江苏省2020学年高一数学上学期期末考试试题
- 格式:doc
- 大小:379.95 KB
- 文档页数:9
高淳中学2022-2023学年高一上学期期末考试数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则( ){}{}1,2,3,2A B x N x ==∈≤∣A B ⋃=A. B. C. D.{}2,3{}0,1,2,3{}1,2{}1,2,32.命题“”的否定是( )0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭A. B.0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭0,,sin 2x x x π⎛⎫∀∈> ⎪⎝⎭C. D.0,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭3.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()3π6πB. C. D.13π23π43π4.,不等式恒成立,则的取值范围为()x R ∀∈2410ax x +-<a A.B.或4a <-4a <-0a =C.D.4a ≤-40a -<<5.已知,则( )0.50.5e ,ln5,log e a b c -===A.B.c a b <<c b a <<C.D.b a c <<a b c <<6.已知函数是定义在上的奇函数,,且,则()f x R ()()4f x f x =+()11f -=-()()()20202021f f +=A. B.0 C.1D.21-7.已知函数的零点分别为,则的大小顺序为(()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+,,a b c ,,a b c )A.B.c b a <<b a c <<C.D.a c b <<c a b <<8.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为( ()()sin f x A x ωϕ=+)A.B.122y f x ⎛⎫=+ ⎪⎝⎭()21y f x =+C.D.122x y f ⎛⎫=+ ⎪⎝⎭12x y f ⎛⎫=+ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,既是偶函数又在区间上是增函数的是( )()0,∞+A. B.21y x =+3y x =C. D.23y x =3xy -=10.若,则下列不等式正确的是( )110a b <<A. B.a b <a b<C. D.a b ab +<2b a a b +>11.若函数,则下列选项正确的是( )()tan 23f x x π⎛⎫=+ ⎪⎝⎭A.最小正周期是πB.图象关于点对称,03π⎛⎫ ⎪⎝⎭C.在区间上单调递增7,1212ππ⎛⎫ ⎪⎝⎭D.图象关于直线对称12x π=12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令x ∈R []x x []y x =,以下结论正确的是( )()[]22f x x x =-A.()1.10.8f -=B.为偶函数()f x C.最小正周期为()f x 12D.的值域为()f x []0,1第II 卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)5log 25+=14.请写出一个同时满足下列两个条件的函数:__________.(1),若则12,x x R ∀∈12x x >()()12f x f x >(2)()()()121212,,x x R f x x f x f x ∀∈+=15.在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆相交于,两xOy Ox ,αβP Q 点,的纵坐标分别为.则的终边与单位圆交点的纵坐标为__________.,P Q 34,55αβ+16.已知函数,使方程有4个不同的解:,则()2log ,04,2cos ,482x x f x t R x x π⎧<<⎪=∃∈⎨≤≤⎪⎩()f x t =1234,,,x x x x 的取值范围是__________;的取值范围是__________.1234x x x x 1234x x x x +++四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题10.0分)求值:(1)22log 33582lg2lg22+--(2)251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭18.(本小题12.0分)已知全集,集合,集合.U R ={}2120A x x x =--≤∣{}11B x m x m =-≤≤+∣(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 19.已知函数的部分图象如图.()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移个单位,()f x 6π得到函数的图象,当时,求值域.