最优潮流现代内点算法.
- 格式:ppt
- 大小:334.50 KB
- 文档页数:17
电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。
电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。
因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。
电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。
数学上可将此问题描述为非线性规划或混合非线性规划问题。
最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。
同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。
最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。
最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。
一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。
因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。
一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。
具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。
第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。
基于内点法的最优潮流计算及算例分析
李春晓;何仁君
【期刊名称】《电气开关》
【年(卷),期】2018(055)001
【摘要】由于电力系统本身的复杂性,电力潮流优化具有规模大,约束条件多和非线性的特点.通过对最优潮流的求解,最终达到优化已有资源、降低发电厂耗量成本、减少电网线路损耗、提高电力系统输电能力等目标,其相比较传统的潮流计算具有良好的经济性.因此,最优潮流是电力系统中及受关注的课题,目前也有很多针对其做出的研究.本文综述了电力系统最优计算的数学模型和优化方法的研究现状.介绍了内点法的理论基石和基本原理,建立了最优潮流的数学模型,并对该模型采用内点法进行求解,最后通过实际算例加以验证.
【总页数】5页(P32-36)
【作者】李春晓;何仁君
【作者单位】广西大学电气工程学院,广西南宁 530004;广西大学电气工程学院,广西南宁 530004
【正文语种】中文
【中图分类】TM71
【相关文献】
1.基于Matlab符号计算工具箱的内点法最优潮流研究 [J], 李尹;韦化
2.基于改进内点法的含风电场的系统最优潮流计算 [J], 顾承红;艾芊
3.基于SolidWorks设计算例起吊系统的有限元分析 [J], 叶青玉
4.基于PSASP的矿区电网多目标最优潮流计算分析 [J], 唐翔; 黄倩
5.基于区间算法的配电网三相潮流计算及算例分析 [J], 王成山;王守相
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Filter集合的内点最优潮流新算法
孙英云;何光宇;梅生伟
【期刊名称】《电工电能新技术》
【年(卷),期】2007(026)002
【摘要】基于Filter集合的内点算法(FIPM),提出了一种最优潮流新算法(FIPOPF),该算法可针对最优潮流问题的实际情况对可行方向进行自适应校正,即在不可行情况下通过求解仅含"硬约束"的优化问题进行可行方向调整,从而可使系统在无可行解时收敛至一个对系统"软约束"违反最小的稳定点.对五个IEEE标准算例和两个实际系统的分析和试算均表明,所提出的算法具有很好的收敛性,运算速度较快,满足在线最优潮流计算的时间要求.
【总页数】6页(P29-33,53)
【作者】孙英云;何光宇;梅生伟
【作者单位】清华大学电机系电力系统国家重点实验室,北京,100084;清华大学电机系电力系统国家重点实验室,北京,100084;清华大学电机系电力系统国家重点实验室,北京,100084
【正文语种】中文
【中图分类】TM744
【相关文献】
1.基于辅助问题原理及内点法的分区并行最优潮流算法 [J], 商小乐;李建华;刘锐;李夏
2.基于改进多中心校正解耦内点法的动态最优潮流并行算法 [J], 简金宝;杨林峰;全然
3.基于非线性多中心校正内点法的最优潮流算法 [J], 蔡广林;张勇军;任震
4.基于零空间的现代内点最优潮流新算法 [J], 全然;简金宝;韦化
5.基于退火粒子群和内点法的改进最优潮流算法 [J], 陈丽光;文波;聂一雄
因版权原因,仅展示原文概要,查看原文内容请购买。
