第七章 量子力学的矩阵形式与表象变换
- 格式:ppt
- 大小:587.00 KB
- 文档页数:34
§4.5 量子力学的矩阵形式和表象变换态和力学量算符的不同表示形式称为表象。
态有时称为态矢量。
力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。
1、量子态的不同表象 幺正变换(1)直角坐标系中的类比取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e,见图其标积可写成下面的形式)2,1,(),(==j i e e ijj i δ我们将其称之为基矢的正交归一关系。
平面上的任一矢量A可以写为2211e A e A A +=其中),(11A e A =,),(22A e A=称为投影分量。
而),(21A A A = 称为A在坐标系21XOX 中的表示。
现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e,且同样有)2,1,()','(==j i e e ijj i δ而平面上的任一矢量A此时可以写为 ''''2211e A e A A +=其中投影分量是),'('11A e A=,),'('22A e A =。
而)','(21A A A = 称为A在坐标系'X 'OX21中的表示。
现在的问题是:这两个表示有何关系?显然,22112211''''e A e A e A e A A+=+=。
用'1e 、'2e分别与上式中的后一等式点积(即作标积),有),'(),'('2121111e e A e e A A+= ),'(),'('2221212e e A e e A A+=表成矩阵的形式为⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛212212211121),'(),'(),'(),'(''A A e e e e e e e e A A由于'1e、1e及'2e、2e的夹角为θ,显然有⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ或记为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛2121)(''A A R A A θ 其中⎪⎪⎭⎫⎝⎛-=θθθθθcos sin sin cos )(R 是把A在两坐标中的表示⎪⎪⎭⎫⎝⎛''21A A 和⎪⎪⎭⎫⎝⎛21A A 联系起来的变换矩阵。
一. 选择题99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'exp(21)('x p ix P πψ=,它在动量表象中的表示是D A.δ(')p p -. B.δ(')p p +. C.δ()p . D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是AA.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是C A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 0b a .D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪.104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 AA. .B. - .C. 2 .D. 0.105.算符Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符(,)F x i x ∂∂在 Q 表象中的矩阵元的表示是BA.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂.C.F u x F x i x u x dx mn n m =⎰()(,)()* ∂∂. D.F u x F x i x u x dx mn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是AA. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是A A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是BA.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -.D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A A. ±1. B. 0. C. ±i . D. 1±i .110. 在 Q 表象中F =⎛⎝ ⎫⎭⎪0110, F 的归一化本征态分别为A A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为AA.S S +-=.B.S S +=*.C.S S =-.D.S S *=-. 112.幺正变换BA.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于B A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D. [ , ]a a i +=.二. 填空题1. Q 表象是以Q 的本征函数系(){}x u n 为基底的表象,在这个表象中,有()()x u Q x u Q n n n =()()x u t a n n ∑=ψ()()()())(,,)(,)(,***t a t a t a t a t a t a n n 21+21=⎪⎪⎪⎪⎪⎭⎫⎝⎛=ψψ2. 算符F 对应一个矩阵(方阵),矩阵元是dxFu u F m n nm ⎰=*3. 选定表象后,算符和量子态都用 表示。
一. 选择题99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'exp(21)('x p ix P πψ=,它在动量表象中的表示是D A.δ(')p p -. B.δ(')p p +. C.δ()p . D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是AA.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是C A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 0b a .D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪.104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 AA. .B. - .C. 2 .D. 0.105.算符Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符(,)F x i x ∂∂在 Q 表象中的矩阵元的表示是BA.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂.C.F u x F x i x u x dx mn n m =⎰()(,)()* ∂∂. D.F u x F x i x u x dx mn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是AA. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是A A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是BA.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -.D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A A. ±1. B. 0. C. ±i . D. 1±i .110. 在 Q 表象中F =⎛⎝ ⎫⎭⎪0110, F 的归一化本征态分别为A A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为AA.S S +-=.B.S S +=*.C.S S =-.D.S S *=-. 112.幺正变换BA.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于B A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D. [ , ]a a i +=.二. 填空题1. Q 表象是以Q 的本征函数系(){}x u n 为基底的表象,在这个表象中,有()()x u Q x u Q n n n =()()x u t a n n ∑=ψ()()()())(,,)(,)(,***t a t a t a t a t a t a n n 21+21=⎪⎪⎪⎪⎪⎭⎫⎝⎛=ψψ2. 算符F 对应一个矩阵(方阵),矩阵元是dxFu u F m n nm ⎰=*3. 选定表象后,算符和量子态都用 表示。