导数应用课件4
- 格式:ppt
- 大小:751.50 KB
- 文档页数:18
第13讲导数的应用四:零点问题一、三次函数零点问题经典精讲【例1】(2017春•腾冲县月考)已知函数y32﹣2x(Ⅰ)求函数在点(0,0)处的切成方程(Ⅱ)若函数y32﹣2x的图象与函数y=k的图象恰有三个不同的交点,求实数k 的取值范围.二、零点个数判断经典精讲【例2】(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)求f(x)的反函数的图象上的点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线y有唯一公共点.【例3】(2018春•伊通县期末)已知函数f(x).(1)若a=﹣1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)的图象的下方.【例4】(2018秋•全国期末)已知函数f(x)=ax(3a+1)lnx+a,a∈R.(1)若a>0,求函数f(x)的单调区间;(2)当a=1时,试判断函数f(x)的零点个数,并说明理由.三、证明零点个数问题经典精讲【例5】(2019•云南一模)已知e是自然对数的底数,函数f(x)与F(x)=f(x)﹣x的定义域都是(0,+∞).(2)求证:函数F(x)只有一个零点x0,且x0∈(1,2).【例6】(2017秋•保山期末)已知函数.(2)讨论f(x)的单调性;(3)若函数f(x)在x∈[1,e]上无零点,求a的取值范围.总结:四、对两个零点的加工处理经典精讲【例7】(2017秋•保山期末)已知函数f(x)=e x﹣ax(a∈R).(1)若曲线y=f(x)在点(0,f(0))处的切线为x+y﹣1=0,求实数a的值;(3)若函数f(x)有两个零点x1,x2,求证:x1+x2>2.五、与横轴交点问题经典精讲【例8】(2018•玉溪模拟)已知函数f(x)x3﹣x2+ax﹣a(a∈R).(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.六、两个图像交点个数问题经典精讲【例9】(2017春•水富县期末)已知函数f(x)=x2+2ax+2lnx(a∈R),g(x)=2e x+3x2(e为自然对数的底数).(Ⅱ)若函数y=f(x)的图象与函数y=g(x)的图象有两个不同的交点,求实数a的取值范围.七、讨论零点个数经典精讲【例10】(2017•常德一模)已知函数f(x)=xlnx﹣mx的图象与直线y=﹣1相切.(Ⅱ)若g(x)=ax3,设h(x)=f(x)﹣g(x),讨论函数h(x)的零点个数.课后习题1.(2016春•玉溪月考)已知函数.(1)求f(x)在x=1处的切线方程;(2)函数y=f(x)﹣b有三个零点,求b的取值范围;2.(2014•西安一模)已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)x3x2的下方.3.(2012春•腾冲县期末)已知函数f(x)x3﹣x2+ax﹣a(a∈R).(1)当a=﹣3时,求函数f(x)的极值;(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.4.(2015•碑林区一模)设函数f(x)=x3+ax2﹣a2x+m(a>0)(1)若函数f(x)在x∈[﹣1,1]内没有极值点,求实数a的取值范围;(2)a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;5.(2018秋•昆明月考)已知函数f(x)=lnx﹣ax,a∈R.(1)讨论f(x)的单调性;(2)若函数f(x)存在两个零点x1,x2,使lnx1+lnx2﹣m>0,求m的最大值.6.(2018秋•五华区月考)已知函数f(x)=lnx﹣a(a∈R).(1)求f(x)的单调区间和极值;(2)当a=1时,证明:对任意的k>0,函数g(x)=kx﹣1+f(x)有且只有一个零点.7.(2017•昭通二模)已知函数f(x)=x﹣alnx,a∈R.