内点法最优潮流MATLAB算法clear;%clc;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%数据加载n=input('请输入要计算的节点系统(5):')load Node5.txt;%节点数据load Branch5.txt;%支路数据load Generator5.txt;%发电机数据Node=Node5;Branch=Branch5;Generator=Generator5;%节点数据处理N=Node(:,1);%节点号Type=Node(:,2);%节点类型Uamp=Node(:,3);%节点电压幅值Dlta=Node(:,4);%节点电压相角Pd=Node(:,5);%节点负荷有功Qd=Node(:,6);%节点负荷无功Pg=Node(:,7);%节点出力有功Qg=Node(:,8);%节点出力无功Umax=Node(:,9);%节点电压幅值上限 Umin=Node(:,10);%节点电压幅值下限Bc=Node(:,11);%节点补偿电容电纳值 %支路数据处理Nbr=Branch(:,1);%支路号Nl=Branch(:,2);%支路首节点Nr=Branch(:,3);%支路末节点R=Branch(:,4);%支路电阻X=Branch(:,5);%支路电抗Z=R+1i*X;%支路阻抗=支路电阻+支路电抗 Bn=Branch(:,6);%支路对地电纳K=Branch(:,7);%支路变压器变比,0表示无变压器 Ptmax=Branch(:,8);%线路传输功率上限%发电机数据处理Ng=Generator(:,1);%发电机序号Nbus=Generator(:,2);%所在母线号Pumax=Generator(:,3);%发电机有功出力上界 Qumax=Generator(:,4);%发电机无功出力上界 Pumin=Generator(:,5);%发电机有功出力下界Qumin=Generator(:,6);%发电机无功出力下界a2=Generator(:,7);%燃料耗费曲线二次系数a1=Generator(:,8);%燃料耗费曲线一次系数a0=Generator(:,9);%燃料耗费曲线常数项%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%n=length(N);%节点个数ng=length(Ng);%发电机台数nbr=length(Nbr);%支路个数x=zeros(2*(ng+n),1);%控制变量+状态变量x(1:ng)=Pg(Nbus);x(ng+1:2*ng)=Qg(Nbus);x((2*ng+2):2:2*(ng+n))=Uamp; x((2*ng+1):2:2*(ng+n)-1)=Dlta; l=0.8*ones(2*ng+n+nbr,1);%松弛变量u=1.1*ones(2*ng+n+nbr,1);%松弛变量w=-1.5*ones(2*ng+n+nbr,1);%拉格朗日乘子z=ones(2*ng+n+nbr,1);%拉格朗日乘子y=zeros(2*n,1);%拉格朗日乘子y(1:2:2*n-1)=1e-3;y(2:2:2*n)=-1e-3;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算不等式约束的上下限%%%%%%%%%%%%%%%%%%%%%%%%%gmingmin=zeros(2*ng+n+nbr,1);gmin(1:ng)=Pumin;gmin(ng+1:2*ng)=Qumin;gmin(2*ng+1:2*ng+n)=Umin;gmin(2*ng+n+1:2*ng+n+nbr)=-Ptmax; %gmaxgmax=zeros(2*ng+n+nbr,1);gmax(1:ng)=Pumax;gmax(ng+1:2*ng)=Qumax;gmax(2*ng+1:2*ng+n)=Umax;gmax(2*ng+n+1:2*ng+n+nbr)=Ptmax;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%形成导纳矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Y=zeros(n,n);%%%%%%%%%%%%%%%%%%%%计算非对角元素%%%%%%%%%%%%%%%%%%%%% for ii=1:nbr if K(ii)==0%非变压器支路Y(Nl(ii),Nr(ii))=-1/Z(ii);Y(Nr(ii),Nl(ii))=Y(Nl(ii),Nr(ii));else%变压器支路Y(Nl(ii),Nr(ii))=-1/Z(ii)/K(ii);Y(Nr(ii),Nl(ii))= Y(Nl(ii),Nr(ii));endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算对角元素%%%%%%%%%%%%%%%%%%%%%%for ii=1:n%将支路导纳加入到对角元素中for jj=1:nbrif