2010年中考数学考前知识点回归+巩固 专题6分式方程
- 格式:doc
- 大小:161.50 KB
- 文档页数:7
专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。
2010年中考数学试题分类汇编 分式5. (2010年浙江省东阳县)使分式12-x x有意义,则x 的取值范围是( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义【答案】D16.(2)(2010年山东省青岛市)化简:22142a a a+--. 【关键词】分式计算 【答案】(2)解:原式 = ()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。
【关键词】分式运算【答案】解:原式21)2)(2(2++-+-=a a a a222121+=+++=a a a当2=a 时,原式52232=+=2、(2010浙江省喜嘉兴市)若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12 C .x =12D .x =2【关键词】分式分子、分母特点【答案】D17.(2010山东德州)先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x . 【关键词】分式、分母有理化 【答案】解:原式=11)1()1(2)1)(1(22-+++÷-+-x x x x x x =11)1(2)1()1)(1(22-+++⋅-+-x x x x x x =11)1(22-+--x x x =)1(2-x x.当12+=x 时,原式=422+.(2010年广东省广州市)若分式51-x 有意义,则实数x 的取值范围是_______. 【关键词】分式的意义 【答案】5≠x2.(2010年重庆)先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x . 【答案】解:原式=)2()2)(2(442+-+÷-+x x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.19.(2010江苏泰州,19(2),8分)计算:(2))212(112aa a a a a +-+÷--.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.【关键词】分式的加减乘除混合运算1.(2010年浙江省绍兴市)化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x【答案】B2.(2010年宁德市)化简:=---ba bb a a _____________. 【答案】121.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.(2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式 分式有意义【答案】D3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x 当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=224+)=225. (2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式有意义的条件 【答案】D15. (2010年安徽中考) 先化简,再求值:aa a a a -+-÷--2244)111(,其中1-=a【关键词】分式的运算 【答案】解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 当a=-1时,原式=112123a a -==---1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。
专题06 分式方程一、单选题1.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x =【答案】A【解析】【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得 23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.2.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠【答案】B【解析】【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.3.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-【答案】C【解析】【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.【详解】 解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.4.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+- B .1449630v v =- C .144963030v v =-+ D .1449630v v=+ 【答案】A【解析】【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v =+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.5.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =-【答案】C【解析】【分析】按照解分式方程的步骤解答即可.【详解】 解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案选C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.6.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根. 7.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 8.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x -⨯=- 【答案】D【解析】【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x -⨯=-, 故选:D .【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.9.(2021·四川巴中)关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2【答案】B【解析】【分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠.【详解】 解:302m x x +-=- 方程两边同时乘以2x -得:630m x x +-+=,∵46x m =-,∵分式方程有解,∵20x -≠,∵2x ≠,∵68m -≠,∵2m ≠-,故选B.【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键. 10.(2021·内蒙古呼伦贝尔)若关于x 的分式方程2233x a x x ++=--无解,则a 的值为( ) A .3 B .0 C .1- D .0或3【答案】C【解析】【分析】直接解分式方程,再根据分母为0列方程即可.【详解】 解:2233x a x x++=--, 去分母得:2﹣x ﹣a =2(x ﹣3),解得:x =83a -, 当833a -=时,方程无解, 解得1a =-.故选:C .【点睛】本题考查了分式方程无解,解题关键是明确分式方程无解的条件,解方程,再根据分母为0列方程. 11.(2021·四川宜宾)若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2【答案】C【解析】【分析】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.【详解】 解:322x m x x -=--, 去分母得:()32x x m --=,∵关于x 的分式方程322x m x x -=--有增根,增根为:x =2, ∵()2322m --=,即:m =2,故选C .【点睛】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键.12.(2021·广西贺州)若关于x 的分式方程43233m x x x +=+--有增根,则m 的值为( ) A .2B .3C .4D .5【答案】D【解析】【分析】 根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可.【详解】解:∵分式方程43233m x x x +=+--有增根, ∵3x =,去分母,得()4323m x x +=+-,将3x =代入,得49m +=,解得5m =.故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 13.(2021·黑龙江)已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥-B .4m ≥-且3m ≠-C .4m >-D .4m >-且3m ≠- 【答案】B【解析】【分析】根据题意先求出分式方程的解,然后根据方程的解为非负数可进行求解.【详解】解:由关于x 的分式方程3121m x +=-可得:42m x +=,且12x ≠, ∵方程的解为非负数, ∵402m +≥,且4122m +≠, 解得:4m ≥-且3m ≠-,故选B .【点睛】本题主要考查分式方程的解法及一元一次不等式的解法,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.14.