(Ⅰ)研究函数f(x)的单调性;(Ⅱ)设函数f(x)有两个不同的零点x1、x2,且x1<x2.(1)求a的取值范围;(2)求证:x1x2>e2.8.(2017•云南二模)已知e是自然对数的底数,f(x)=me x,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)﹣g(x﹣2)﹣2017.(1)设m=1,求h(x)的极值;(2)设m<﹣e2,求证:函数φ(x)没有零点;9.(2017•昆明二模)设函数f(x)=x2e﹣x,g(x)=xlnx.(1)若F(x)=f(x)﹣g(x),证明:F(x)在(0,+∞)上存在唯一零点;10.(2017春•五华区月考)设函数.(1)讨论函数f(x)的单调性;(2)若a≥﹣e,讨论函数f(x)的零点的个数.11.(2016秋•昭通期末)设函数f(x)=x2﹣2lnx(I)求f(x)的单调区间;(II)求f(x)在,上的最大值和最小值;(III)若关于x的方程f(x)=x2﹣x﹣a在区间[1,3]上恰好有两个相异的实根,求实数a的取值范围.12.(2015•北京)设函数f(x)klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.13.(2013•昭通模拟)已知函数f(x)=lnx(a∈R).(1)当a时,如果函数g(x)=f(x)﹣k仅有一个零点,求实数k的取值范围;(2)当a=2时,试比较f(x)与1的大小.1.解:(1)函数.可得f′(x)=x2﹣4,f′(1)=﹣3,f(1),f(x)在x=1处的切线方程:y3(x﹣1),即:9x+3y﹣10=0(2)函数.可得f′(x)=x2﹣4=0,可得:极大值,极小值.要函数y=f(x)﹣b有三个零点,即y=f(x)与y=b的图象有三个交点,则b的取值范围为:<<.2.(1)解:∵f(x)=x2+lnx,∴f′(x)=2x,∵x>1时,f′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2;(2)证明:令F(x)=f(x)﹣g(x)lnx,则F′(x)=x﹣2x2,∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)<0,即f(x)<g(x),∴当x∈(1,+∞)时,函数f(x)的图象总在g(x)的图象下方.3.解:(1)f(x)x3﹣x2﹣3x+3,所以f′(x)=x2﹣2x﹣3.解x2﹣2x﹣3=0,得:x=﹣1或x=3,所以x∈(﹣∞,﹣1)时,f′(x)>0;x∈(﹣1,3)时,f′(x)<0;x∈(3,+∞)时,f′(x)>0.根据极值的定义知:x=﹣1时,f(x)取到极大值f(﹣1);x=3时,f(x)取到极小值f(3)=﹣6.(2)∵f′(x)=x2﹣2x+a,∴△=4﹣4a=4(1﹣a).①若a≥1,则△≤0,∴f′(x)≥0在R上恒成立,∴f(x)在R上单调递增.∵f(0)=﹣a<0,f(3)=2a>0,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.②若a<1,则△>0,∴f′(x)=0有两个不相等的实数根,不妨设为x1,x2,(x1<x2).∴x1+x2=2,x1x2=a.∵x12﹣2x1+a=0,∴a=﹣x12+2x1.∴f(x1)x1[x12+3(a﹣1)]同理f(x2)x2[x22+3(a﹣1)]令f(x1)•f(x2)>0,解得a>0.而当0<a<1时,f(0)=﹣a<0,f(3)=2a>0,故当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是(0,+∞).4.解:(1)∵f(x)=x3+ax2﹣a2x+m(a>0),∴f′(x)=3x2+2ax﹣a2,∵f(x)在x∈[﹣1,1]内没有极值点,∴方程f′(x)=3x2+2ax﹣a2=0在[﹣1,1]上没有实数根,由△=4a2﹣12×(﹣a2)=16a2>0,二次函数对称轴x<0,当f′(x)=0时,即(3x﹣a)(x+a)=0,解得x=﹣a或x,∴<>,或<1(a<﹣3不合题意,舍去),解得a>3,∴a的取值范围是{a|a>3};(2)当a=1时,f(x)=x3+x2﹣x+m,∵f(x)有三个互不相同的零点,∴f(x)=x3+x2﹣x+m=0,即m=﹣x3﹣x2+x有三个互不相同的实数根.