K(jj)==0&&(Nl(jj)==ii||Nr(jj)==ii)%非变压器支路Y(ii,ii)=Y(ii,ii)+1/Z(jj);else if K(jj)~=0&&(Nl(jj)==ii||Nr(jj)==ii)%变压器支路Y(ii,ii)=Y(ii,ii)+1/Z(jj)/K(jj);endendendendfor ii=1:nbr%将对地电纳加入到对角元素中if K(ii)==0%非变压器支路Y(Nl(ii),Nl(ii))=Y(Nl(ii),Nl(ii))+1i*Bn(ii);Y(Nr(ii),Nr(ii))=Y(Nr(ii),Nr(ii))+1i*Bn(ii);else%变压器支路Y(Nr(ii),Nr(ii))=Y(Nr(ii),Nr(ii))+(K(ii)-1)/K(ii)/Z(ii);Y(Nl(ii),Nl(ii))=Y(Nl(ii),Nl(ii))+(1-K(ii))/K(ii)/K(ii)/Z(ii);endendfor ii=1:nY(ii,ii)=Y(ii,ii)+i*Bc(ii);endG=real(Y);%电导B=imag(Y);%电纳%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%k=0;%迭代次数Kmax=150;%最大迭代次数iteration=1e-4;%误差精度delta=0.08;Gap=(l'*z-u'*w)*ones(Kmax,1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%主程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while k<50%计算互补间隙GapGap(k+1)=l'*z-u'*w;if Gap>iterationmiu=delta*Gap(k+1)/(2*(2*ng+n+nbr)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%形成系数矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%相角差计算%%%%%%%%%%%%%%%%%%%%%%theta=zeros(n,n);for ii=1:nfor jj=1:ntheta(ii,jj)=Dlta(ii)-Dlta(jj);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%1、等式约束雅克比矩阵%%%%%%%%%%%%%%%%pxh=zeros(2*(ng+n),2*n); %%%%%%%%%%%%%%%%%%%%%%%ah/aP%%%%%%%%%%%%%%%%%%%%%%%for ii=1:ngpxh(Ng(ii),2*Nbus(ii)-1)=1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%ah/aQ%%%%%%%%%%%%%%%%%%%%%%%for ii=1:ngpxh(Ng(ii)+ng,2*Nbus(ii))=1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ah/ax%%%%%%%%%%%%%%%%%%%%%%%HH=zeros(n,n);JJ=zeros(n,n);NN=zeros(n,n);LL=zeros(n,n);for ii=1:nfor jj=1:nif ii~=jj%i!=j时的情况%非对角元素HH(ii,jj)=-Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));JJ(ii,jj)=Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin (theta(ii,jj)));NN(ii,jj)=-Uamp(ii)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));LL(ii,jj)=-Uamp(ii)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%对角元素HH(ii,ii)=HH(ii,ii)+Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));JJ(ii,ii)=JJ(ii,ii)-Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)) );NN(ii,ii)=NN(ii,ii)-Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));LL(ii,ii)=LL(ii,ii)-Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));endendNN(ii,ii)=NN(ii,ii)-2*Uamp(ii)*G(ii,ii);LL(ii,ii)=LL(ii,ii)+2*Uamp(ii)*B(ii,ii);endpxh(1+2*ng:2:2*(n+ng)-1,1:2:2*n-1)=HH';pxh(1+2*ng:2:2*(n+ng)-1,2:2:2*n)=JJ';pxh(2+2*ng:2:2*(n+ng),1:2:2*n-1)=NN';pxh(2+2*ng:2:2*(n+ng),2:2:2*n)=LL';%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2、不等式约束的雅克比矩阵%%%%%%%%%%%%%%%%%%%% %g1:电源有功出力上下限约束ag1aP=eye(ng,ng);ag1aQ=zeros(ng,ng);ag1ax=zeros(2*n,ng);%g2:电源无功出力上下限约束ag2aP=zeros(ng,ng);ag2aQ=eye(ng,ng);ag2ax=zeros(2*n,ng);%g3:节点电压幅值上下限约束ag3aP=zeros(ng,n);ag3aQ=zeros(ng,n);ag3ax=zeros(2*n,n);for ii=1:nag3ax(2*ii,ii)=1;end%g4:线路潮流上下限约束ag4aP=zeros(ng,nbr);ag4aQ=zeros(ng,nbr);ag4ax=zeros(2*n,nbr);for ii=1:nfor jj=1:nbrif Nl(jj)==iiag4ax(2*ii-1,jj)=-Uamp(Nl(jj))*Uamp(Nr(jj))*(G(Nl(jj),Nr(jj))*sin(theta(Nl(jj),N r(jj)))-B(Nl(jj),Nr(jj))*cos(theta(Nl(jj),Nr(jj))));ag4ax(2*ii,jj)=Uamp(Nr(jj))*(G(Nl(jj),Nr(jj))*cos(theta(Nl(jj),Nr(jj )))+B(Nl(jj),Nr(jj))*sin(theta(Nl(jj),Nr(jj))))-2*Uamp(Nl(jj))*G(Nl(jj),Nr(jj));endif Nr(jj)==iiag4ax(2*ii-1,jj)=Uamp(Nl(jj))*Uamp(Nr(jj))*(G(Nl(jj),Nr(jj))*sin(theta(Nl(jj),Nr (jj)))-B(Nl(jj),Nr(jj))*cos(theta(Nl(jj),Nr(jj))));ag4ax(2*ii,jj)=Uamp(Nl(jj))*(G(Nl(jj),Nr(jj))*cos(theta(Nl(jj),Nr(jj )))+B(Nl(jj),Nr(jj))*sin(theta(Nl(jj),Nr(jj))));endendendpxg=[ag1aP ag2aP ag3aP ag4aP;ag1aQ ag2aQ ag3aQ ag4aQ;ag1ax ag2ax ag3ax ag4ax];%此即为不等式约束的雅克比矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%3、对角矩阵%%%%%%%%%%%%%%%%%%%%%%%% L_1Z=zeros(2*ng+n+nbr,2*ng+n+nbr);U_1W=zeros(2*ng+n+nbr,2*ng+n+nbr);for ii=1:2*ng+n+nbrL_1Z(ii,ii)=z(ii)/l(ii);U_1W(ii,ii)=w(ii)/u(ii);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%海森伯矩阵%%%%%%%%%%%%%%%%%%%%%%%%%% %将海森伯矩阵分为4块:H1,H2,H3,H4%%%%%%%%%%%%%%%%%%%%%H1%%%%%%%%%%%%%%%%%%%%%%A2=diag(a2);H1=zeros(2*(ng+n),2*(ng+n));H1(1:ng,1:ng)=2*A2;%%%%%%%%%%%%%%%%%%%%H2%%%%%%%%%%%%%%%%%%%%%%H2=zeros(2*(ng+n),2*(ng+n));A=zeros(2*n,2*n);Apb=zeros(2*n,2*n,n);Aqb=zeros(2*n,2*n,n);for ii=1:nfor jj=1:n %元素位置为:1 2if ii~=jj % 3 4%对角线上与ii对应的元素%ApApb(2*ii-1,2*ii-1,ii)=Apb(2*ii-1,2*ii-1,ii)+Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(i