(2020·黑龙江鹤岗)已知关于x 的分式方程433x k x x -=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <- 【答案】A【解析】【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】 解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∵412x x k -+=-,∵312x k -=--, ∵43k x =+, ∵解为非正数, ∵403k +≤, ∵12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.15.(2020·湖北荆门)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定 【答案】A【解析】【分析】先解出关于x 的分式方程得到x =63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x kx x x +=+--+得x =217k -,∵41x -<<- ∵21471k --<<-解得-7<k <14∵整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x ≠2且x ≠-3∵k ≠35且k ≠0∵所有符合条件的k 中,含负整数6个,正整数13个,∵k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法. 16.(2020·黑龙江牡丹江)若关于x 的方程201mx x -=+的解为正数,则m 的取值范围是() A .2m < B .2m <且0m ≠ C .2m > D .2m >且4m ≠【答案】C【解析】【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【详解】解:∵解方程201mx x -=+,去分母得:()210mx x -+=,整理得:()22m x -=,∵方程有解, ∵22x m =-,∵分式方程的解为正数, ∵202m >-,解得:m >2,而x≠-1且x≠0,则22m-≠-1,22m-≠0,解得:m≠0,综上:m的取值范围是:m>2.故选C.【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.17.(2020·四川泸州)已知关于x的分式方程3211mx x+=---的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6本号资料@皆来源于微*信公#众号:数学【答案】B【解析】【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.【详解】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=52m,∵分式方程的解为非负数,∵52m≥0且52m≠1,解得:m≤5且m≠3,∵m为正整数∵m=1,2,4,5,共4个,故选:B.【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.18.(2020·重庆)若关于x的一元一次不等式组()213212x xx a⎧-≤-⎪⎨->⎪⎩的解集为x≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .0【答案】B【解析】【分析】 首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【详解】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +> ∵25a +<,即3a <122+=---y a y y ,解得22a y += 有非负整数解,即202a y +=≥ ∵a ≥-2且a ≠2∵23a -≤<且2a ≠ ∵符合条件的所有整数a 的数有:-2,-1,0,1又∵22a y +=为非负整数解, ∵符合条件的所有整数a 的数有:-2,0∵其和为202-+=-故选:B.【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.19.(2020·重庆)若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )# 本号资料皆来源于微@信公*众号:数学A .7B .-14C .28D .-56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.【详解】 解:解不等式3132x x -≤+,解得x ≤7, ∵不等式组整理的7x x a≤⎧⎨≤⎩, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =+23a , 由y 为正整数解且y ≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(2022·重庆)关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20【答案】A【解析】【分析】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.【详解】由分式方程的解为整数可得:313x a x x ---=-解得:2=-x a又题意得:20a ->且23a -≠∵2a >且5a ≠,由()922y y +≤+得:5y ≥ 由213y a ->得:32a y +> ∵解集为5y ≥ ∵352a +< 解得:7a <综上可知a 的整数解有:3,4,6它们的和为:13故选:A .【点睛】本题考查含参数的分式方程和含参数的不等数组,掌握由解集倒推参数范围是本题关键.21.(2022·四川遂宁)若关于x 的方程221m x x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或4 【答案】D【解析】【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解;当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.22.(2022·重庆)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-13【答案】D【解析】【分析】 根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a ≠-2,计算即可.【详解】 ∵ 411351x x x a -⎧-≥⎪⎨⎪-⎩①<②,解∵得解集为2x -≤,解∵得解集为15a x +<, ∵ 不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤, ∵125a +->, 解得a >-11, ∵ 1211y a y y -=-++的解是y =13a -,且y ≠-1,1211y a y y -=-++的解是负整数, ∵a <1且a ≠-2,∵-11<a <1且a ≠-2,故a =-8或a =-5,故满足条件的整数a 的值之和是-8-5=-13,故选D.【点睛】本题考查了不等式组的解集,分式方程的特殊解,增根,熟练掌握不等式组的解法,灵活求分式方程的解,确定特殊解,注意增根是解题的关键.23.(2022·四川德阳)关于x的方程211x ax+=-的解是正数,则a的取值范围是()A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-2【答案】D【解析】【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x为正数.所以-a-1>0,解得a<-1,且a≠-2.(因为当a=-2时,方程不成立.).【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.24.(2020·云南昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元【答案】C【解析】【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【详解】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:80004000800011.2x x+-=, 解得:x =2000,经检验:x =2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C .【点睛】本题考查了分式方程的应用,解题的关键是找到题目中的等量关系,难度不大.25.(2020·黑龙江齐齐哈尔)若关于x 的分式方程32x x -=2m x -+5的解为正数,则m 的取值范围为( ) A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6【答案】D【解析】【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.【详解】解:去分母得35(2)x m x =-+-, 解得102m x +=, 由方程的解为正数,得到100m +>,且2x ≠,104m +≠,则m 的范围为10m >-且6≠-m ,故选:D .【点睛】本题主要考查了分式方程的计算,去分母化为整式方程,根据方程的解求出m 的范围,其中考虑到分式方程的分母不可为零是做对题目的关键.26.(2020·黑龙江牡丹江)若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或4【答案】D【解析】【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值.