令g(x)=﹣x3﹣x2+x,则g′(x)=﹣(3x﹣1)(x+1)令g′(x)>0,解得﹣1<x<;令g′(x)<0,解得x<﹣1或x>,∴g(x)在(﹣∞,﹣1)和(,+∞)上为减函数,在(﹣1,)上为增函数,∴g(x)极小=g(﹣1)=﹣1,g(x)极大=g();∴m的取值范围是(﹣1,);5.解:(1)函数f(x)=lnx﹣ax的定义域为(0,+∞),f′(x),当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,令f′(x)=0,得x>0,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减.综上所述,当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.(2)∵lnx1﹣ax1=0,lnx2﹣ax2=0,即lnx1=ax1,lnx2=ax2,两式相减得:lnx1﹣lnx2=a(x1﹣x2),即a.由已知lnx1+lnx2>m,得a(x1+x2)>m,∵x1>0,x2>0,∴a>,即>.不妨设0<x1<x2,则有<,令t,则t∈(0,1),∴lnt<,即lnt<0恒成立,设g(t)=lnt(0<t<1),则g′(t).令h(t)=t2+2(1﹣m)t+1,h(0)=1,h(t)的图象开口向上,对称轴方程为t=m﹣1.方程t2+2(1﹣m)t+1=0的判别式△=4m(m﹣2).①当m≤1时,h(t)在(0,1)上单调递增,h(t)>h(0)=1,∴g′(t)>0.g(t)在(0,1)上单调递增,∴g(t)<g(1)=0在(0,1)上恒成立;②当1<m≤2时,△=4m(m﹣2)≤0,h(t)≥0在(0,1)上恒成立,∴g′(t)>0.g(t)在(0,1)上单调递增,∴g(t)<g(1)=0在(0,1)上恒成立;③当m>2时,h(t)在(0,1)上单调递减,∵h(0)=1,h(1)=4﹣2m<0,∴存在t0∈(0,1),使得h(t0)=0,当t∈(0,t0)时,h(t)>0,g′(t)>0,当t∈(t0,1)时,h(t)<0,g′(t)<0,∴g(t)在(0,t0)上单调递增,在(t0,1)上单调递减,当t∈(t0,1)时,有g(t)>g(1)=0,∴g(t)<0在(0,1)上不恒成立.综上所述,m的取值范围为(﹣∞,2],m的最大值为2.6.(1)解:函数f(x)的定义域为(0,+∞),f′(x),当a≤0时,f′(x)>0,f(x)在定义域(0,+∞)上单调递增,f(x)无极值;当a>0时,由f′(x)=0,得x,当0<x<时,f′(x)>0,得f(x)的单调递增区间是(0,);当x>时,f′(x)<0,得f(x)的单调递减区间是(,+∞),故f(x)的极大值为f()=ln2,f(x)无极小值.(2)证明:当a=1时,函数g(x)=kx﹣1lnx,欲证对任意的k>0,函数g(x)有且只有一个零点,即证方程kx﹣1lnx=0有且只有一个正实数根,由kx﹣1lnx=0,得k(x>0),令φ(x)(x>0),则φ′(x)(x>0),令h(x)lnx﹣2,则h′(x)(x>0),由h′(x)=0,得x=16,当0<x<16时,h′(x)>0,则h(x)在(0,16)上单调递增;当x>16时,h′(x)<0,则h(x)在(16,+∞)上单调递减,所以h(x)≤h(16)=4(ln2﹣1)<0,于是φ′(x)<0,则φ(x)在(0,+∞)上单调递减.