牛顿法最优潮流汇编
- 格式:ppt
- 大小:1.21 MB
- 文档页数:15
电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。
电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。
因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。
电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。
数学上可将此问题描述为非线性规划或混合非线性规划问题。
最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。
同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。
最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。
最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。
一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。
因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。
一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。
具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。
第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。
最优潮流算法概述摘要:最优潮流是一类典型的非线性规划问题, 在电力系统中求解最优潮流是一项基本而重要的工作。
本文论述了最优潮流算法问题, 对其中经典的简化梯度法、牛顿法、内点法、序列二次规划法、以及混合序列法做了详细介绍,并对智能化的潮流算法,如遗传算法、模拟退火法等进行了探讨,同时做了相应的比较。
然后结合最优潮流在电力市场下的应用进行了分析,最后指出最优潮流发展所面临的问题,并深入研究。
一引言最优潮流OPF (Optima l Power Flow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
它将电网的经济调度、质量控制和安全运行统一协调起来,对电力系统的规划和运行有着重要意义。
最优潮流能够统一考虑电力系统在安全、经济和电压质量各方面的要求。
最优潮流问题,实质上是在满足一定的安全约束条件下,使目标函数达到最优的非线性规划问题。
具体地说,最优潮流是研究当系统的结构参数及负荷情况给定时,通过系统变量的优选,所能找到的能满足所有指定的约束条件,并使系统的一个或多个目标达到最优时的潮流分布。
1962年, J. Carpentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束。
电力系统最优潮流是经过优化的潮流分布, 其数学模型可以表示为:,min(,)..(,)0(,)0fs t gh⎧⎪⎪=⎨⎪≤⎪⎩u xu xu xu x(1.1)其中目标函数f 及等式、不等式约束g 及h中的大部分约束都是变量的非线性函数, 因此电力系统的最优潮流计算是一个典型的有约束非线性规划问题。
本文论述了最优潮流算问题, 对其中的简化梯度法、牛顿法、内点法、序列二次规划法、遗传算法模拟退火法等进行了详细的比较。
二经典的最优潮流计算方法电力系统最优潮流的经典解算方法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。
0 引言潮流是配电网络分析的基础,用于电网调度、运行分析、操作模拟和设计规划,同时也是电压优化和网络接线变化所要参考的内容.潮流计算通过数值仿真的方法把电力系统的详细运行情况呈现给工作人员,从而便于研究系统在给定条件下的稳态运行特点。
随着市场经济的发展,经济利益是企业十分看重的,而线损却是现阶段阻碍企业提高效益的一大因素.及时、准确的潮流计算结果,可以给出配电网的潮流分布、理论线损及其在网络中的分布,从而为配电网的安全经济运行提供参考.从数学的角度来看,牛顿—拉夫逊法能有效进行非线性代数方程组的计算且具有二次收敛的特点,具有收敛快、精度高的特点,在输电网中得到广泛应用.随着现代计算机技术的发展,利用编程和相关软件,可以更好、更快地实现配电网功能,本文就是结合牛顿—拉夫逊法的基本原理,利用C++程序进行潮流计算,计算结果表明该方法具有良好的收敛性、可靠性及正确性。
1 牛顿-拉夫逊法基本介绍1。
1 潮流方程对于N个节点的电力网络(地作为参考节点不包括在内),如果网络结构和元件参数已知,则网络方程可表示为:YV I (1—1)=式中,Y为N*N阶节点导纳矩阵;V为N*1维节点电压列向量;I为N*1维节点注入电流列向量。
如果不计网络元件的非线性,也不考虑移相变压器,则Y为对称矩阵。
电力系统计算中,给定的运行变量是节点注入功率,而不是节点注入电流,这两者之间有如下关系:ˆˆ=EI S(1—2)式中,S为节点的注入复功率,是N*1维列矢量;ˆS为S的共轭;ˆˆi diag ⎡⎤=⎢⎥⎣⎦E V 是由节点电压的共轭组成的N*N 阶对角线矩阵。
由(1-1)和(1-2),可得:ˆˆ=S EYV上式就是潮流方程的复数形式,是N 维的非线性复数代数方程组.将其展开,有:ˆi i iij j j iP jQ V Y V ∈-=∑ j=1,2,….,N (1—3)式中, j i ∈表示所有和i 相连的节点j ,包括j i =。
牛顿-拉夫逊法在潮流计算中的应用简介牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
由于便于编写程序用计算机求解,应用较广。
下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。
设欲求解的非线性代数方程为f(x)=o设方程的真实解为x*,则必有f(x*)=0。
用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。
取x¹=x°+Δx°为第一次的修正估值,则f(x¹)=f(x°+Δx°)其中Δx°为初始估值的增量,即Δx°=x¹-x°。
