§量子力学的矩阵表示
- 格式:doc
- 大小:630.00 KB
- 文档页数:23
§4.2量子力学的矩阵表示Dψ∑Φ=ψΦ⎥⎥⎦⎤⎢⎢⎣⎡n n nψ∑Φ=n n nψ∑Φ=n n n*⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ψψΦΦ= 21,2,1**ΨΦ+=若 0ΨΦ=+,则称态Ψ和Φ正交。
而1ΨΨ=+则是指态Ψ是归一化的。
基底m 在自身表象上的表示为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=010Φ m ← 第m 行基底的正交归一化写成 mn n mδ=+ΦΦ.态向基底的展开写成++=∑=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡1001ΦΨ21n C C C nn展开系数ΨΦn +=n C .对于连续谱情况本征方程: λλλ=Fˆ 基底: }{λ 正交归格化: )(λλδλ'-=' 封闭关系: I =⎰∞+∞-λλλd态ψ在Fˆ表象上的表示矩阵成为本征值λ的函数 ψ=ψλλ)(态ψ和Φ的内积为λλλd )()(*ψ⎰Φ=ψ∞+∞-因为λλλλλλλλd d d )()(][*ψ⎰Φ=⎰ψΦ=ψ⎰=ψ∞+∞-∞+∞-∞+∞-归一化条件为1)()(*=ψ⎰ψ=ψψ∞+∞-λλλd .而基底λ'在自身表象上表示为)(λλδλλ'-='.二、算符的表示 1.算符用矩阵表示算符是通过对态的作用定义的。
因为态用列矩阵表示,所以算符应该用矩阵表示。
Φ=ψLˆ Φ=ψ⎥⎦⎤⎢⎣⎡∑m n n L m n ˆ Φ=∑ψm n n Lm nˆ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ΦΦ=ψψ 212122211211L L L LΦL Ψ=矩阵L 是算符Lˆ在F ˆ表象上的表示 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=22211211L L L L L矩阵元为n Lm L mn ˆ= 可以在坐标表象上计算。
下面会看到,在坐标表象上矩阵元mn L 的计算公式为dx x xi x L x L n mmn )(),(ˆ)(*ϕϕ∂∂-⎰=∞+∞-式中n x x n =)(ϕ.【例】用包括Hamilton 量在内的力学量完全集的共同本征态的集合作基底的表象,称为能量表象。
第4章 量子力学的矩阵形式与表象变换§1 量子态的不同表象态的表象 量子力学中态和力学量的具体表示方式研究表象的意义 根据不同问题选择不同表象,还可以进行表象变换。
一、坐标表象波函数ψ(x ,t ) 1、ψ(x ,t )2、dx t x 2),(ψ——表示体系处在ψ(x ,t )所描述的态中,在x →x +d x 范围内找到粒子的几率,也就是说,当体系处在ψ(x ,t )所描述的态中,测量坐标x 这个力学量所得值在x →x +d x 这个范围内的几率。
3、2(,)1x t dx ψ=⎰4、动量为x p '的自由粒子的本征函数 xp ip e x ''=2/1)2(1)(πψ5、x 在坐标表象中对应于本征值x '的本征函数)(x x '-δ, 即,)()(x x x x x x '-'='-δδ 二、动量表象波函数 动量本征函数:pxip e x2/1)2(1)(πψ=组成完备系,任一状态ψ可按其展开(,)(,)()p x t c p t x dp ψψ=⎰ (1) 展开系数*(,)()(,)pc p t x x t dx ψψ=⎰ (2) ψ(x ,t )与c (p ,t )互为Fourier (付里叶)变换,一一对应关系,所不同的是变量不同。
认为c (p ,t )和ψ(x ,t )描述同一个状态。
ψ(x ,t )是这个状态在坐标表象中的波函数,c (p ,t )是同一个状态在动量表象中的波函数。
1、),(t p c ——状态波函数2、dp t p c 2),(表示体系处在c (p ,t )所描述的态中测量动量这个力学量p 所得结果为p →p +d p 范围内的几率。