()g x ,6x ππ⎡⎤∈-⎢⎥⎣⎦()g x 20.(本小题12.0分)已知函数()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭(1)化简;()f α(2)若,求的值.()1,052f παα=-<<sin cos ,sin cos αααα⋅-21.(本小题12.0分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要500m 500m ⨯建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.S(1)分别用表示和的函数关系式,并给出定义域;x y S (2)怎样设计能使取得最大值,并求出最大值.S 22.(本小题12.0分)已知函数.()1ln1x f x x -=+(1)求证:是奇函数;()f x (2)若对于任意都有成立,求的取值范围;[]3,5x ∈()3f x t >-(3)若存在,且,使得函数在区间上的值域为(),1,αβ∞∈+αβ<()f x [],αβ,求实数的取值范围.ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m 高淳中学2022-2023学年高一上学期期末考试数学试题参考答案)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】【分析】先求出集合,再求.B A B ⋃【详解】因为,所以.{}{}1,2,3,0,1,2A B =={}0,1,2,3A B ⋃=故选:B2.【答案】D【解析】【分析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭按照改量词否结论的法则,所以否定为:,0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭故选:D3.【答案】B【解析】【分析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.326ππ=12233ππ⋅⋅=故选:B4.【答案】A【解析】【分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】,不等式恒成立,x R ∀∈2410ax x +-<当时,显然不恒成立,0a =所以,解得:.0Δ1640a a <⎧⎨=+<⎩4a <-故选:A.5.【答案】A【解析】【分析】借助指对函数的单调性,利用中间量0或1比较即可.【详解】因为,0.500.50.50e e 1,ln5lne <1,log e log 10a b c -<===>==<=所以,c a b <<故选:A.6.【答案】C【解析】【分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值.()()4f x f x =+【详解】是奇函数,,()f x ()()()00,111f f f ∴==--=又是周期函数,周期为4.()()()4,f x f x f x =+∴.()()()()2020202101011f f f f ∴+=+=+=故选:C.7.【答案】C【解析】【分析】利用数形结合,画出函数的图象,判断函数的零点的大小即可.【详解】函数的零点转化为与()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+e ,ln ,sin x y y x y x ===的图象的交点的横坐标,因为零点分别为,y x =-,,a b c 在坐标系中画出与的图象如图:e ,ln ,sin x y y x y x ===y x =-可知,0,0,0a b c <>=满足.a cb <<故选:C.8.【答案】B【解析】【分析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把()1y f x =+的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,()1y f x =-12所以如图的图象所对应的解析式为.()21y f x =+故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.【答案】AC【解析】【分析】利用函数的奇偶性和单调性的概念进行判断.【详解】对于A :22()11y x x =-+=+函数是偶函数,在上是增函数,故A 正确;∴21y x =+()0,∞+对于:B 33()y x x =-=- 函数是奇函数,故错误;∴3y x =B 对于:C 2233()y x x=-= 是偶函数,在上是增函数,故C 正确;23y x ∴=()0,∞+对于:D 33x x y ---== 是偶函数,在上是减函数,故错误.3xy -∴=()0,∞+D 故选:AC10.【答案】BCD【解析】【分析】利用不等式的基本性质求解即可【详解】由于,则,故错误;110a b <<0b a <<a b <正确;正确;,正确0a b ab +<<a b <2222,2a b a b ab b a b a ab ab a b ++=>=∴+>故选:BC D.11.【答案】BC【解析】【分析】利用正切函数的周期,对称中心,函数的单调性,判断选项即可.