【详解】 解:21mx x =-,两边同时乘以()1x x -得:()21x m x =-,去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122mx m m ==+--,若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.27.(2020·黑龙江黑龙江)已知关于x 的分式方程422x kx x -=--的解为正数,则x 的取值范围是()A .80k -<<B .8k >-且2k ≠-C .8k >-D .4k <且2k ≠-【答案】B【解析】【分析】先解分式方程利用k 表示出x 的值,再由x 为正数求出k 的取值范围即可.【详解】方程两边同时乘以2x -得,()420x x k --+=, 解得:83kx +=.∵x 为正数, ∵803k+>,解得8k >-,∵2x ≠,∵823k +≠,即2k ≠-, ∵k 的取值范围是8k >-且2k ≠-.故选:B .【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,28.(2020·山东枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .4x =B .5x =C .6x =D .7x = 【答案】B【解析】【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.【详解】 解:211(2)(2)4x x x ⊗-==--- ∵方程表达为:12144x x =--- 解得:5x =,经检验,5x =是原方程的解,故选:B .【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.二、填空题29.(2022·辽宁大连)方程213x =-的解是_______. 【答案】5x =【解析】【分析】先去分母,化成一元一次方程,求解,检验分母不为0,即可.【详解】去分母得:23x =-,解得:5x =,检验:35320x -=-=≠,∵原方程的解为x =5.故答案为:5x =.【点睛】本题考查解分式方程,注意结果要代入分母,检验分母是否为0. 本号资料皆来源于微信#:数学30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【解析】【分析】根据解分式方程的方法中确定公分母的方法求解即可.【详解】 解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x(x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2021·湖北黄石)分式方程11322-+=--x x x的解是______. 【答案】3x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:11322-+=--x x x 去分母得:()()1132x x --=-,去括号化简得:26x =,解得:3x =,经检验3x=是分式方程的根,故填:3x=.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.32.(2020·山东济南)代数式31x-与代数式23x-的值相等,则x=_____.【答案】7【解析】【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【详解】解:根据题意得:3213x x=--,去分母得:3x﹣9=2x﹣2,解得:x=7,经检验x=7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.33.(2020·山东潍坊)若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∵m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值. 34.(2022·广东广州)分式方程3221x x =+的解是________ 【答案】3x = 【解析】 【分析】先去分母,将分式方程转化成整式方程求解,再检验即可求解; 【详解】解:方程两边同时乘以2x (x +1),得 3(x +1)=4x 3x +3=4x x =3,检验:把x =3代入2x (x +1)=2×3(3+1)=24≠0, ∵原分式方程的解为:x =3. 故答案为:x=3. 【点睛】本题考查解分式方程,解分式方程的基本思想是将分式方程转化成整式方程求解,注意:解分式方程一定要验根.35.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x mx x x ++=-+-的解大于1,则m 的取值范围是______________. 【答案】m >0且m ≠1 【解析】 【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可. 【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+, ∵分式方程的解大于1, ∵11m +>,解得:0m >,又分式方程的分母不为0, ∵12m 且12m ,解得:1m ≠且3m ≠-,∵m 的取值范围是m >0且m ≠1. 【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 36.(2021·湖北湖北)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______.【答案】3 【解析】 【分析】先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m 的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-, 111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.37.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x = 【解析】 【分析】直接利用通分,移项、去分母、求出x 后,再检验即可. 【详解】解:1121(1)x x x x x ++=-- 通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠, ∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.38.(2021·四川凉山)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2 【解析】 【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-, 解得3x m =+, ∵x 为正数,∵m +3>0,解得m >-3. ∵x ≠1,∵m +3≠1,即m ≠-2.∵m 的取值范围是m >-3且m ≠-2. 故答案为:m >-3且m ≠-2. 【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.39.(2020·四川巴中)若关于x 的分式方程31(1)x mx x x +=--有增根,则m =_________. 【答案】4-或0 【解析】 【分析】先确定最简公分母,令最简公分母为0求出x 的值,然后把分式方程化为整式方程,再将x 的值代入整式方程,解关于m 的方程即可得解. 【详解】解:分式方程最简公分母为(1)x x -,由分式方程有增根,得到10x -=或0x =,即0x =或1x =, 分式方程去分母得:23x x m +=-, 把0x =代入方程得:0m =-, 解得:0m =.把1x =代入方程得:13m +=-, 解得:4m =-. 故填:4-或0. 【点睛】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.40.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【解析】 【分析】适当引进未知数,合理转化条件,构造等式求解即可. 【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a .∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=, 设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+, ∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n⋅-⋅-=++⋅+, 故答案为:35.【点睛】本题考查了未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键. 41.(2021·山东潍坊)若x <2,且12102x x x +-+-=-,则x =_______. 【答案】1 【解析】 【分析】先去掉绝对值符号,整理后方程两边都乘以x ﹣2,求出方程的解,再进行检验即可. 【详解】 解:12x +-|x ﹣2|+x ﹣1=0, ∵x <2, ∵方程为12x +-2﹣x +x ﹣1=0, 即12x =--1, 方程两边都乘以x ﹣2,得1=﹣(x ﹣2), 解得:x =1,经检验x =1是原方程的解, 故答案为:1. 【点睛】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.42.(2021·四川雅安)若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 【答案】4k <且0k ≠ 【解析】 【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可. 【详解】解: 2(2)11x k -+-=420x k --=42kx -=根据题意0x >且2x ≠ ∵402422kk -⎧>⎪⎪⎨-⎪≠⎪⎩∵40k k <⎧⎨≠⎩∵k 的取值范围是4k <且0k ≠. 