《导数的综合应用》PPT课件
- 格式:ppt
- 大小:282.96 KB
- 文档页数:11
静思·勤学静学教育学科教师辅导讲义学员姓名:朱致雅年级:高二学科教师:曹剑峰辅导科目:数学授课类型C导数的综合应用授课日期及时段2016年12月10日9:00——11:00教学内容知识讲解1.函数的单调性与导数的关系已知函数f(x)在某个区间(a,b)内可导,(1)如果f′(x)>0,那么函数y=f(x)在这个区间内单凋递增;(2)如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.静思·勤学3.函数的最值与导数设函数f (x )在[a ,b ]上连续且在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.考点一 利用导数研究函数的单调性【例1】 (2013·广东卷改编)设函数f (x )=(x -1)e x -kx 2. (1)当k =1时,求函数f (x )的单调区间;(2)若f (x )在x ∈[0,+∞)上是增函数,求实数k 的取值范围. 解 (1)当k =1时,f (x )=(x -1)e x -x 2, ∴f ′(x )=e x +(x -1)e x -2x =x (e x -2). 令f ′(x )>0,即x (e x -2)>0,∴x >ln 2或x <0. 令f ′(x )<0,即x (e x -2)<0,∴0<x <ln 2. 因此函数f (x )的递减区间是(0,ln 2); 递增区间是(-∞,0)和(ln 2,+∞). (2)易知f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ). ∵f (x )在x ∈[0,+∞)上是增函数,∴当x ≥0时,f ′(x )=x (e x -2k )≥0恒成立. ∴e x -2k ≥0,即2k ≤e x 恒成立. 由于e x≥1,∴2k ≤1,则k ≤12.又当k =12时,f ′(x )=x (e x -1)≥0当且仅当x =0时取等号. 因此,实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.规律方法 (1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.专题讲练静思·勤学(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 【变式】(14广东) 设函数2221()(2)2(2)3f x x x k x x k =+++++-,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论函数()f x 在D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示)。
3.3 导数的综合应用1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)连续函数在闭区间上必有最值.( √ )(2)函数f (x )=x 2-3x +2的极小值也是最小值.( √ )(3)函数f (x )=x +x -1和g (x )=x -x -1都是在x =0时取得最小值-1.( × )(4)函数f (x )=x 2ln x 没有最值.( × ) (5)已知x ∈(0,π2),则sin x >x .( × )(6)若a >2,则方程13x 3-ax 2+1=0在(0,2)上没有实数根.( × )1.(2014·湖南)若0<x 1<x 2<1,则( ) A .2121e e ln ln xxx x >-- B .1221e eln ln xx x x <--C .1221e e x xx x > D .1221e e xxx x < 答案 C解析 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e e xxx x >.2.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 A 错,因为极大值未必是最大值.B 错,因为函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点.C 错,函数y =f (x )与函数y =-f (x )的图象关于x 轴对称,x 0应为-f (x )的极小值点.D 对,函数y =f (x )与y =-f (-x )的图象关于原点对称,-x 0应为y =-f (-x )的极小值点.3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x (x >0)的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点, 也是最小值点,故t =22. 4.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件答案 C解析 y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0; 当x >3时,y ′<0.故当x =3时,该商品的年利润最大.题型一 利用导数证明不等式例1 已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2x,由题意知f (x0)=g (x 0),f ′(x 0)=g ′(x 0),即⎩⎨⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a2x.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a .令h (t )=52t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).于是当t (1-3ln t )>0,即0<t <13e 时,h ′(t )>0;当t (1-3ln t )<0,即t >13e 时,h ′(t )<0.故h (t )在(0,13e )上为增函数,在(13e ,+∞)上为减函数,于是h (t )在(0,+∞)上的最大值为h (13e )=233e 2,即b 的最大值为233e 2.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0),则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x(x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).思维升华 利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x .综上,22x≤sin x≤x,x∈[0,1].题型二利用导数研究函数零点问题例2(2013·北京)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解(1)由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).∵y=f(x)在点(a,f(a))处与直线y=b相切.∴f′(a)=a(2+cos a)=0且b=f(a),则a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).思维升华函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a =1.∴f (x )=x 3-3x -1, f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). 题型三 生活中的优化问题例3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思维点拨 (1)由x =5时y =11求a ;(2)建立商场每日销售该商品所获利润和售价x 的函数关系,利用导数求最值. 解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量为 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.一审条件挖隐含典例:(12分)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M .(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.