【详解】函数,函数的最小正周期为:错误;tan 23y x π⎛⎫=+ ⎪⎝⎭,A 2π令,2,3246k k x x k Z ππππ+=⇒=-∈当时,,所以图象关于点对称,正确;2k =3x π=,03π⎛⎫ ⎪⎝⎭B 因为,解得,当时,,所2,232k x k k Z πππππ-<+<+∈5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭1k =7,1212x ππ⎛⎫∈ ⎪⎝⎭以在区间上单调递增,C 正确;又正切函数不具有对称轴,所以D 错误7,1212ππ⎛⎫ ⎪⎝⎭故选:B C.12.【答案】AC【解析】【分析】根据高斯函数的定义逐项检验即可,对于,直接求解即可,对于,取,检验可得反A B 1.1x =-例,对于,直接求解即可;对于,要求的值域,只需求时的C ()12f x f x ⎛⎫+= ⎪⎝⎭D ()f x 102x ≤<()f x 值域即可.【详解】对于A ,,故A 正确.()[]1.1 2.2 2.2 2.230.8f -=---=-+=对于,取,则,而,B 1.1x =-()1.10.8f -=()[]1.1 2.2 2.2 2.220.2f =-=-=故,所以函数不偶函数,故B 错误.()()1.1 1.1f f -≠-()f x 对于,则,故C 正确.C [][]()1212121212f x x x x x f x ⎛⎫+=+-+=+--= ⎪⎝⎭对于,由的判断可知,为周期函数,且周期为,D C ()f x 12要求的值域,只需求时的值域即可.()f x 102x ≤<()f x 当时,则,0x =()[]0000f =-=当时,,102x <<()[]()222020,1f x x x x x =-=-=∈故当时,则有,故函数的值域为,故错误.102x ≤<()01f x ≤<()f x [)0,1D 故选:A C.第II卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.【答案】6【解析】【分析】利用根式性质与对数运算进行化简.,5log 25426+=+=故答案为:614.【解析】【分析】由条件(1),若则.可知函数为上增函数;12,x x R ∀∈12x x >()()12f x f x >()f x R 由条件(2).可知函数可能为指数型函数.()()()121212,,x x R f x x f x f x ∀∈+=()f x 【详解】令,()2x f x =则为上增函数,满足条件(1).()2x f x =R 又()()()12121212122,222x x x x x x f x x f x f x +++==⨯=故()()()1212f x x f x f x +=即成立.()()()121212,,x x R f x x f x f x ∀∈+=故答案为:等均满足题意()()()(2,3,4x x x f x f x f x ===)15.【答案】1【解析】【分析】根据任意角三角函数的定义可得,再由展开3443sin ,cos ,sin ,cos 5555ααββ====()sin αβ+求解即可.【详解】以轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,的纵坐标分别Ox ,αβ,P Q ,P Q 为34,55所以是锐角,可得,3sin ,5αα=4cos 5α=因为锐角的终边与单位圆相交于点,且纵坐标为,βQ 45所以是锐角,可得,4sin ,5ββ=3cos 5β=所以,()3344sin sin cos cos sin 15555αβαβαβ+=+=⨯+⨯=所以的终边与单位圆交点的纵坐标为1.αβ+故答案为:1.16.【答案】①.②.()32,354⎝⎭【解析】【分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把()f x 12,x x 34,x x 和转化成只有一个自变量的代数式,再去求取值范围即可.1234x x x x +++1234x x x x 【详解】做出函数的图像如下:()2log ,042cos ,482x x f x x x π⎧<<⎪=⎨≤≤⎪⎩在单调递减:最小值在单调递增:最小值0,最大值2;()f x (]0,1()0;f x []1,4在上是部分余弦型曲线:最小值,最大值2.()f x []4,82-若方程有4个不同的解:,则()f x t =1234,,,x x x x 02t <<不妨设四个解依次增大,则12341145,784x x x x <<<<<<<<是方程的解,则,即;12,x x 2log (04)x t x =<<2122log log x x =-121x x =是方程的解,则由余弦型函数的对称性可知.34,x x ()2cos 482x t x π=≤≤3412x x +=故,()()212343433312636x x x x x x x x x ==-=--+由得即345x <<()233263635x <--+<12343235x x x x <<1234121111212x x x x x x x x +++=++=++当时,单调递减,1114x <<()112m x x x =++则1116514124x x <++<故答案为:①;②()32,354⎝⎭四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(1)解:;()()22log 33582lg 2lg243lg5lg22lg27lg5lg27162+--=+---=-+=-=(2)解:251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭sin 4cos 3tan 3634ππππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11sin cos tan 1063422πππ=+-=+-=18.