【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.43.(2021·辽宁本溪)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________. 【答案】30024010x x=+ 【解析】 【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程. 【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元, 依题意得:30024010x x =+, 故答案为:30024010x x=+ 【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程. 44.(2021·河北)用绘图软件绘制双曲线m :60y x=与动直线l :y a =,且交于一点,图1为8a =时的视窗情形.(1)当15a =时,l 与m 的交点坐标为__________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由1515x -≤≤及1010y -≤≤变成了3030x -≤≤及2020y -≤≤(如图2).当 1.2a =-和 1.5a =-时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k =__________.【答案】 ()4,15 4 【解析】 【分析】(1)结合题意,根据一次函数和反比例函数的性质列分式方程并求解,即可得到答案;(2)当 1.2a =-和 1.5a =-时,根据一次函数、反比例函数和直角坐标系的性质,分别计算k 的值,再根据题意分析,即可得到答案. 【详解】(1)根据题意,得6015y x== ∵4x = ∵0x ≠ ∵4x =是6015x=的解 ∵当15a =时,l 与m 的交点坐标为:()4,15 故答案为:()4,15; (2)当 1.2a =-时,得601.2y x==- ∵50x =- ∵0x ≠ ∵50x =-是601.2x=-的解 ∵l 与m 的交点坐标为:()50, 1.2--∵(1)视窗可视范围就由1515x -≤≤及1010y -≤≤,且10 1.210-<< ∵1550k -<-根据题意,得k 为正整数 ∵103k >∵4k =同理,当 1.5a =-时,得40x =- ∵1540k -<-∵83k >∵3k =∵要能看到m 在A 和B 之间的一整段图象 ∵4k = 故答案为:4. 【点睛】本题考查了一次函数、反比例函数、分式方程、直角坐标系的知识;解题的关键是熟练掌握一次函数、反比例函数、分式方程、直角坐标系的性质,从而完成求解. 45.(2020·四川眉山)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________. 【答案】2k >-且2k ≠ 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】 解:11222kx x-+=-- 方程两边同乘(x -2)得,1+2x -4=k -1, 解得22k x +=222k +≠,022k +> 2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.46.(2020·内蒙古呼和浩特)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x 的解是____________.。
第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
2010年中考数学试题汇编7----分式方程分式方程的解法1.(2010重庆) 方程23+x =11+x 的解为( ) A .x =54 B .x = -21 C .x =-2 D .无解2.(2010·晋江) 分式方程0242=+-xx 的根是( ) . A.2-=x B. 0=x C.2=x D.无实根3.(2010·福州)分式方程3x -2=1的解是( ) A .x =5 B .x =1 C .x =-1 D .x =2 4.(2010·咸宁)分式方程131x x x x +=--的解为 A .1x =B .1x =-C .3x =D .3x =-5.(2010 ·东营)分式方程xx 321=-的解是( ) (A)-3(B) 2 (C)3 (D)-26.(2010·南宁)将分式方程13)1(251+=++-x x x x 去分母整理后得: (A )018=+x (B )038=-x (C )0272=+-x x (D )0272=--x x 7.(2010·曲靖)分式方程xx x -=+--23123的解是( ) A .2 B .1 C .-1 D .-2 8.(2010·赤峰)分式方程01111=-++x x 的解是 ( ) A .x = 1 B .x = -1C .x = 0D .21=x9.(2010·重庆)分式方程2231x x x x=+-的解x =________. 10.(2010·潍坊)分式方程456x x x x -=-+的解是 . 11.(2010·哈尔滨)方程035=-+xx x 的解是 。
12.(2010·鄂尔多斯)已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为 13.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2、15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
考向07一元二次方程、分式方程的解法及应用—基础巩固【知识梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.方法指导: △≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=⋅-=+,.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【基础巩固训练】一、选择题1. 用配方法解方程2250x x--=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B. S av b - C. S av a b -+ D. 2S a b+ 二、填空题7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---;(2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?答案与解析一、选择题1.【答案】B;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方, 整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D .4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x .6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为()S av -千米。
6、一元一次方程与分式方程要点一:等式的基本性质及一元一次方程的解法一、选择题1.(2008·郴州中考)方程2x+1=0的解是( )A . 12 B . 12- C . 2 D .-2【解析】选B.移项得2x=-1,系数化为1,得x=12-2.(2008·自贡中考)方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3答案:选B3.(2008·厦门中考)已知方程||x 2=,那么方程的解是( )A .2x =B .2x =-C .1222x x ==-,D .4x =答案:选C4.(2008·温州中考)方程413x -=的解是( )A .1x =-B .1x =C .2x =-D .2x =答案:选B5.(2008·十堰中考)把方程2133123+-=-+x x x 去分母正确的是( )A )1(318)12(218+-=-+x x xB )1(3)12(3+-=-+x x xC )1(18)12(18+-=-+x x xD )1(33)12(23+-=-+x x x答案:选A6. (2009·鄂州中考)根据下图所示,对a 、b 、c 三种物体的质量判断正确的是()A 、a<cB 、a<bC 、a>cD 、b<c答案:选C7.(2008·乌兰察布中考)中央电视台2套“开心辞典”栏目,有一题的题目如图所示,两个天平都平衡,则三个球体的重量等于多少个正方体的重量( )A .2个B .3个C .4个D .5个 答案:选D8.(2007·襄樊中考)已知关于x 的方程322x a +=的解是1a -,则a 的值为( )(A )1 (B )35 (C )15 (D )1-【解析】选A.把x =a-1代入原方程,得3(a-1)+2a=2,解得a=1二、填空题9.(2010·宿迁中考)已知5是关于x 的方程723=-a x 的解,则a 的值为________【解析】由根的定义知,3×5-2a=7,解得a=4答案:410.(2009·江西中考)方程0251x =.的解是 .【解析】本题考查一元一次方程的解法,方程的两边同除以0.25得4x =答案:4x =11.(2009·郴州中考)方程320x +=的解是_______. 答案:23x =- 12.(2009·安顺中考)已知关于x 的方程432x m -=的解是x m =,则m 的值是_________。