i,jj)));%对角线处1号元素Apb(2*ii-1,2*ii,ii)=Apb(2*ii-1,2*ii,ii)+Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%对角线处2号元素%%3号元素与之相等%AqAqb(2*ii-1,2*ii-1,ii)=Aqb(2*ii-1,2*ii-1,ii)+Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%对角线处1号元素Aqb(2*ii-1,2*ii,ii)=Aqb(2*ii-1,2*ii,ii)-Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));%对角线处2号元素%%3号元素与之相等%对角线上与jj对应的元素%ApApb(2*jj-1,2*jj-1,ii)=Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(i i,jj)));%对角线处1号元素Apb(2*jj-1,2*jj,ii)=-Uamp(ii)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj))); %对角线处2号元素Apb(2*jj,2*jj-1,ii)=Apb(2*jj-1,2*jj,ii);%3号元素与2号元素相等%AqAqb(2*jj-1,2*jj-1,ii)=Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%对角线处1号元素Aqb(2*jj-1,2*jj,ii)=Uamp(ii)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj ))); %对角线处2号元素Aqb(2*jj,2*jj-1,ii)=Aqb(2*jj-1,2*jj,ii);%3号元素与2号元素相等%4号元素为0%非对角线行元素%ApApb(2*ii-1,2*jj-1,ii)=-Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)) );%非对角线行处1号元素Apb(2*ii-1,2*jj,ii)=Uamp(ii)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%非对角线行处2号元素Apb(2*ii,2*jj-1,ii)=-Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%非对角线行处3号元素Apb(2*ii,2*jj,ii)=-(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));%非对角线行处4号元素%AqAqb(2*ii-1,2*jj-1,ii)=-Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%非对角线行处1号元素Aqb(2*ii-1,2*jj,ii)=-Uamp(ii)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));%非对角线行处2号元素Aqb(2*ii,2*jj-1,ii)=Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(theta(ii,jj)));%非对角线行处3号元素Aqb(2*ii,2*jj,ii)=-(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));%非对角线行处4号元素%非对角线列元素%ApApb(2*jj-1,2*ii-1,ii)=Apb(2*ii-1,2*jj-1,ii);%非对角线列处1号元素Apb(2*jj-1,2*ii,ii)=Apb(2*ii,2*jj-1,ii);%非对角线列处2号元素Apb(2*jj,2*ii-1,ii)=Apb(2*ii-1,2*jj,ii);%非对角线列处3号元素Apb(2*jj,2*ii,ii)=Apb(2*ii,2*jj,ii);%%非对角线列处4号元素%AqAqb(2*jj-1,2*ii-1,ii)=Aqb(2*ii-1,2*jj-1,ii);%非对角线列处1号元素Aqb(2*jj-1,2*ii,ii)=Aqb(2*ii,2*jj-1,ii);%非对角线列处2号元素Aqb(2*jj,2*ii-1,ii)=Aqb(2*ii-1,2*jj,ii);%非对角线列处3号元素Aqb(2*jj,2*ii,ii)=Aqb(2*ii,2*jj,ii);%%非对角线列处4号元素endend%对角线上与ii对应的元素%ApApb(2*ii,2*ii-1,ii)=Apb(2*ii-1,2*ii,ii);%对角线处3号元素与2号元素相等Apb(2*ii,2*ii,ii)=-2*G(ii,ii);%对角线处4号元素%AqAqb(2*ii,2*ii-1,ii)=Aqb(2*ii-1,2*ii,ii);%对角线处3号元素与2号元素相等Aqb(2*ii,2*ii,ii)=2*B(ii,ii);%对角线处4号元素endfor