3、1),(2=⎰dp t p c命题:假设ψ(x ,t )是归一化波函数,则c (p ,t )也是归一。
(在第一章中已经证明) 4、x p '的本征函数(具有确定动量x p '的自由粒子的态)若ψ(x ,t )描写的态是具有确定动量 p'的自由粒子态,即:1/21()(2)ip xp x eψπ''=则相应动量表象中的波函数:*(,)()(,)pc p t x x t dx ψψ=⎰()p i E te p p δ'-'=-所以,在动量表象中,具有确定动量p' 的粒子的波函数是以动量p 为变量的δ函数。
量子力学中的矩阵理论量子力学是研究微观物体行为的重要分支,而量子力学中的矩阵理论则是支撑这一学科发展的关键工具之一。
在量子力学中,微观粒子的性质和行为往往无法用经典物理学的概念来解释,而矩阵理论则为我们提供了一种有效的数学框架,帮助我们理解和描述这些微观粒子的奇妙世界。
量子力学中的矩阵表示方法最早由狄拉克(Dirac)提出,经过多年的发展和完善,已经成为解决量子力学问题的一种重要数学工具。
矩阵在量子力学中的应用可以追溯到海森堡的矩阵力学和薛定谔的波动力学,而这些理论的成功也为矩阵理论在量子力学中的应用奠定了基础。
矩阵理论在量子力学中的应用之一是描述微观粒子的态矢量。
在经典物理学中,我们用向量来描述物体的物理状态,而在量子力学中,我们则使用态矢量。
态矢量是一个复数向量,表示粒子在某个状态下的量子机会。
而这些态矢量可以通过矩阵来表示。
例如,一个二维复数向量可以用一个二阶矩阵来表示,而三维的情况则需要使用更高维度的矩阵。
通过矩阵表示态矢量,我们可以方便地进行各种计算和推导。
这是因为矩阵在数学上有着丰富的属性和运算法则。
我们可以对矩阵进行求和、乘法、转置等操作,而这些操作在量子力学中具有重要的物理意义。
例如,我们可以通过计算两个矩阵的乘积,得到两个量子态叠加的结果。
这种用矩阵来表示量子态的方法,为我们研究量子系统的演化、相互作用等提供了便利。
除了描述态矢量,矩阵理论在量子力学中还有其他重要的应用。
其中之一是描述量子力学中的算符。
在量子力学中,算符是一种可以作用在量子态上的数学操作。
通过矩阵理论,我们可以将算符表示成矩阵的形式,从而可以方便地进行计算。
例如,我们可以通过对应的矩阵乘以态矢量,得到算符作用后的结果。
这种矩阵表示方法可以帮助我们理解和计算各种物理量的平均值、期望值等。
此外,矩阵理论还为我们提供了描述量子力学中的对易关系的工具。
在量子力学中,对易关系是描述两个物理量之间的量子态的关系。
通过矩阵理论,我们可以将对易关系表示成矩阵的形式,从而可以用矩阵的性质进行分析和计算。
量⼦⼒学讲义IV.表象理论(矩阵表述)IV. 表象理论 ( 矩阵表述 )1.如何⽤矩阵表⽰量⼦态与⼒学量,并说明理由?答:矩阵表⽰⼀般⽤于本征值为离散谱的表象(相应的希尔伯空间维数是可数的)。
具体说,如果⼒学量的本征⽮为,相应本征值分别为。
假定⼀个任意态⽮为,将它展开For personal use only in study and research; not for commercial use则态⽮在表象中波函数便可⽤展开系数的⼀列矩阵表⽰其意义是:在态中,取的概率为,这与表象中波函数意义是类似的。
⼒学量⽤厄⽶⽅阵表⽰,。
显然,⼀列矩阵和⽅阵维数与希尔伯空间维数是相等的。
⽤矩阵表⽰⼒学量,有如下理由:第⼀可以反映⼒学量作⽤于⼀个量⼦态得到另⼀个量⼦态的事实。
设,式中,。
取,两端左乘,取标积得,即第⼆矩阵乘法⼀般不满⾜交换率,这恰好能满⾜两个⼒学量⼀般不对易的要求。
第三厄⽶矩阵的性质能体现⼒学量算符的厄⽶性。
对于本征值为连续谱的表象(希尔伯空间维数不可数),也可形式的运⽤矩阵表⽰,这时可将矩阵元素看成式连续分布的。
2.量⼦⼒学中,不同表象间:基⽮、波函数、⼒学量是如何变换的?答:量⼦⼒学中由⼀个表象到另⼀个表象的变换为⼳正变换,它类似于欧⽒空间中坐标转动。
设表象中的基⽮为表象中的基⽮为(1) 基⽮变换关系为式中,(为⼳正矩阵)。
设有任意态,则态在及表象中波函数分别为矩阵。
(2) 波函数变换规则为:矩阵。
(3) ⼒学量变换规则为:。