2010年中考数学冲击波考前纠错必备本期导读2010年中考已进入最后冲刺阶段,然而,越临近中考,考生就越容易紧张,当然也不可避免地会出现错误.为此,中国教育出版网携手全国数百位名师推出考前纠错必备,对常考重点知识易错点进行分类展示,系统归纳,进行整理与疏通,帮助考生在复习中发现错误,正视错误,善用纠错策略,以提高考生基本功和理解能力,帮助考生掌握一定的解题技巧和方法,轻松备考.本期的主要特色:1.易错分析:从实际的复习备考中针对考生的误区和盲区挖掘必考知识易错点,科学归类,并进行详细的分析讲解,从根本上避免考生在同一个地方犯同样的错误.2.好题闯关:精选最新易错试题,注重错因分析和技巧点拨,提高考生解题的应变能力,并伴有详细的试题解析,帮助考生更好的掌握易错知识点,强化应试技巧.内容目录:一、数与式二、方程(组)与不等式(组)三、函数四、三角形五、四边形六、圆七、图形的相似八、视图与投影九、图形变换十、统计与概率考点一 数与式【易错分析】易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆.易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.易错点3:平方根与算术平方根的区别,立方根的意义.易错点4:求分式值为零时学生易忽略分母不能为零.易错点5:分式运算时要注意运算法则和符号的变化.【好题闯关】好题1.下列各数中,是无理数的是 ( )A .23B .16C . 0.3D .2π 解析:考查了无理数的定义.无限不循环小数称之为无理数.部分学生认为凡是带根号的数均为无理数从而误选B 选项.答案:D好题2:下列数中,倒数为 -2 的数是( )A .21-B .21 C .2 D .2- 解析:2121-=-.本题考查了倒数的意义,乘积为1的两个数互为倒数,求一个数的倒数就是用1去除这个数.学生易把倒数的意义与相反数的意义混淆,误认为的-2的倒数是2. 答案:A好题3:计算:(-1)2009 + 3(tan 60︒)-1-︱1-3︱+(3.14-π)0. 解析:实数运算的要点是掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关.答案:解:原式=-1 + 3(3)-1-(3-1)+ 1 =-1 + 3÷3-3+ 1 + 1 = 1好题4 ( )A.-9B. 3C. ±3D.±9解析:考查平方根与算术平方根的区别,正数a 的平方根为.答案:B好题5:分式112+-x x 值为零的条件是 ( ) A.x ≠-1 B.x = 1 C.x = -1 D.x = ±1解析:如果分式BA 的值为零,那么00≠=B A 且.由01x 012≠+=-且x 得x = 1 . 学生易忽略分母不能为零的条件而错选D.答案:B好题6:先化简,再求值: ⎪⎭⎫ ⎝⎛--÷-+x x x x x 1211,其中x=tan 60°. 解析:本题考查了因式分解的方法和分式的四则运算,严格按照法则和方法进行运算是解题的关键,所以在初学时一定要熟练掌握方法和法则,区分清楚易混点.另外要细心,注意符号的确定,不要随意的变动正负号.答案:原式=)12(112x x x x x x ---÷-+=)1(112xx x x x ---÷-+ =)1(112-+÷-+x x x x x =11112+-⋅-+x x x x =x 1-.当x ==1x -== 专题二 方程(组)与不等式(组)【易错分析】易错点1:运用等式性质时,两边同除以一个数必须要注意不能为O 的情况,不考虑除数易导致选项出错.易错点2:运用不等式的性质3时,容易忘记变号导致结果出错.易错点3:关于一元二次方程的取值范围的题目易忽视二次项系数导致出错.易错点4:关于一元一次不等式组有解无解的条件易忽视相等的情况.易错点5:解分式方程时易忘记检验,导致运算结果出错.易错点6: 关于换元法及整体代入的题目易忽视整体的非负性或整体是否有解导致结论出错.【考点闯关】好题1.已知mx=my,下列结论错误的是 ( )A . x=yB . a+mx=a+myC .mx-y=my-yD . ππmy mx = 解析:考查了等式性质的应用,题中A 的变形是在已知等式两边同时除以m ,而m 是否为零不明确,所以A 的结论是错误的.答案:A好题2. 解方程(3+x )2=3(3+x )解析:此题若两边同除以(3+x ),得:x+3=3,∴x=0,这时就漏解(3+x )=0,答案:移项,得:(3+x )2-3(3+x )=0(3+x )(3+x -3)=0(3+x )x=0∴x=-3或0好题3.若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33b a >C . b a -<-D . bc ac <解析:考查了不等式的性质,特别要注意运用不等式的性质3时,不等式两边同乘以或除以一个负数,不等号的方向要改变.答案:A好题4.已知关于x 的二次方程(1-2K )x 2-201=-x k 有实数根,则K 的取值范围是 解析:此题有两处易错,一是:忽视二次项系数1-2K ≠0,二是:有实数根是ac b 42-≥0,而不是ac b 42->0. 答案:2110≠≤≤k k 且 好题5. 如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是: ( ) A.3a > B.3≥a C.3≤a D.3 a解析:利用同大取大可以得到a<3易忽视a=3时解集也为3x >这种情况,导致错选D 答案:C好题6. 若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( ) A.a >-1. B.a ≥-1. C.a ≤1. D.a <1.解析:同上题一样,学生在考虑有解无解题目时,弄不清什么时候该带等号什么时候不该带等号导致出错.答案:A好题7.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .解析:学生考虑本题往往只考虑整数,不考虑区间值,相当然认为2-=a 导致出错. 答案:32a -<-≤好题8.解方程x x-=-22482 解析:解分式方程时易忘记检验,导致结论出错.答案:两边同时乘以(4-x 2)并整理得8=2(2+x ),解之得x=2经检验x=2是增根,原方程无解.好题9.已知5)3)(1(2222=-+++y x y x , 则22y x +的值等于解析:学生解题时易直接换元令a y x =+22,解得42=-=a a 或然后直接填答案,易忽视a 不能为负数这个隐含条件.答案:4考点三 函数【易错分析】易错点1:函数自变量的取值范围考虑不周全.易错点2:一次函数图象性质与 k 、b 之间的关系掌握不到位.易错点3:在反比例函数图象上求三角形面积,面积不变成惯性.易错点4:二次函数k h x a y +-=2)(的顶点坐标的表示.易错点5:二次函数实际应用时,y 取得最值时,自变量x 不在其范围内.【好题闯关】好题1. 函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 解析:此题我们都能注意到2-x ≥0,且x-3≠0,∴误选D ,其实x ≤2里已包含x ≠3. 答案:A好题2. 已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )解析:此题不仅要看k 、b 所决定的象限,还要看k 变化大小与直线的倾斜程度,难度大,所以更易出错.首先排除D 答案,b 大小不变,排除B 答案,2K >K ,所以直线与x 轴交点的横坐标变大.答案:C 好题3. 如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会 ( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小 解析:反比例函数图象上点的横、纵坐标的乘积为定值K ,所以很易选B ,此题OAB △底OA 长度不变,但高(过B 点作OA 的高)逐渐减小,所以面积也逐渐减小.答案:C好题4.抛物线n m x a y ++=2)(的顶点坐标是 ( )A.(m,n)B.(-m,n)C.(m,-n)D.(-m,-n)解析:二次函数k h x a y +-=2)(的顶点坐标是(h,k )∴可能误选A 答案. 答案:BA B C D好题5. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个 解析:二次函数2y ax bx c =++,a 决定开口方向,a 、b 决定对称轴,c 决定图象与Y 轴交点.判断(4)、(5)时,令x=1或-1,再结合图象分析. 答案:C好题6. 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解析:此题属于二次函数实际应用题,(2)问中自变量X 一定要是整数.答案:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数);(2)210( 5.5)2402.5y x =--+.100a =-< ,∴当 5.5x =时,y 有最大值2402.5.015x < ≤,且x 为整数,当5x =时,5055x +=,2400y =(元),当6x =时,5056x +=,2400y =(元) ∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. ∴当1x =时,5051x +=,当10x =时,5060x +=.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点四 三角形【易错分析】易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别.易错点2:三角形三边之间的不等关系,注意其中的“任何两边”.易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”.易错点4:全等形,全等三角形及其性质,三角形全等判定.着重学会论证三角形全等,线段的倍分这些问题.A BD易错点5:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入. 易错点6:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题.易错点7:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用.【好题闯关】 好题1.