设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+…若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0Δx°=-f(x°)/f'(x°)x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。
摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。
以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少.本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China,meaning, and then use specific examples,a brief introduction, how to use MALAB to the flow calculation in power systems。
As we all know, is the study of power flow calculation of power system steady-state operation of a calculation,which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part:the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation;number of fault analysis and optimization also requires a corresponding flow calculation for cooperation;power flow calculation program often become the an important part. These,mainly in the way of system design and operation arrangements in the application areas are off—line calculation。
牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
牛顿法思想
用目标函数的二阶泰勒展开近似该目标函数,通过求解这个二次函数的极小值来求解凸优化的搜索方向。
牛顿法的特点牛顿法收敛很快,对于二次函数只需迭代一次便达到最优点,对非二次函数也能较快迭代到最优点,但要计算二阶偏导数矩阵及其逆阵,对维数较高的优化问题,其计算工作和存储量都太大。
阻尼牛顿法可以看出原始牛顿法就相当于阻尼牛顿法的步长因子取成固定值1的情况。
阻尼牛顿法每次迭代都在牛顿方向上进行一维搜索,避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。
这类方法的主要缺点计算复杂,工作量大,要求计算机存储量大。
共轭方向共轭方向主要是针对二次函数的,但也可以用于一般非二次函数。
共轭方向法是二次收敛的;
牛顿法,拟牛顿法,共轭梯度法各自的优缺点是什么?各自的算法是怎样的?
牛顿法需要函数的一阶、二阶导数信息,也就是说涉及到Hesse矩阵,包含矩阵求逆运算,虽然收敛速度快但是运算量大。
拟牛顿法采用了一定的方法来构造与Hesse矩阵相似的正定矩阵,而这个构造方法计算量比牛顿法要小;共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜素,求出目标函数的极小点。
根据共轭方向基本性质,这种方法运算量不太大收敛速度也不慢。
牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton ’s method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:以负梯度方向作为极小化算法的下降方向,也称为梯度法。
设函数()f x 在k x 附近连续可微,且()0k k g f x =∇≠。
由泰勒展开式: ()()()()()T k k k k fx f x x x f x x x ο=+-∇+- (*)可知,若记为k k x x d α-=,则满足0Tk k d g <的方向k d 是下降方向。
当α取定后,Tk k d g 的值越小,即T kk d g -的值越大,函数下降的越快。
由Cauchy-Schwartz 不等式: T k k kk d g d g ≤,故当且仅当k k d g =-时,Tk k d g 最小,从而称k g -是最速下降方向。
最速下降法的迭代格式为: 1k k k k x x g α+=-。
潮流计算的牛顿法一.程序原理说明1.基本步骤:(1) 形成节点导纳阵。
(2) 给定各节点电压初值`)0()0(,f e 。
(3) 将电压初值)0()0(,fe 代入下式,求修正方程式的常数项)0(2)0()0()(,,V Q P ∆∆∆。
对于PQ 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)()(=++--=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G e f B e G f Q Q对于PV 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)(2222=+-=∆i i is i f e V V(4) 将电压初值代入下式中求修正方程式系数矩阵(雅可比矩阵)各元素。
当i j ≠时:)(i ij i ij j ij i f B e G f Q e P +-=∂∆∂-=∂∆∂i ij i ij jij i f G e B e Q f P -=∂∆∂=∂∆∂022=∂∆∂-=∂∆∂ji j i f V e V 当j = i 时:i ii i ii i ii i ii i j j ij j ij i if B e G a f B e G f B e G f Q ++-=++--=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G f P -+-=-++-=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G e Q -+=-++=∂∆∂∑∈)( i ii e e V 22-=∂∆∂i ii f f V 22-=∂∆∂ (5) 解如下修正方程式,求修正量)0()0(,fe ∆∆。