设p(x)lnx(x>0),则p′(x),由p′(x)=0,得x=4,当0<x<4时,p′(x)<0,则p(x)在(0,4)上单调递减;当x>4时,p′(x)>0,则p(x)在(4,+∞)上单调递增,所以p(x)≥p(4)=2﹣2ln2>0,即当x>0时,p(x)lnx>0,所以当x>0时,φ(x)>,对任意的k>0,有:①当k≥2时,0<x<<1,有φ(x)>>k;当x>1时,有φ(x)<φ(1)=2≤k,又φ(x)在(0,+∞)上单调递减,所以存在唯一的x1∈(,1],有φ(x1)=k;②当0<k<2时,0<x<(>),有φ(x)>>k,当x>>1(>)时,有φ(x)<k,又φ(x)在(0,+∞)上单调递减,所以存在唯一的x2∈(,),有φ(x2)=k,综上所述,对任意的k>0,方程kx﹣1lnx=0有且只有一个正实数根,即函数g(x)有且只有一个零点.7.解:(Ⅰ)f(x)的定义域(0,+∞),′..(2分)①若a≤0,则f'(x)>0恒成立,f(x)在(0,+∞)单调递增函数.②若a>0,令f'(x)=0解得x=a,则f(x)在(0,a)单调递减,在(a,+∞)单调递增;….(4分)(Ⅱ)证明:因为f(x)有两个不同的零点,由①知><>(6分)且0<x1<a<x2,要证>,即证lnx1+lnx2>2>>>由于a>x1,则2a﹣x1>a,即证f(x2)>f(2a﹣x1)f(x1)>f(2a﹣x1)…(8分)设g(x)=f(x)﹣f(2a﹣x),x∈(0,a),只需证g(x)>0即可,g(x)=(x﹣alnx)﹣[(2a﹣x)﹣aln(2a﹣x)],′<(10分)可知g(x)在x∈(0,a)是单调递减函数,故g(x)>g(a)=0,得证.>..(12分)8.(1)解:∵f(x)=me x,g(x)=x+3,m=1,∴f(x)=e x,g(x﹣2)=x+1,∴h(x)=f(x)﹣g(x﹣2)﹣2017=e x﹣x﹣2018.∴h'(x)=e x﹣1,由h'(x)=0得x=0.∵e是自然对数的底数,∴h'(x)=e x﹣1是增函数.∴当x<0时,h'(x)<0,即h(x)是减函数;当x>0时,h'(x)>0,即h(x)是增函数.∴函数h(x)没有极大值,只有极小值,且当x=0时,h(x)取得极小值.∴h(x)的极小值为h(0)=﹣2017.(2)证明:∵f(x)=me x,g(x)=x+3,∴φ(x)=f(x)+g(x)=m•e x+x+3,∴φ'(x)=m•e x+1.∵m<﹣e2<0,∴φ'(x)=m•e x+1是减函数.由φ'(x)=m•e x+1=0解得.当∈∞,时,φ'(x)=m•e x+1>0,此时函数φ(x)是增函数,当∈,时,φ'(x)=m•e x+1<0,此时函数φ(x)是减函数,∴当时,函数φ(x)取得最大值,最大值为.∵m<﹣e2,∴2﹣ln(﹣m)<0,∴φ(x)<0,∴当m<﹣e2时,函数φ(x)没有零点.9.(1)证明:函数F(x)的定义域为(0,+∞),因为F(x)=x2e﹣x﹣xlnx,当0<x≤1时,F(x)>0,而<,所以F(x)在(1,2)存在零点.因为′,当x>1时,<,<,所以′<<,则F(x)在(1,+∞)上单调递减,所以F(x)在(0,+∞)上存在唯一零点.(2)解:由(1)得,F(x)在(1,2)上存在唯一零点x0,x∈(0,x0)时,f(x)>g(x);x∈(x0,+∞)时,f(x)<g(x),∴ℎ,∈,,∈,.当x∈(0,x0)时,由于x∈(0,1],h(x)≤0;x∈(1,x0)时,h'(x)=lnx+1>0,于是h(x)在(1,x0)单调递增,则0<h(x)<h(x0),所以当0<x<x0时,h(x)<h(x0).当x∈[x0,+∞)时,因为h'(x)=x(2﹣x)e﹣x,x∈[x0,2]时,h'(x)≥0,则h(x)在[x0,2]单调递增;x∈(2,+∞)时,h'(x)<0,则h(x)在(2,+∞)单调递减,于是当x≥x0时,h(x)≤h(2)=4e﹣2,所以函数h(x)的最大值为h(2)=4e﹣2,所以λ的取值范围为[4e﹣2,+∞).10.解:(1)函数f(x)定义域为R,f′(x)=x(e x﹣1+a),(i)若a≥0,当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)在(﹣∞,0)上单调递减,在(0,+∞)单调递增.