如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于( ) A. 100° B. 120° C. 130° D. 150°解析:本题考查三角形外角的性质,三角形的一个外角等于和它不相邻的两个内角的和.学生易疏忽性质中的“不相邻”这三个字.答案:C好题2.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是( )A .5米B .10米C . 15米D .20米解析:本例考查三角形三边之间的不等关系,三角形的任何两边之和大于第三边,任何两边之差小于第三边.学生易忽视概念里的“任何”两字.答案:A好题3.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是( )A.75°B. 120°C.30°D.30°或120°解析:等腰三角形的内角有顶角和底角之分,而已知一个内角是30°,并未说明是顶角还是底角,因此,本题很容易漏解.答案:D好题4.如图,在△ABC 和△ADE 中,有以下四个论断:① AB=AD ,② AC=AE ,③ ∠C=∠E,④ BC=DE ,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题(用序号“☺☺☺⇨☺”的形式写出):解析:本例是一个开放型问题,学生可以从①②③④中任选3个作为条件,而余下一个为结论,但构成的命题必须是真命题.所以,我们应根据三角形全等的判定方法去组合.这里,要注意“SSA ”的错误做法.答案:①②④⇨③,或 ②③④⇨①好题5.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定解析:仔细观察三角形的三边就会发现:52+122=132,利用勾股定理的逆定理可以判断这个三角形是直角三角形,而且两直角边是5和12,根据面积公式即可得出结果.答案:A好题6.有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 解析:此例主要考点是直角三角形、勾股定理、等腰三角形,涉及到分类讨论的数学思想.思考分析时我们需注意两点:“等边对等角”适用的条件是在同一个三角形中,在不同三角形中不能用;等腰三角形“三线合一”指的是底边上的高、底边上的中线、顶角的平分线互相重合,对于腰上的高、腰上的中线,底角的平分线则不成立.答案: 在Rt ABC △中,9086ACB AC BC ∠===°,,,由勾股定理有:10AB =.扩充部分为Rt ACD △,扩充成等腰ABD △,应分以下三种情况:①如图1,当10AB AD ==时,可求6CD CB ==,得ABD △的周长为32m .②如图2,当10AB BD ==时,可求4CD =,由勾股定理得:AD =ABD △的周长为(20m +.③如图3,当AB 为底时,设AD BD x ==,则6CD x =-,由勾股定理得:253x =,得ABD △的周长为80m 3.考点五 四边形【易错分析】易错点1:平行四边形的性质和判定,如何灵活、恰当地应用.易错点2:平行四边形的概念和面积的求法,注意与三角形面积求法的区分.易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分. 易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透. 易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算.易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的一些性质.【考题创关】好题1. 如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠解析:本例考查平行四边形的判定,结合已知条件去寻找判断四边形ABCD 是平行四边形所需条件——一组对边平行且相等.由于平行四边形的判定方法较多,学生不易很快找到解决方案.答案:D好题2. 如图,□ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A .3B .6C .12D .24AD CB A D BC AD B C 图1 图2 图3A D EP B Cy x ③ ④ ① ② C D C ' A B E解析:本题主要利用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分.另外平行四边形的面积求法也是本题的一个重点.答案:C好题3. 如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( ) A .AD BC '= B .EBD EDB ∠=∠ C .ABE CBD △∽△ D .sin AE ABE ED ∠=解析:本例是一个矩形的折叠问题,关键在于把握折叠前后的等量关系. 答案:C好题4. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ) A .15︒或30︒ B .30︒或45︒ C .45︒或60︒ D .30︒或60︒解析:此题主要考查菱形的性质与判定,通过对长方形两次对折→裁剪→展开,从中可以看出由此得到的菱形要有一个锐角为60︒生可以去体验一下便会豁然开朗的.答案:D好题5. 如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PDPE +的和最小,则这个最小值为( ) A. B .C .3 D解析:这是一个典型的利用轴对称性质求最值的问题,解题时我们首先看到正方形中B 和D 关于AC 成轴对称,于是PD PE +的和最小值为BE ,然后根据正方形面积与ABE △是等边三角形即可得出这个最小值.答案:A好题6. 如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰.能拼成一个.....矩形(非正方形). (1)画出拼成的矩形的简图;(2)求x y的值.解析:本例主要应用了正方形、矩形的性质,解一元二次方程、分式的基本性质等.其实本例的求解并不很难,我们应该思考的是本例中的①②③④四块图形到底可以拼成多少种...矩形(非正方形).答案:(1)如图所示(2)由拼图前后的面积相等得:2)(])[(y x y y y x +=++因为y ≠0,整理得:01)(2=-+yx y x 解得:215-=y x (负值不合题意,舍去) 考点六 圆【易错分析】易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况.易错点2:对垂径定理的理解不够,不会正确添加辅助线运用勾股定理进行解题. 易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题.易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况.易错点5:圆锥的侧面积与全面积,高与母线考试时易混淆.【好题闯关】好题1.⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为( )A. 30°B. 60°C.30°或150°D. 60°或120°解析:考查了圆周角与弦的关系,同弦所对的圆周角有两种情况,部分同学考虑不全面导致选B 而出错.答案: D好题2.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A .5米B .8米C .7米D .53米解析: 考查了垂径定理的内容,学生不会做辅助线导致出错.答案:B好题3. 如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A = ∠.则D ∠等于( )A .40︒B .50︒C .60︒D .70︒解析:考查了切线的性质以及圆周角与圆心角的关系,部分同学理解不够深刻导致出错.答案:A 好题4. 若1O ⊙与2O ⊙相切,且125O O =,1O ⊙的半径12r =,则2O ⊙的半径2r 是( ) A . 3 B . 5 C . 7 D . 3 或7解析: 对概念理解不清楚而致错. 圆与圆的位置关系中,相切有外切和内切两种情况,想当A然地把圆与圆相切仅仅理解为外切一种情况而出错.答案:D好题5.半径为13cm 和15cm 的两圆相交,公共弦长为24cm ,则两圆的圆心距为 .解析:考查圆与圆的位置关系,相交时有圆心在公共弦同侧和圆心在公共弦两侧的情况,部分同学理解为圆心一定是公共弦两侧导致做出一个答案.答案:4cm 或14cm好题6. 如图已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A . 24πcmB . 26πcmC . 29πcmD . 212πcm解析:考查了圆锥的侧面展开图及扇形面积的计算方法,部分学生立体感不强,不理解两者之间的内在联系导致出错.答案:D好题7.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积 ( )A .230cmB .230cm πC .260cm πD .248cm π解析:考查了圆锥侧面积的计算方法,学生解题时易混淆高与母线导致出错.答案:C 考点七 图形的相似【易错分析】易错点1:相似三角形的性质,面积比、周长比与相似比的关系容易混淆.易错点2:相似三角形的判定方法,寻找不到足够的条件证明两三角形相似.易错点3:相似与锐角三角函数相结合的题目,两者的联系不明确,找不到解题思路,比例线段容易找错.易错点4:坡度的概念不清,不知道是哪两条线段的比值.易错点5:解直角三角形的题目,不管是否直角三角形都直接套用锐角三角函数去求.【好题闯关】好题1. 如图,△DEF 是由△ABC 经过位似变换得到的,点O120︒B O A 6cm是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6解析:考查了相似图形的性质,面积比等于相似比的平方,部分同学记不住导致选A答案: B好题2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )解析:考查了相似三角形的判定,部分学生对单纯图形的判断凭感觉不知运用勾股定理求解导致出错答案:A好题3.