审题路线图(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M(正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M挖掘[g (x 1)-g (x 2)]max 的隐含实质 g (x )max -g (x )min ≥MM 的最大整数值(2)对任意s ,t ∈[12,2]都有f (s )≥g (t )(理解“任意”的含义) f (x )min ≥g (x )max求得g (x )max =1 ax+x ln x ≥1恒成立 分离常数 a ≥x -x 2ln x 恒成立求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分]由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -23).令g ′(x )>0得x <0,或x >23,又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (23)=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.[5分](2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[12,2]上,函数f (x )min ≥g (x )max .[7分]由(1)可知在区间[12,2]上,g (x )的最大值为g (2)=1.在区间[12,2]上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[12,2]上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.[10分]即函数h (x )=x -x 2ln x 在区间(12,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.方法与技巧1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. 失误与防范1.函数f (x )在某个区间内单调递增,则f ′(x )≥0而不是f ′(x )>0,(f ′(x )=0在有限个点处取到).2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.A 组 专项基础训练(时间:45分钟)1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.2.(2014·课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.4.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33B. 3C.3+1D.3-1 答案 D解析 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2,若a >1,当x >a 时,f ′(x )<0,f (x )单调递减,当1<x <a 时,f ′(x )>0,f (x )单调递增,当x =a 时,令f (x )=a 2a =33,a =32<1,不合题意. 若0<a ≤1,则f ′(x )≤0,f (x )在[1,+∞)上单调递减,∴f (x )max =f (1)=11+a =33,a =3-1,故选D. 5.设函数h t (x )=3tx -322t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( )A .5B. 5 C .3D.7答案 D解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立,∴h 7(x 0)≥h t (x 0)max .记g (t )=h t (x 0)=3tx 0-322t ,则g ′(t )=3x 0-123t ,令g ′(t )=0,得t =x 20,易得h t (x 0)max =g (x 20)=x 30,∴21x 0-147≥x 30,将选项代入检验可知选D. 6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________.答案 1解析 ∵f (x )是奇函数,且当x ∈(-2,0)时,f (x )的最小值为1,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,解得a =1.7.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________.答案 -2或2解析 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.由题意知,f (1)=0或f (-1)=0,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.8.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.答案 4解析 若x =0,则不论k 取何值,f (x )≥0都成立;当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间(0,12]上单调递增, 在区间[12,1]上单调递减, 因此g (x )max =g (12)=4,从而k ≥4; 当x <0即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而k ≤4,综上k =4.9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时, 设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25.易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.B 组 专项能力提升(时间:30分钟)11.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C 解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.12.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为常数.若f (x )在(1,+∞)上是减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)答案 A解析 f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时f ′(x )≤0恒成立,即x ∈(1,+∞)时a ≥1x 恒成立,则a ≥1.因为g ′(x )=e x -a 在(1,+∞)上单调递增,所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e.综上,a 的取值范围是(e ,+∞).13.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是____________.答案 [-1e,+∞) 解析 f ′(x )=e x +x e x =e x (1+x )当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e. 而函数g (x )的最大值为a ,则由题意,可得-1e ≤a 即a ≥-1e. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2, 解得a =e.15.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数,a ∈R . (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)解 ∵a =1,∴f (x )=x -ln x ,f ′(x )=1-1x=x -1x, ∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明 ∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴[f (x )]min =1.又g ′(x )=1-ln x x 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g (x )]max =g (e)=1e <12, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)解 假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当0<1a <e 时,f (x )在(0,1a)上单调递减, 在(1a,e]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )无最小值. 综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.。