(式中与为⼒学量在、表象中矩阵)3.正变换有什么特征?答:⼳正变换特点:(1⼳正变换不改变态⽮的模,这⼀特征相当于坐标旋转变换;(2⼳正变换不改变⼒学量本征值;(3)⼒学量矩阵之迹 TrF与矩阵⾏列式 dgtF亦不因⼳正变换⽽改变.4. 学量在其⾃⾝表象中如何表⽰?其本征⽮是什么 ?答:如果⼒学量本征值为离散谱,那么,它在其⾃⾝表象中表⽰式为对⾓矩阵,为诸本征值。
本征⽮为单元素⼀列矩阵如果⼒学量本征值为连续谱,则它在其⾃⾝表象中为纯变量其本征⽮为函数。
量子力学知识:量子力学中的矩阵力学量子力学是一门极富挑战性和创新性的科学,涉及到微观粒子的行为和性质。
在量子力学中,矩阵力学是一种常见的量子力学理论框架,它提供了一种有效的方式来描述和计算原子和分子的态和能级。
在本文中,我们将讨论量子力学中的矩阵力学,包括其基本原理、应用和限制等方面。
1.基本原理矩阵力学是矩阵代数在量子力学中的应用。
在矩阵力学中,态矢量用列矢量表示,即:|φ⟩=(φ1, φ2, ...,φn)T其中,T代表转置,φ1, φ2, ..., φn表示态矢量的各个分量。
而算符用矩阵表示,即:A=(a11 a12 … a1n)(a21 a22 … a2n)(…… …… ……)(an1 an2 … ann)其中,aij表示算符A的第i行第j列元素。
通过矩阵算法,我们可以计算出在某一态下算符A的期望值和本征值等信息。
2.应用矩阵力学在量子力学的研究中有着广泛的应用,尤其是在原子和分子物理学中。
在原子物理学中,我们可以通过矩阵力学计算出原子的基态和激发态能级,以及原子的谱线和双光子跃迁等重要物理量。
在分子物理学中,矩阵力学可以用于描述分子的振动、转动、电荷分布和能级等性质,从而揭示分子内部的量子力学行为。
3.限制尽管矩阵力学在原子和分子物理学中有着广泛的应用,但它也有一些限制。
首先,矩阵力学只适用于可视为有限维希尔伯特空间的量子系统,因此对于高维的、复杂的量子系统,矩阵力学的应用将会受到限制。
其次,矩阵力学只能得到离散的能级和谱线,而对于连续的谱线和能带等物理量,需要采用其他方法进行计算和描述。
4.总结矩阵力学是量子力学中的一种基本理论框架,它提供了一种有效的方式来描述和计算原子和分子的态和能级。
通过矩阵代数的运算,我们可以得到原子和分子的重要物理量,如基态和激发态能级、谱线和双光子跃迁等。
尽管矩阵力学在量子物理学中有着广泛的应用,但它也有一些限制,如只适用于有限维希尔伯特空间的量子系统等。
归一化与量子力学算符的矩阵表示在量子力学中,归一化是一个非常重要的概念。
它涉及到了波函数的模的概念及其与概率的关系。
量子力学的核心概念是波函数,波函数的模的平方代表了位置或状态的概率分布。
而归一化则是确保概率的总和为1的条件,这使得波函数成为了一个合理的描述物理世界的工具。
首先,让我们来看一下什么是归一化。
归一化即是对波函数进行标准化处理,使其满足概率的总和为1的条件。
换句话说,归一化是确保波函数所代表的物理量在某一给定空间内的概率分布。
以一个一维定态束缚态为例,波函数可以表示为ψ(x),其中x代表粒子在空间中的位置。
归一化的条件要求:∫ψ(x)²dx = 1这里的∫代表积分,而该积分表示波函数在整个空间范围内的概率总和。
通过对波函数进行归一化,我们可以保证粒子在空间中的位置是一个合理的概率分布。
那么如何实现归一化呢?一种常用的方法是使用归一化系数来除以波函数的模。
对于一维定态束缚态的归一化,我们可以这样表示:ψ(x) = u(x)/√( ∫u(x)²dx )其中u(x)表示没有归一化的波函数。
通过除以归一化系数√( ∫u(x)²dx ),我们可以得到归一化的波函数。
现在让我们来探讨量子力学算符的矩阵表示。
在量子力学中,算符是操作物理量的工具。
在矩阵表示中,算符可以用矩阵来表示和操作。
这种矩阵表示的方法极大地简化了运算和分析过程。
在量子力学中,算符的矩阵表示是通过求解算符对特定基矢量的作用所得到的结果。
具体来说,我们将算符作用在一组基矢量上,得到的结果将是一组新的矢量。
矩阵的元素就是这组新的矢量。
以一个简单的算符,如动量算符为例。
在动量算符的矩阵表示中,每个元素代表了该算符作用在不同的基矢量上所得到的结果。