ii=1:nA=A+Apb(:,:,ii)*y(2*ii-1)+Aqb(:,:,ii)*y(2*ii);endH2(2*ng+1:2*(ng+n),2*ng+1:2*(ng+n))=A;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H3%%%%%%%%%%%%%%%%%%%%%%H3=zeros(2*(ng+n),2*(ng+n));A3=zeros(2*n,2*n);Apc=zeros(2*n,2*n,nbr);for ii=1:nbr%对角线上iiApc(2*Nl(ii)-1,2*Nl(ii)-1,ii)=-Uamp(Nl(ii))*Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii)))+B( Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii))));Apc(2*Nl(ii)-1,2*Nl(ii),ii)=-Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii)))-B(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii))));Apc(2*Nl(ii),2*Nl(ii)-1,ii)=Apc(2*Nl(ii)-1,2*Nl(ii),ii);Apc(2*Nl(ii),2*Nl(ii),ii)=-2*G(Nl(ii),Nr(ii));%对角线上jjApc(2*Nr(ii)-1,2*Nr(ii)-1,ii)=-Uamp(Nl(ii))*Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii)))+B( Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii))));Apc(2*Nr(ii)-1,2*Nr(ii),ii)=Uamp(Nl(ii))*(G(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii)))-B(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii))));Apc(2*Nr(ii),2*Nr(ii)-1,ii)=Apc(2*Nr(ii)-1,2*Nr(ii),ii);Apc(2*Nr(ii),2*Nr(ii),ii)=0;%非对角线ijApc(2*Nl(ii)-1,2*Nr(ii)-1,ii)=Uamp(Nl(ii))*Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii )))+B(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii))));Apc(2*Nl(ii)-1,2*Nr(ii),ii)=-Uamp(Nl(ii))*(G(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii)))-B(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii))));Apc(2*Nl(ii),2*Nr(ii)-1,ii)=Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii)))-B(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii))));Apc(2*Nl(ii),2*Nr(ii),ii)=G(Nl(ii),Nr(ii))*cos(theta(Nl(ii),Nr(ii))) +B(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii)));%非对角线jiApc(2*Nr(ii)-1,2*Nl(ii)-1,ii)=Apc(2*Nl(ii)-1,2*Nr(ii)-1,ii);Apc(2*Nr(ii)-1,2*Nl(ii),ii)=Apc(2*Nl(ii),2*Nr(ii)-1,ii);Apc(2*Nr(ii),2*Nl(ii)-1,ii)=Apc(2*Nl(ii)-1,2*Nr(ii),ii);Apc(2*Nr(ii),2*Nl(ii),ii)=Apc(2*Nl(ii),2*Nr(ii),ii);%求和c=z+w;A3=A3+Apc(:,:,ii)*c(2*ng+n+ii);endH3(2*ng+1:2*(ng+n),2*ng+1:2*(ng+n))=A3;%%%%%%%%%%%%%%%%%%%%%%%H4%%%%%%%%%%%%%%%%%%%%%%%%%H4=pxg*(L_1Z-U_1W)*pxg';%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H=-H1+H2+H3-H4;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%形成常数项%%%%%%%%%%%%%%%%%%%%%%%%% %Lyh=zeros(2*n,1);for