导数的综合应用一、导数在不等式中的应用考点一 构造函数证明不等式【例1】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )=x -1x(x >0), 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0,即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数.所以g (x )≥g (1)=1,得证.(2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数,所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),②且①②等号不同时取得,所以(x -ln x )f (x )>1-1e 2. 规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ).2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值;(2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e 2x 成立. (1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞).当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2.由f ′(x )=0,得x =1e 2. 当x ∈⎝⎛⎭⎫0,1e 2时,f ′(x )<0;当x >1e 2时,f ′(x )>0. 所以f (x )在⎝⎛⎭⎫0,1e 2上单调递减,在⎝⎛⎭⎫1e 2,+∞上单调递增. 因此f (x )在x =1e 2处取得最小值,即f (x )min =f ⎝⎛⎭⎫1e 2=-1e 2,但f (x )在(0,+∞)上无最大值. (2)证明 当x >0时,ln x +1>1e x +1-2e 2x 等价于x (ln x +1)>x ex +1-2e 2. 由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e 2,当且仅当x =1e 2时取等号. 设G (x )=x ex +1-2e 2,x ∈(0,+∞), 则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e 2, 当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e 2x .规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin x x(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值. 解 (1)f ′(x )=x cos x -sin x x 2, 令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 显然,当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. 从而g (x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以函数f (x )在区间⎝⎛⎭⎫0,π2上单调递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2, 则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0,从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ).(1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围.解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞).(2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x 2-2x x -ln x 在区间[1,e]上有解. 令h (x )=x 2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. 因为x ∈[1,e],所以x +2>2≥2ln x ,所以h ′(x )≥0,h (x )在[1,e]上单调递增,所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,e(e -2)e -1. 规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min .[方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0;∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0;∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、导数在函数零点中的应用考点一 判断零点的个数【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数. 解 (1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∴f (x )min =f (1)=-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(X (0,1) 1 (1,3) 3 (3,+∞)g ′(x ) + 0 - 0 +g (x )极大值 极小值当0<x ≤3时,g 当x >3时,g (e 5)=e 5-3e5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点,故g (x )仅有1个零点.规律方法 利用导数确定函数零点或方程根个数的常用方法(1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.考点二 已知函数零点个数求参数的取值范围【例2】 函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解 (1)函数f (x )=ax +x ln x 的定义域为(0,+∞).f ′(x )=a +ln x +1,因为f ′(1)=a +1=0,解得a =-1,当a =-1时,f (x )=-x +x ln x ,即f ′(x )=ln x ,令f ′(x )>0,解得x >1;令f ′(x )<0,解得0<x <1.所以f (x )在x =1处取得极小值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y =f (x )-m -1在(0,+∞)内有两个不同的零点,可转化为y =f (x )与y =m +1图象有两个不同的交点. 由(1)知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,f (x )min =f (1)=-1,由题意得,m +1>-1,即m >-2,①当0<x <e 时,f (x )=x (-1+ln x )<0;当x >e 时,f (x )>0.当x >0且x →0时,f (x )→0;当x →+∞时,显然f (x )→+∞.由图象可知,m +1<0,即m <-1,②由①②可得-2<m <-1.所以m 的取值范围是(-2,-1).规律方法 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.考点三 函数零点的综合问题【例3】 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a . (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+a ln 2 a.[方法技巧]1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”问题相互转化.3.函数y=f(x)在某一区间(a,b)上存在零点,必要时要由函数零点存在定理作为保证.。