如图,在△ABC 中,∠C=90°,∠B=60°,D 是AC 上一点,AB DE ⊥于E ,且,1,2==DE CD 则BC 的长为 ( ) A. 2 B. 334 C.32 D. 34解析:考查了相似三角形的性质以及特殊角的三角函数值,学生做题时找不准对应线段容易导致出错.答案:B好题4.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8m解析:考查了坡度的概念,坡度i=h:l ,学生做题时易将坡度记成对边与斜边的比值导致出错.答案:A好题5.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)A .解析:考查了解直角三角形的知识,部分学生对三角函数知识理解不透,不看图形是否是直角三角形就直接套用三角函数,导致出错.答案:解:由题意得∠CAB=30°,∠CBD=60°∴∠BCA=∠CAB ,∴BC=AB=20×2=40∵∠CBD=90° ∴2360sin ==︒BC CD ∴CD=BC ×32023=(海里) ∴此时轮船与灯塔C 的距离为320海里.考点八 视图与投影【易错分析】易错点1:根据物体(几何体)确定三种视图. 根据三种视图确定物体(几何体)的形状.易错点2:正投影概念的理解不准确.不能分清投影与视图的区别与联系.【好题闯关】好题1. 由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( )解析:画三种视图首先要从实物中抽象出几何体,其次要掌握基本几何体的三种视图.答案:C好题2:如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形C DBA北60°30°解析:当物体的某个平面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.物体正投影的形状、大小与它相对于投影面的位置有关.答案:D好题3:如图,一个空间几何体的主视图和左视图都是边长为1的三角形,俯视图是一个圆,那么这个几何体的侧面积是( )A.4πB.π42答案:D考点九 图形变换【易错分析】易错点1:轴对称、轴对称图形,及中心对称、中心图形概念把握不准.易错点2:对平移概念及性质把握不准.易错点3:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变.易错点4:将轴对称与全等混淆,关于直线对称与关于轴对称混淆. 【好题闯关】好题1:如图1,判断△ABC 与△A /B /C 的关系.解析:本题容易出现错解:△ABC 和△A /B /C 对称.错解分析:说两个图形对称,必须说它们关于哪条直线对称.在图1中,△ABC 和△A /B /C 关于直线l 2不对称.实质上,全等只是从图形的形状相同、大小相等两个方面揭示了两个图形的关系,而轴对称是从形状相同、大小相等、位置成轴对称三个方面揭示了两个图形的关系.答案:△ABC 和△A /B /C 关于直线l 1对称.好题2.在等边三角形、平行四边形、等腰梯形、角、扇形中不是轴对称图形的有 ( )个.A .1B .2C . 3D .4解析:等边三角形和等腰梯形是轴对称图形,不是中心对称图形;平行四边形是中心对称图形,不是轴对称图形;五角星虽是旋转对称,但不是中心对称.答案:A好题3:如图,线段AB =CD ,AB 与CD 相交于点O ,且∠AOC =60°,CE 是由AB 平移所得,则AC +BD 与AB 的大小关系是( )A .AC +BD <AB B .AC +BD =ABC . AC +BD ≥AB D .不能确定图1l 2l 1B /A /C B A解析:将AB沿AC平移到CE,连结BE、DE,由平移的特征可知AB=CE,AC=BE,因为∠OCE=∠AOC=60°, AB=CD,则△CDE为等边三角形,即CD=DE=CE=AB.因为DB+BE>DE,所以BD+AC>AB,而当AC∥DB时,BD+AC=AB,故选C.答案:C好题4:求点P(2,3)关于直线x=1的对称点的坐标.解析:本题容易出现错解:点P(2,3)关于直线x=1的对称点的坐标为(-2,3).错解分析:误将直线x=1当作y轴(即直线x=0).在平面直角坐标系中点P(a,b)关于直线x=h 的对称点.由于受关于坐标轴对称的点的坐标特点的思维定势的影响,不少同学以为点P(a,b)关于直线x=h的对称点也为P(-a,b),这是一种错误思路,在学习中应结合图形加以分析.答案:点P(2,3)关于直线x=1的对称点的坐标为(0,3).好题5:如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.(1)当AE=5,P落在线段CD上时,PD= ;(2)当P落在直角梯形ABCD内部时,PD的最小值等于.解析:理解直角梯形的性质,理解翻折的实质.答案:(1)2 (2)8考点十统计与概率【易错分析】易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.易错点2:在从统计图获取信息时,一定要先判断统计图的准确性.不规则的统计图往往使人产生错觉,得到不准确的信息.易错点3:对全面调查与抽样调查的概念及它们的适用范围不清楚,造成错误.易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差.易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.【好题闯关】好题1.在一次数学竞赛中,10名学生的成绩如下:75 80 80 70 85 95 70 65 70 80.则这次竞赛成绩的众数是多少?解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.答案:这组数据的众数是70和80.好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:则该班学生右眼视力的中位数是_______.解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、。
2010年部分省市中考数学试题分类汇编分式与分式方程11.(2010年山东省青岛市)某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 . 【关键词】分式方程【答案】()()12030012030120%120180301.2x xxx-+=++=或7.(2010年益阳市) 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+【关键词】分式方程 【答案】C(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax有两个相等的实数根,求4)2(222-+-b a ab的值。
【关键词】分式化简,一元二次方程根的判别式 【答案】解:∵)0(012≠=++a bx ax有两个相等的实数根,∴⊿=240b ac -=,即240b a -=. ∵2222222222244444)2(aab ba a abb a a abb a ab=+-=-++-=-+-∵0a ≠,∴4222==ab aab21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x xx x =)2)(2()2()2(2-++⋅-x x x x xx =2-x当x =-1时,原式=2-x =-1.6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个 【答案】B 【关键词】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x xx x =)2)(2()2()2(2-++⋅-x x x x xx =2-x当x =-1时,原式=2-x =-1.3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ =()()xxx x xxx x11133222-⋅+-+-+=()()xxx x xx1114222-⋅+-+=()()()()()xx x x x x x 111122-+⋅+-+=()22+x 当22-=x 时,原式=()2222+-=22解二:原式=xx x x xx x x 1111322-⋅+--⋅-= ()()()()xx x x xxx x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x 当22-=x 时,原式=224+)=224.(2010年辽宁省丹东市)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:【关键词】分式方程的实际应用【答案】解:设原来每天加固x 米,根据题意,得926004800600=-+xx .去分母,得 1200+4200=18x (或18x =5400) 解得 300x =. 检验:当300x =时,20x ≠(或分母不等于0). ∴300x =是原方程的解. 答:该地驻军原来每天加固300米.通过这段对话,请你求出该地驻军原来每天加固的米数.。
2010年中考数学考前知识点回归+巩固 专题6分式方程
一、选择题
1.分式方程1
12
x x =+的解是( ) A .1x = B .1x =- C .2x = D .2x =-
2.关于x 的分式方程
15
m
x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定
3.方程
04142=----x
x
x 的解是 ( ) (A )3-=x (B )3=x (C )4=x (D )3=x 或4=x
4.将分式方程
1
2x x x
=-化为整式方程,方程两边可以同时乘以( ) A .2x -
B .x
C .2(2)x -
D .(2)x x -
二、填空题
5.当m = 时,关于x 的分式方程213
x m
x +=--无解. 6.方程112=-x 的解为x = .