ii=1:nh(2*ii-1)=Pg(ii)-Pd(ii);h(2*ii)=Qg(ii)-Qd(ii);for jj=1:nh(2*ii-1)=h(2*ii-1)-Uamp(ii)*Uamp(jj)*(G(ii,jj)*cos(theta(ii,jj))+B(ii,jj)*sin(t heta(ii,jj)));h(2*ii)=h(2*ii)-Uamp(ii)*Uamp(jj)*(G(ii,jj)*sin(theta(ii,jj))-B(ii,jj)*cos(theta(ii,jj)));endendLy=h;%Lz%g(x)gx=zeros(2*ng+n+nbr,1);gx(1:ng)=x(1:ng);gx(ng+1:2*ng)=x(ng+1:2*ng);gx(2*ng+1:2*ng+n)=x(2*ng+2:2:2*(ng+n));for ii=1:nbrgx(2*ng+n+ii)=Uamp(Nl(ii))*Uamp(Nr(ii))*(G(Nl(ii),Nr(ii))*cos(theta( Nl(ii),Nr(ii)))+B(Nl(ii),Nr(ii))*sin(theta(Nl(ii),Nr(ii))))-Uamp(Nl(ii))*Uamp(Nl(ii))*G(Nl(ii),Nr(ii));endLz=gx-l-gmin;%LwLw=gx+u-gmax;%Lle=ones(2*ng+n+nbr,1);LZ=zeros(2*ng+n+nbr,2*ng+n+nbr);for ii=1:2*ng+n+nbr;LZ(ii,ii)=l(ii)*z(ii);endLl=LZ*e-miu*e;%LuUW=zeros(2*ng+n+nbr,2*ng+n+nbr);for ii=1:2*ng+n+nbrUW(ii,ii)=u(ii)*w(ii);endLu=UW*e+miu*e;%Lx'Lx1=zeros(2*(ng+n),1);Lx1(1:ng)=2*a2.*x(1:ng)+a1;Lx2=pxh*y;Lx3=pxg*c;Lx41=zeros(2*(ng+n),1);Lx42=zeros(2*(ng+n),1);for ii=1:2*ng+n+nbrLx41(ii)=(Ll(ii)+z(ii)*Lz(ii))/l(ii);Lx42(ii)=(Lu(ii)-w(ii)*Lw(ii))/u(ii);endLx4=pxg*(Lx41+Lx42);Lx=Lx1-Lx2-Lx3;Lxx=Lx+Lx4; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%求出修正量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %dx,dyHxy=[H pxh;pxh' zeros(2*n,2*n)];LxLy=[Lxx;-Ly];I=eye(2*(ng+n)+2*n);dxdy=I/Hxy*LxLy;dx=dxdy(1:2*(ng+n));dy=dxdy(2*(ng+n)+1:2*(ng+n)+2*n);%dldl=pxg'*dx+Lz;%dudu=-pxg'*dx-Lw;%dzdz=zeros(2*ng+n+nbr,1);for ii=1:2*ng+n+nbrdz(ii)=(-Ll(ii)-z(ii)*dl(ii))/l(ii);end%dwdw=zeros(2*ng+n+nbr,1);for ii=1:2*ng+n+nbrdw(ii)=(-Lu(ii)-w(ii)*du(ii))/u(ii);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%计算alfap和alfad%%%%%%%%%%%%%%%%%%%%%%%% alfap=1;alfad=1;for ii=1:2*ng+n+nbrif dl(ii)<0&&-l(ii)/dl(ii)<alfapalfap=-l(ii)/dl(ii);endif du(ii)<0&&-u(ii)/du(ii)<alfapalfap=-u(ii)/du(ii);endif dz(ii)<0&&-z(ii)/dz(ii)<alfadalfad=-z(ii)/dz(ii);endif dw(ii)>0&&-w(ii)/dw(ii)<alfadalfad=-w(ii)/dw(ii);endendalfap=0.9995*alfap;alfad=0.9995*alfad;x=x+alfap*dx;l=l+alfap*dl;u=u+alfap*du;y=y+alfad*dy;z=z+alfad*dz;w=w+alfad*dw;%迭代功率、电压幅值和相角for