解:(1)集合,{}34A x x =-≤≤∣当时,或,4m ={}35,{3U B x x B x x =≤≤=<∣∣ 5}x >所以或;(){4U A B x x ⋃=≤∣ 5}x >(2)由题可知或,{3U A x x =<-∣ 4}x >由可得或,U B A ⊆ 13m +<-14m ->解得或,4m <-5m >故的取值范围为或.m {4mm <-∣5}m >19.(1)由图象可知,的最大值为2,最小值为,又,故,()f x 2-0A >2A =周期,则,452,,03123T πππππωω⎡⎤⎛⎫=--=∴=> ⎪⎢⎥⎝⎭⎣⎦2ω=从而,代入点,得,()()2sin 2f x x ϕ=+5,212π⎛⎫ ⎪⎝⎭5sin 16πϕ⎛⎫+= ⎪⎝⎭则,即,52,Z 62k k ππϕπ+=+∈2,Z 3k k πϕπ=-+∈又,则.2πϕ<3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭(2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,()f x 故可得;2sin 3y x π⎛⎫=- ⎪⎝⎭再将所得图象向左平移个单位,得到函数的图象6π()g x 故可得;()2sin 6g x x π⎛⎫=- ⎪⎝⎭,5,,,sin 66366x x x ππππππ⎡⎤⎡⎤⎡⎤⎛⎫∈-∴-∈--∈⎢⎥ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦ 的值域为.()2sin 2,6x g x π⎛⎫⎡⎤-∈∴ ⎪⎣⎦⎝⎭2⎡⎤⎣⎦20.解(1)()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭()sin cos sin cos cos cos tan ααααααα-=+⋅-,sin cos αα=+故;()sin cos f ααα=+(2)由,()1sin cos 5f ααα=+=平方可得,221sin 2sin cos cos 25αααα++=即.242sin cos 25αα⋅=-所以,12sin cos 25αα⋅=-因为,249(sin cos )12sin cos 25αααα-=-=又,所以,2πα-<<sin 0,cos 0αα<>所以,sin cos 0αα-<所以.7sin cos 5αα-=-21.解:(1)由已知,其定义域是.30003000,xy y x =∴=()6,500,()()()46210S x a x a x a=-+-=-,150026,332y a y a x +=∴=-=- ,其定义域是.()150015000210330306S x x x x ⎛⎫⎛⎫∴=-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭()6,500(2),15000303063030303023002430S x x ⎛⎫=-+≤-=-⨯= ⎪⎝⎭当且仅当,即时,上述不等式等号成立,150006x x =()506,500x =∈此时,.max 50,60,2430x y S ===答:设计时,运动场地面积最大,最大值为2430平方米.50m,60m x y ==22.(1)证明:由函数,可得,()1lg 1x f x x -⎛⎫= ⎪+⎝⎭101x x ->+即,解得,故函数的定义域为,关于原点对称.101x x -<+11x -<<()1,1-再根据,可得是奇函数.()()11lg lg 11x x f x f x x x +-⎛⎫⎛⎫-==-=- ⎪ ⎪-+⎝⎭⎝⎭()f x (2)由(1)知,其定义域为.()1ln 1x f x x -=+()(),11,∞∞--⋃+.因为在上为增函数,()2ln 11f x x ⎛⎫=- ⎪+⎝⎭()211u x x =-+()1,∞+在上为增函数,当,时,()f x ()1,∞+[]3,5x ∈()ln2ln2ln3f x -≤≤-对任意都有成立,,即,[]3,5x ∈()3f x t >-ln23t ->-3ln2t <-的取值范围是.t (),3ln2∞--(3)由(2)知在上为增函数,()f x ()1,∞+又因为函数在上的值域为.()f x [],αβ11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以,且,0m >1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩所以1,121,12m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩则是方程的两实根,,αβ112x m mx x -=-+问题等价于放程在上有两个不等实根,211022m m mx x ⎛⎫--+-= ⎪⎝⎭()1,∞+令,对称轴()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭1124x m =-则,即解得.()2011124Δ14102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩0,20,522,9m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或209m <<。