(ii)若a<0,令f′(x)=0,得x=0或x=1+ln(﹣a),①a时,f′(x)≥0,所以函数f(x)在R上单调递增;②当<a<0时,1+ln(﹣a)<0,当x<1+ln(﹣a)或x>0时,f′(x)>0,当1+ln(﹣a)<x<0时,f′(x)<0,所以函数f(x)在(﹣∞,1+ln(﹣a)),(0,+∞)上单调递增,在(1+ln(﹣a),0)单调递减;③当a<时,1+ln(﹣a)>0,当x>1+ln(﹣a)或x<0时,f′(x)>0,当0<x<1+ln(﹣a)时,f′(x)<0,所以函数f(x)在(﹣∞,0),(1+ln(﹣a),+∞)上单调递增,在(0,1+ln(﹣a))单调递减;(2)当a=0时,函数f(x)只有一个零点x=1;当a>0时,由(1)得函数f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,且f(0)<0,f(1)>0,取x0<﹣3且x0<1+lna,则f(x0)>(x0﹣1)a[3]>0,所以函数f(x)有两个零点;当a<0时,由(1)得函数f(x)在(0,+∞)单调递增,且f(0)<0,f(2)=e+2a>0,而x<0时,f(x)<0,所以函数f(x)只有一个零点.当﹣e≤a<时,由(1)得函数f(x)在(0,1+ln(﹣a))单调递减,在(1+ln(﹣a),+∞)上单调递增,且f(1+ln(﹣a))<f(0)<0,f(3)=2e2a≥2e2e>0,而x<0时,f(x)<0,所以函数f(x)只有一个零点.11.解:(I)由函数f(x)=x2﹣2lnx知其定义域为{x|x>0},∵f′(x)=2x,令f'(x)>0,解得:x>1;令f'(x)<0,解得:0<x<1∴函数f(x)单调增区间是(1,+∞);减区间是(0,1);(II)由f′(x)=0,解得:x=1或﹣1(舍),由(I)知f(x)在[,1]上递减,在[1,e]上递增,当x=1时,f(x)取最小值f(1)=1,又f()2,f(e)=e2﹣2,且e2﹣2>2,∴f(x)在[,e]上的最小值为1,最大值为e2﹣2;(III)方程f(x)=x2﹣x﹣a,即x﹣2lnx﹣a=0,记g(x)=x﹣2lnx﹣a,∵g′(x),由g′(x)>0,得x>2或x<0(舍去),g′(x)<0得0<x<2,∴g(x)在[1,2]上递减,在[2,3]上递增,为使方程f(x)=x2﹣x﹣a在区间[1,3]上恰好有两个相异的实根,只需g(x)=0在[1,2]和[2,3]上各有一个实根,于是<,即<,∴2﹣2ln2<a≤3﹣2ln3,即实数a的取值范围是(2﹣2ln2,3﹣2ln3].12.解:(1)由f(x)>,f'(x)=x由f'(x)=0解得xf(x)与f'(x)在区间(0,+∞)上的情况如下:所以,f(x)的单调递增区间为(,),单调递减区间为(0,);f(x)在x处的极小值为f(),无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f().因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且>,<,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.13.解:(1)当a时,g(x)=lnx k,g'(x)0解方程得方程的根为:x1=2,x2由g(x)定义域可知x>0;∵当0<x<时g'(x)>0,g(x)增函数,当<x<2时g'(x)<0,g(x)减函数,当x>2时g'(x)>0,g(x)增函数,∴f(x)的极大值是,极小值是∴g(x)在x处取得极大值3﹣ln2﹣k,在x=2处取得极小值ln2﹣k;∵函数g(x)=f(x)﹣k仅有一个零点∴当3﹣ln2﹣k<0或ln2﹣k>0时g(x)仅有一个零点,∴k的取值范围是k>3﹣ln2或<.(2)当a=2时,,定义域为(0,+∞),令ℎ,∵ℎ′>,∴h(x)在(0,+∞)是增函数∵h(1)=0∴①当x>1时,h(x)>h(1)=0,即f(x)>1;②当0<x<1时,h(x)<h(1)=0,即f(x)<1;③当x=1时,h(x)=h(1)=0,即f(x)=1.。