计算的各种方法,取得了不少成果。
本文对最优潮流算法的研究现状进行了综述,并对其潜在的发展方向进行了预测。
1 电力系统最优潮流的经典优化方法电力系统最优潮流的经典优化方法是基于线性规划、非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以目标函数的一阶或二阶梯度作为寻找最优解的主要信息。
1.1 简化梯度法1968 年Dommel 和Tinney 提出的简化梯度法是第一个能够成功求解较大规模的最优潮流问题并得到广泛采用的算法。
梯度法分解为两步进行,第一步在不加约束下进行梯度优化;第二步将结果进行修正后,在目标函数上加上可能的电压越限罚函数。
该方法可以处理较大的网络规模,但是计算结果不符合工程实际情况。
在梯度法的基础上利用共轭梯度法来改进原来的搜索方向,从而得到比常规简化梯度法更好的收敛效果。
简化梯度法主要缺点:收敛性差,尤其是在接近最优点附近时收敛很慢;另外,每次对控制变量修正以后都要重新计算潮流,计算量较大。
对控制变量的修正步长的选取也是简化梯度法的难点之一,这将直接影响算法的收敛性。
总之,简化梯度法是数学上固有的,因此不适合大规模电力系统的应用。
1.2 牛顿法牛顿法最优潮流是一种具有二阶收敛的算法,在最优潮流领域计算有较为成功的应用。
牛顿法不区分状态变量和控制变量,并充分利用了电力网络的物理特征和稀疏矩阵技术,同时直接对Lagrange 函数的Kuhn-Tucker 条件进行牛顿法迭代求解,收敛速度快,这大大推动了最优潮流的实用化进程。
电力系统最优潮流计算电力系统最优潮流计算的基本原理是建立电力系统的潮流模型,并通过数学优化方法求解系统的最优操作方案。
最优潮流计算可以考虑多种因素,如电网传输损耗、电压稳定性、线路负荷、发电机出力等,最终给出系统的最优操作计划。
最优潮流计算通常分为两个阶段:静态潮流计算和动态潮流计算。
静态潮流计算主要针对电力系统的平衡态运行条件,计算系统各节点的电压、相角、线路功率等参数。
动态潮流计算则是通过考虑系统的动态响应特性,计算系统在各种异常情况下的潮流分布。
在最优潮流计算中,需要建立电力系统的潮流模型。
这个模型可以由节点导纳矩阵和线路参数构成。
潮流计算的基本原理是通过节点导纳矩阵和功率注入、摄取方程建立网络潮流方程组,然后通过数值计算方法求解这个方程组,得到系统的潮流分布。
最优潮流计算的主要目标是优化电力系统的经济性和可靠性。
在经济性方面,最优潮流计算可以通过优化电力系统的潮流分配,减少线路的传输损耗,提高系统的能源利用效率。
在可靠性方面,最优潮流计算可以考虑系统的电压稳定性、负荷均衡性、线路负载等因素,确保系统能够满足电力需求,并保持电网的安全稳定运行。
最优潮流计算的结果可以指导电力系统的运营和规划,为电网调度员提供操作建议,优化系统的功率分配,减少线路的负荷拥塞,降低电网的传输损耗。
对于电力系统的规划,最优潮流计算可以提供新电源接入策略、电网扩建建议等,为电力系统的长期发展提供决策支持。
通过最优潮流计算,可以提高电力系统的运行效果和经济性。
它可以为电力系统的日常运行提供合理的操作方案,使得系统能够满足电力需求,并保持电网的安全稳定运行。
同时,最优潮流计算还可以优化系统的发电机出力,减少不必要的发电成本,提高电力系统的经济性。
总之,电力系统最优潮流计算是电力系统运行与规划中的一项重要工作。
它通过建立系统的潮流模型,并通过数学优化方法求解系统的最优操作方案,以达到优化系统经济性和可靠性的目标。
最优潮流计算可以提供电力系统运行的操作建议,优化功率分配,减少线路的拥塞和传输损耗,提高电力系统的运行效果和经济性。
人工智能最优潮流算法综述摘要:最优潮流是一个典型的非线性优化问题,且由于约束的复杂性使得其计算复杂,难度较大。
目前人们已经拥有了分别适用于不同场合的各种最优潮流算法,包括经典法和人工智能法。
其中人工智能算法是近些年人们开始关注的,一种基于自然界和人类自身有效类比而从中获得启示的算法。
这类算法较有效地解决了全局最优问题,能精确处理离散变量,但因其属于随机搜索的方法,计算速度慢难以适应在线计算。
本文着力总结新近的人工智能算法,列举其中具有代表性的遗传算法、模拟退火算法、粒子群算法等以及其相应的改进算法,以供从事电力系统最优潮流计算的人员参考。
关键词:最优潮流;智能算法;遗传算法;粒子群算法;0.引言所谓最优潮流(Optimal Power Flow,OPF),就是当系统的结构参数及负荷情况给定时,通过对某些控制变量的优化,所能找到的在满足所有指定约束条件的前提下,使系统的某一个或多个性能指标达到最优时的潮流分布。
为了对电力系统最优潮流的各种模型更好地进行求解,世界各国的学者从改善收敛性能和提高计算速度的角度,提出了求解最优潮流的各种计算方法,包括经典法和人工智能法。
其中最优潮流的经典算法是基于线性规划、非线性规划以及解耦原则的计算解法,是研究最多的最优潮流算法。
目前,已经运用于电力系统最优潮流的算法有简化梯度法、牛顿法、内点法等经典算法;而随着计算机的发展和人工智能研究水平的提高,现在也逐渐产生了一系列基于智能原理的如遗传算法、模拟退火算法和粒子群算法等人工智能算法,两类算法互补应用于最优潮流问题中。
1.概述人工智能算法,亦称“软算法”,是人们受到自然界(包括人类自身)的规律启迪,根据探索其外在表象和内在原理,进行模拟从而对问题求解的算法。
电力系统最优潮流问题研究中,拥有基于运筹学传统优化方法的经典算法,主要有包括线性规划法和非线性规划法,如简化梯度法、牛顿法、内点法和解耦法等解算方法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。