江苏省常州市武进高级中学2020-2021学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数y=xcosx+sinx的图象大致为()A.B.C.D.参考答案:D【考点】3O:函数的图象.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A 和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.2. 已知,则的值等于_____ 。
参考答案:略3. 某企业的生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则这两年该企业生产总值的年均增长率为().A.B.C. D.参考答案:D解:设该企业生产总值的年增长率为,则,解得:.故选:.4. 抽查10 件产品,设事件A 为至少有2 件次品,则A 的对立事件为A. 至多有2 件次品B. 至多有1 件次品C. 至多有2 件正品D. 至少有2 件正品参考答案:B∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有两件次品”,∴事件A的对立事件为:至多有一件次品.故选B5. 在△ABC中,是它的三条边,若,则△ABC是直角三角形,然而,若,则△ABC是锐角三角形,若,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.由的值确定参考答案:A略6. 已知=,则sin2α的值为()A.B.﹣C.D.﹣参考答案:B【考点】GI:三角函数的化简求值.【分析】根据二倍角公式和根据同角三角函数关系式即可求解.【解答】解:由=,可得:2cos2α=cos()得:4cos22α=cos2()∵cos2()=2cos2()﹣1,即1﹣sin2α=2cos2()∴8cos22α=1﹣sin2α由cos22α+sin22α=1.∴8(1﹣sin22α)=1﹣sin2α解得:sin2α=.故选:B.7. 已知中,,则等于()A. B. C.D.参考答案:由正弦定理,选C.8. 如果集合A=中只有一个元素,则的值是()A.0 B.0 或1 C.1 D.不能确定参考答案:B解:若集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则方程ax2+2x+1=0有且只有一个解当a=0时,方程可化为2x+1=0,满足条件;当a≠0时,二次方程ax2+2x+1=0有且只有一个解则△=4-4a=0,解得a=1故满足条件的a的值为0或1故选B.9. 已知函数的最大值为2,则a的值为()A.±1 B.-1 C.1 D.不存在参考答案:A10. 如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)AC⊥SB(B)AB∥平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角参考答案: D二、 填空题:本大题共7小题,每小题4分,共28分11. 已知{a n }是等差数列,d 为其公差,S n 是其前n 项和,若只有S 4是{S n }中的最小项,则可得出的结论中正确的是 .1 d >0 ②a 4<0 ③a 5>0 ④S 7<0 ⑤S 8>0.参考答案:①②③④【考点】8F :等差数列的性质.【分析】由已知条件得到a 5>0,a 4<0.进一步得到d >0,然后逐一判断结论得答案. 【解答】解答:解:由已知条件得到a 5>0,a 4<0 ∴d>0故①②③正确∵=7a 4<0④正确,=4(a 4+a 5)无法判断其正负,故⑤错误∴正确的结论是①②. 故答案为:①②③④.【点评】点评:本题考查命题的真假判断与应用,考查了等差数列的性质及求和公式的灵活应用,关键在于得到公差d 的符号,是中低档题.12. 已知集合A=[1,4),B=(﹣∞,a ),若A ?B ,则实数a 的取值范围为 .参考答案:a≥4【考点】集合的包含关系判断及应用.【分析】集合A=[1,4),B=(﹣∞,a ),A ?B ,根据子集的定义可求.【解答】解:由题意,集合A=[1,4)表示大于等于1而小于4的数,B=(﹣∞,a )表示小于a 的数,∵A ?B , ∴a≥4 故答案为a≥413. 已知函数图象关于直线对称,若当时恒成立,则的取值范围_________参考答案:14. 若集合 M=,则M的子集个数为个参考答案:略15. 已知θ∈R ,则直线的倾斜角的取值范围是___________.参考答案:略16. 函数的图象为,则①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④由的图象向右平移个长度单位可以得到图象.以上结论中正确的序号是__ __参考答案:①②③略17. 正方体的全面积是,它的顶点都在球面上,这个球的表面积是___________.参考答案:三、解答题:本大题共5小题,共72分。