这些元素组成了一个方阵,我们可以通过对这个方阵进行特征值分解来得到该算符的本征值和本征矢量。
量子力学中的算符还可以进行线性组合,这在矩阵表示中得到了很好的体现。
我们可以通过将不同的算符进行加减乘除等操作来获得新的算符。
量子力学中的矩阵表示方法量子力学是一门探索微观世界的科学,而矩阵表示方法是量子力学中非常重要的一部分。
通过矩阵表示方法,我们能够描述和计算微观粒子的性质和相互作用。
本文将介绍矩阵表示方法在量子力学中的应用,以及其背后的数学原理。
首先,我们来了解一下量子力学中的态。
在量子力学中,粒子的态可以通过波函数来描述。
波函数是一个复数函数,在给定的时刻和空间点上,它代表了粒子的状态。
对于多粒子系统,其波函数包含多个变量,比如位置和自旋等。
然而,波函数并不是常用的物理量,我们更关注的是物理量的平均值和概率分布。
而在量子力学中,物理量是由算符来表示的。
算符是一种对波函数作用的数学对象,它可以描述某个物理量的性质。
量子力学中最常用的算符就是哈密顿算符,它表示了系统的总能量。
接下来,我们讨论如何将算符用矩阵表示。
矩阵表示方法是量子力学中一种非常常用的计算工具。
它的基本思想是将量子力学中的算符映射为矩阵,从而可以方便地对波函数进行计算和分析。
对于一个算符A,我们可以将其对应的矩阵表示为A。
矩阵A的元素A(i,j)表示了算符A在波函数基矢量|i⟩和|j⟩之间的矩阵元。
矩阵元代表了算符A在不同态之间的跃迁概率。
通过矩阵表示方法,我们可以方便地进行算符之间的运算。
例如,两个算符A和B的乘积AB可以通过将它们对应的矩阵相乘来得到。
这样,我们就能够方便地计算复杂的量子力学表达式。
除了表示算符,矩阵表示方法还可以用于描述量子态之间的变换。
量子力学中的变换由幺正算符来表示,而幺正算符可以看作是保持态空间长度不变的线性变换。
幺正算符对应的矩阵是正交矩阵,它满足矩阵的厄米共轭等于其逆矩阵。
通过矩阵表示方法,我们可以方便地描述和求解量子系统的本征态和本征值。
对于一个算符A,如果满足A|i⟩=a(i)|i⟩,其中|i⟩是A的本征态,a(i)是对应的本征值,那么算符A对应的矩阵A的特征方程就是AΨ=aΨ。
通过求解特征方程,我们可以得到算符A的本征值和本征态。
量子力学的矩阵表象解释量子力学是描述微观粒子行为的理论,它与经典力学有着根本的区别。
在量子力学中,我们无法准确地确定粒子的位置和动量,而是通过波函数来描述粒子的状态。
而在量子力学中,矩阵表象是一种非常重要的数学工具,它可以帮助我们理解和计算量子系统的性质。
矩阵表象是一种数学表示方法,它将量子力学中的算符(operator)表示为矩阵形式。
在矩阵表象中,波函数被表示为一个列矢量,而算符被表示为一个方阵。
通过矩阵的乘法运算,我们可以计算出量子系统的各种物理量。
在矩阵表象中,波函数的演化由薛定谔方程描述。
薛定谔方程可以写成矩阵形式,即iħdψ/dt = Hψ,其中ħ是普朗克常数,H是哈密顿算符。
通过求解这个矩阵方程,我们可以得到波函数随时间的演化。
在量子力学中,我们可以通过测量来获取粒子的物理量。
而在矩阵表象中,物理量由算符表示。
例如,位置算符由一个对角矩阵表示,其对角线元素是位置的本征值。
动量算符由一个反对称的矩阵表示,其非对角线元素是动量的本征值。
矩阵表象的一个重要应用是求解量子力学中的定态问题。
定态问题是指求解具有确定能量的量子系统的波函数。
在矩阵表象中,定态问题可以转化为求解矩阵的本征值问题。
通过求解本征值问题,我们可以得到系统的能级和相应的波函数。
除了定态问题,矩阵表象还可以用于描述量子系统的演化。
量子系统的演化可以通过时间演化算符来描述。
在矩阵表象中,时间演化算符可以表示为一个幺正矩阵。
通过将幺正矩阵作用于波函数,我们可以得到系统随时间的演化。
矩阵表象的另一个重要应用是描述量子力学中的测量过程。
在量子力学中,测量过程会导致波函数的坍缩,即波函数从一个叠加态坍缩到一个确定态。
在矩阵表象中,测量过程可以用投影算符来描述。
投影算符是一个厄米矩阵,它的本征值为0或1。
当测量得到某个本征值时,波函数会坍缩到对应的本征态上。
总结起来,量子力学的矩阵表象是一种非常重要的数学工具,它可以帮助我们理解和计算量子系统的性质。