导数的综合应用1.曲线的切线方程点P(x 0,f(x 0))在曲线y=f(x)上,且f(x)在(x 0,f(x 0))处存在导数,曲线y=f(x)在点P 处的切线方程为_____________________.2.函数的单调性(1)用导数的方法研究函数的单调性往往很简便, 但要注意规范步骤.求函数单调区间的基本步骤是: ①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0),解出相应的x 的范围.当 f ′(x)>0时,f(x)在相应的区间上是______;当f ′(x) <0时,f(x)在相应的区间上是_______.还可以通过列表,写出函数的单调区间.(2)在利用导数研究函数的单调性时,我们往往应用以下的充分条件:设函数f(x)在(a ,b)内可导,若 f ′(x)>0(或f ′(x)<0),则函数f(x)在区间(a,b)内为增函数(或减函数);若函数在闭区间[a,b ]上连续,则单调区间可扩大到闭区间[a,b ]上. 3.函数的极值求可导函数极值的步骤求导数f ′(x)→求方程________的根→检验f ′(x)在方程根左右值的符号,求出极值(若左正右负,则f(x)在这个根处取极大值;若左负右正,则f(x)在这个根处取极小值).4.函数的最值求可导函数在[a,b ]上的最值的步骤: 求f(x)在(a,b)内的极值→求f(a)、f(b)的值→比较f(a)、f(b)的值和_____的大小.5.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关 系式y=f(x);(2)求函数的导数f ′(x),解方程f ′(x)=0;(3)比较函数在区间端点和f ′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.基础自测1.已知曲线C:y=2x 2-x 3,点P(0,-4),直线l 过点P 且与曲线C 相切于点Q,则点Q 的横坐标为 ( )A.-1B.1C.-2D.22.函数f(x)=xcos x 的导函数f ′(x)在区间[-π,π]上的图象大致是 ( )3.已知函数f(x)=x m +ax 的导数f ′(x)=2x+1,则数列 (n ∈N *)的前n 项和为 ( )4.a 、b 为实数,且b-a=2,若多项式函数f(x)在区间 (a,b)上的导函数f ′(x)满足f ′(x)<0,则以下式子中一1{}()f n 12A.Β. C. D.111n n n n n n n n ++-++5.函数y=f(x)在其定义域 内可导,其图象如图所示,记y=f(x)的导函数为y=f ′(x),则不等式 f ′(x)≤0的解集为__________.题型分类 深度剖析题型一 函数的极值与导数【例1】已知函数f(x)=x 3+mx 2+nx-2的图象过点(-1, -6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m 、n 的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.题型二 函数的最值与导数【例2】已知函数f(x)=ax 3-6ax 2+b,问是否存在实数a 、b 使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a 、b 的值;若不存在,请说明理由.3(,3)2 知能迁移1 设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R. (1)若f (x )在x =3处取得极值,求常数a 的值; (2)若f (x )在(-∞,0)上为增函数,求a 的取值范围.知能迁移2 已知函数f (x )=ln x -a x .(1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e]上的最小值为32,求实数a 的值. 题型三 导数与方程的解 【例3】 已知函数f (x )=x 2-a ln x 在(1,2]是增函数, g (x )=x -a x 在(0,1)为减函数. (1)求f (x )、g (x )的解析式; (2)求证:当x >0时,方程f (x )=g (x )+2有唯一解.知能迁移3 已知f (x )=ax 2(a ∈R),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性.(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围.题型四 导数与不等问题 【例4】 设函数f (x )=x 4+ax 3+2x 2+b (x ∈R),其中a ,b ∈R.(1)当a =-103时,讨论函数f (x )的单调性; (2)若函数f (x )仅在x =0处有极值,求a 的取值范围; (3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围.知能迁移4 设函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立, (1)求实数m 的取值范围;(2)当m =2时,若函数k(x)=f (x )-h (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围. 一、选择题 1.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是 ( )A .(-2,2) B .[-2,2] C .(-∞,-1) D .(1,+∞)2.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有 ( ) A .0个零点 B .1个零点 C .2个零点 D .3个零点 3.已知函数f (x )=ln a +ln x x在[1,+∞)上为减函数,则实数a 的取值范围是 ( ) A .0<a <1e B .0<a ≤e C .a ≤e D .a ≥e 4.已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是 ( ) A .(-1,0) B .(2,+∞) C .(0,1) D .(-∞,-3) 5.方程x 3-6x 2+9x -4=0的实根的个数为 ( )A .0B .1C .2D .36.已知对任意x ∈R ,恒有f (-x )=-f (x ),g (-x )=g (x ),且当x >0时, f ′(x )>0, g ′(x )>0,则当x <0时有 ( ) A .f ′(x )>0,g ′(x )>0 B .f ′(x )>0,g ′(x )<0 C .f ′(x )<0,g ′(x )>0 D .f ′(x )<0,g ′(x )<0二、填空题 7.若函数f (x )=x 2+a x +1在x =1处取极值,则a =_____. 8.已知函数f (x )=x 3-3a 2x +a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是__________. 9.设函数f (x )=ax 3-3x +1(x ∈R),若对于任意x ∈ [-1,1],都有f (x )≥0成立,则实数a 的值为_____.三、解答题 10.已知函数f (x )=x 3-32ax 2+b (a ,b 为实数,且a >1)在区间[-1,1]上的最大值为1,最小值为-2. (1)求f (x )的解析式;(2)若函数g (x )=f (x )-mx 在区间[-2,2]上为减函数,求实数m 的取值范围.11.设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1). (1)求函数f (x )的单调区间,并求函数f (x )的极大值和极小值; (2)当x ∈[a +1,a +2]时,不等式|f ′(x )|≤a ,求a 的取值范围.12.已知函数f (x )=⎩⎨⎧ x -ln x (x >12)x 2+2x +a -1(x ≤12) (1)求函数f (x )的单调递增区间; (2)求函数f (x )的零点.。