7.方程
143
x x =+的解x = . 三、计算题 8.解分式方程:2
1
221-=+--x x x .
9.解方程:
222(1)1
60x x x x
+++-=.
四、应用题
10.在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷? 解:
11. 5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽搁了1小时,随后,先遣分队将步行速度提高
9
1
,于13日23时15分赶到汶川县城. (1)设先遣分队从古尔沟到理县的步行平均速度为每小时x 千米,请根据题意填写下表:
(2)根据题意及表中所得的信息列出方程,并求出先遣分队徒步从理县到汶川.....的平均速度是每小时多少千米? 解:
12.为了支援青海玉树地震灾区人民重建家园,我市某校号召师生自愿捐款.已知第一次共捐款90000元,第二次共捐款120000元,第二次人均捐款额是第一次人均捐款额的1.2倍,捐款人数比第一次多100人.问第一次和第二次人均捐款各多少元? 解:
13. 2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.
14.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局
距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.
15.在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.
16.某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?
17.今年4月14日,青海省玉树发生7.8级大地震,某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?
18.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?
答案
一、选择题
第1题答案.
A
第2题答案.
C
第3题答案.
B
第4题答案.
D
二、填空题
第5题答案.
6
第6题答案.
3
第7题答案.
1
三、计算题
第8题答案.
解:方程两边同乘以x-2,得1-x+2(x-2)=1,2分即1-x+2x-4=1,4分解得x=4.6分经检验,x=4是原方程的根. 7分
第9题答案. 解:12x =,213x =-
.经检验,12x =,21
3
x =-是原方程的根. 四、应用题
第10题答案.
解: 设实际需要x 天完成生产任务,根据题意得: ………………………………1分
7200(120%)7200
7204x x ⨯+-=+ ………………………………3分
化简得:
121014x x -=+ 12(4)10(4)x x x x +-=+,整理得22480x x +-=,
解得:
126,8()x x ==-不合题意,舍去 ………………………………6分
7200(120%)61440⨯+÷=(顶) ………………………………7分
答:该厂实际每天生产帐篷1440顶. ………………………………8分 第11题答案.
解:(1)表中依次填入:
x 30,x ⎪⎭
⎫ ⎝⎛+911,x ⎪⎭
⎫ ⎝⎛+91160
. 3分
(2)依题意,列出方程得
219116030=⎪⎭
⎫
⎝⎛++x x . 6分
解这个方程,得4=x .
8分 经检验,4=x 是所列方程的根.
9分
940
9114=
⎪⎭
⎫ ⎝⎛+⨯. 答:先遣分队徒步从理县到汶川的平均速度是每小时
9
40
千米. 10分 第12题答案.
解:设第一次人均捐款为x 元,则第二次人均捐款为1.2x 元.
1分 依题意得:
90000120000
100 1.2x x
+=. 5分 解得:100x =.
7分 经检验:100x =是原方程的根. 1.2120x ∴=.
9分
答:第一次人均捐款100元,第二次人均捐款120元. 10分
第13题答案.
解法1:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时.
根据题意得:
303015.1.560x x -= 即 30201.4
x x -=
即
101.4
x = ∴ 40.x =
经检验,x = 40是原方程的根。
∴ 1.5 1.54060.x =⨯=
答:摩托车的速度为40千米/时,抢修车的速度为60千米/时. 解法2:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时.
根据题意得:
303015.1.560
x x =+ 两边同乘以6x 去分母,得 180120 1.5.x =+
即 1.560.x =
∴ 40.x =
经检验,x = 40是原方程的根。
∴ 1.5 1.54060.x =⨯=
答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.
第14题答案.
解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时 1分
由题意得,
1515151.560
x x -=. 3分 解得,20x =
5分 经检验,20x =是原方程的解,并且20, 1.530x x ==都符合题意 6分 答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时 7分
第15题答案.
解:设车队走西线所用的时间为x 小时,依题意得:
1880
800-=x x , (3分)
解这个方程,得
20=x .
(6分)
经检验,20=x 是原方程的解. 答:车队走西线所用的时间为20小时.
(7分)
第16题答案.
设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 依题意有
220100100
410
x x -+=-. (3分)
整理得2
653000x x -+=. 解得5x =或60x =.
(5分)
5x = 时,1050x -=-<,5x ∴=舍去. 60x ∴=.
答:改进操作方法后每天生产60件产品. (7分)
第17题答案.
解:设第一天捐款x 人,则第二天捐款x +50人,由题意列方程
x
4800=506000
+x . 化简得,4x +200=5x . 解得 x =200. 检验:当x =200时,x (x +50)≠0,
∴ x =200是原方程的解.
3分
两天捐款人数x +(x +50)=450.
人均捐款
x
4800
=24. 5分 答:两天共参加捐款的有450人;人均捐款24元. 6分
第18题答案.
解:设 A 型机器人每小时搬运化工原料x 千克,则B 型机器人每小时搬运(x -20)千克,依题意得:
1000800
20
x x =
-.
3分 解这个方程得: 100x =.
6分 经检验90x =是方程的解,所以x -20=80.
7分 答:A、B两种机器人每小时分别搬运化工原料100千克和80千克. 8分。