ii=1:ngPg(Nbus(ii))=x(ii);Qg(Nbus(ii))=x(ng+ii);endfor ii=1:nUamp(ii)=x(2*(ng+ii));Dlta(ii)=x(2*(ng+ii)-1);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=k+1;elsebreak;endendfcost=0;for ii=1:ngfcost=fcost+a2(ii)*Pg(Nbus(ii))*Pg(Nbus(ii))+a1(ii)*Pg(Nbus(ii))+a0( ii);endfcostkplot(0:k,Gap(1:k+1),':*');PgQgUampfor ii=1:nif Type(ii)==3Dlta=Dlta-Dlta(ii)*ones(n,1);endendDlta。
点法是一种能在可liMSfl寻优的方法,即从初始点岀发,沿着中心胳径方向在可行域部直接走向最优解的方法。
其中路径跟踪法是目前最具有发展潜力的一类点算法,该方法鲁棒性强,对初值的选择不敏感,在目前电力系貌优化间题中得到了广泛的应用。
本文采用路径眼踪法进行最优求解,首先介绍了路径跟踪法的基本模型,并冃结合具It算例,用编写的Matlab程序进行仿真分析,StilT 该方法在最优潮流it算中的优越性能。
关最优潮流、自法、路径跟踪法、仿真目次0、引言11、路径跟踪法的基本数学模型22、路径跟踪法的最优潮流求解思路43、具体算例员程序实观流程73.1、算例描述73.2、程序具体实现流程94、运行结果及分析134. 1运行结果134. 2 结果ftflf 185、结论196、编程中遇到的间题20参考文献21附录210、引言电力系统最优潮流,简称OPF ( Optimal Power Flow )o OPF间题是一个夏杂的非线性规则间题,要求满足待定的电力系筑运行和安全约東条件下,通il调整系貌中可利用腔制手段实现预定目标最优的系貌隐定运行状态。
针湘不同的应用,OPF模塑课以选择不同的控制变量、状态变量集合,不同的目标函数,以员不同的约東条件,其数学模里可描述为确定一组最优控制变量u,以使目标函数取板小值,并冃满足如下等式和不等式。
(min u f(x t u)r-v S. t. \(x, u) = 0I 9(u u)生0 ( 0-1 )其中为优化的目标函数,可以表示系筑运行成本最小、或者系统运行网损最小°S・t・l(x,ii) = °为等贰约東,表示满足系统息定运行的助率平ftlo 为不等式约東,表示电源有功岀力的上下界约束、节点电压上下线约東、线路传输助率上下线约東等等。
电力系貌最优潮流算法大致可以分为两类:经典算法和智能算法。
其中经典算法主要是指以简化怫度法、牛顿法、自法和解耦法为代表的基干线性规则和非线性规解耦原则的算法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶悌度作为寻找最优解的主要信息。
内点法内点法在求解⾮线性问题中的应⽤1、内点法求解线性规划问题本科时学过运筹学,线性规划是运筹学中的⼀个重要分⽀,研究较早,发展较快,应⽤⼴泛,⽅法也⽐较成熟。
单纯形法是求解线性规划问题的通⽤⽅法,我认为⽤单纯形法在求解线性规划问题时是很有效的。
单纯形法的基本思想是在顶点上找到最优解:先找出⼀个基本可⾏解,即可⾏域的⼀个极点,判断是否是最优解,若是,则问题就得到解决;否则,则要设法寻找另⼀个极点,使新的极点的⽬标值优于前⼀个极点。
因为基本可⾏解的个数有限,所以经过有限次迭代,⼀定可以得到问题的最优解。
如果问题⽆最优解也可以⽤这种⽅法判别。
⽤单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。
⽤单纯形法求解线性规划问题可能会出现极端情况,就是对于具有n 个变量的问题,要最多寻找12-n 次才可获得最优解。
当变量太多时,12-n 呈现指数型,数值太⼤,此时⽤单纯形法求解线性规划问题计算时间太长,计算量太⼤。
现在⼀般的线性规划问题都是应⽤单纯形法标准软件在计算机上求解,很⽅便也很实⽤。
但是单纯形法不是很经济的算法,于是就有数学家提出了改进的单纯形法。
为了改进单纯形法每次迭代中积累起来的进位误差,美国数学家G.B.丹齐克提出改进单纯形法。
改进单纯形法的基本步骤和单纯形法⼤致相同,主要区别是在逐次迭代中不再以⾼斯消去法为基础,⽽是由旧基阵的逆去直接计算新基阵的逆,再由此确定检验数。
这样做不但可以减少迭代中的累积误差,提⾼计算精度,⽽且还减少了在计算机上的存储量。
单纯形法是从原始问题的⼀个可⾏解通过迭代转到另⼀个可⾏解,检验它的判别数是否全部⾮负。
如果所有的判别数⾮负,基可⾏解就是最优解。
如果存在负判别数,则迭代到另⼀个基可⾏解。
单纯形法迭代过程中始终保持基解的可⾏性,但不能保证对偶规划解的可⾏性。
⽽对偶单纯形法则是从满⾜对偶可⾏性条件出发,通过迭代逐步搜索原始问题的最优解。
在迭代过程中始终保持基解的对偶可⾏性,⽽使不可⾏性逐步消失。