江苏省苏州中学2022-2023学年度第一学期质量评估高一数学一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合{}212,4,2A a a a =+-,且3A -∈,则a =()A.-1B.-3或-1C.3D.-32.“0ab >”是“2b aa b+≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若不等式210x kx ++<的解集为空集,则k 的取值范围是()A.22k -≤≤ B.2k ≤-或2k ≥ C.22k -<< D.2k <-或2k >4.命题“x R ∀∈,n N *∃∈,使得21n x ≥+”的否定形式是()A.x R ∀∈,n N *∃∈,使得21n x <+ B.x R ∀∈,n N *∀∈,使得21n x <+C.x R ∃∈,n N *∃∈,使得21n x <+ D.x R ∃∈,n N *∀∈,使得21n x <+5.已知全集U R =,集合{}02A x x =≤≤,{}20B x x x =->,则图中的阴影部分表示的集合为()A.{}12x x x ≤>或 B.{}012x x x <<<或 C.{}12x x ≤< D.{}12x x <≤6.已知命题:p x R ∀∈,2230ax x ++>,若命题p 为假命题,则实数a 的取值范围是()A.13a a ⎧<⎫⎨⎩⎭B.103a a ⎧⎫⎨<⎩≤⎬⎭C.13a a ⎧≤⎫⎨⎩⎭D.13a a ⎧≥⎫⎨⎬⎩⎭7.已知关于x 的一元二次不等式20ax bx c ++>的解集为{}13x x <<,则不等式0ax bcx a+>+的解集为()A.143x x ⎧⎫-<<⎨⎬⎩⎭B.143x x ⎧⎫-<<-⎨⎩⎭C.143x x x <->⎧⎫⎨⎬⎩⎭或 D.143x x x <->-⎧⎫⎨⎩⎭或8.若存在正实数b ,使得()ab a b b a +=-,则()A.实数a 1B.实数a 1C.实数a 1D.实数a 1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.“22320x x --<”的一个充分不必要条件可以是()A.1x >-B.01x <<C.1122x -<< D.2x <10.设全集{}0,1,2,3,4U =,集合{}0,1,4A =,{}0,1,3B =,则()A.{}0,1A B = B.{}4U C B = C.{}0,1,3,4A B = D.集合A 的真子集个数为811.已知0a >,0b >,且1a b +=,则()A.2728a b +≥B.114a b +≤ C.14ab ≤≤12.已知关于x 的不等式(1)(3)20a x x -++>的解集是()12,x x ,其中12x x <,则下列结论中正确的是()A.1220x x ++= B.1231x x -<<< C.124x x -> D.1230x x +<三、填空题:本大题共4小题,每小题5分,共20分.13.已知集合{}A x x a =≤,{}13B x x =≤≤,且(),R A C B R = ,则实数a 的取值范围是_________.14.已知0a >,0b >,5a b +=的最大值为____________.15.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明“如图,O 为线段AB 中点,C 为AB 上的一点.以AB 为直径作半圆,过点C 作AB 的垂线,交半圆于D .连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E .设AC a =,CB b =,则图中线段2a b OD x +==,线段CD y ==,线段________2abz a b==+;由该图形可以得出x ,y ,z 的大小关系为__________(第一空3分,第二空2分)16.若集合{}20x x tx t +-<中恰有二个元素是整数,则实数t 的取值范围为___________.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设a ,b ,c R ∈,证明:222a b c ab ac bc ++=++的充要条件是a b c==18.(12分)已知集合{}2131A x a x a =-<<+,集合{}14B x =-<<(1)当0a =时,求()R C A B ;(2)若A B ⊆,求实数a 的取值范围.19.(12分)求关于x 的不等式210ax x ax +--<的解集.20.(12分)已知:431p x -≤,2:4310q x ax a -+-≤.(1)是否存在实数a ,使得p 是q 的充要条件?若存在,求出a 的值,若不存在,请说明理由.(2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.(12分)如图,长方形ABCD 表示一张6×12(单位:分米)的工艺木板,其四周有边框,中间为薄板,木板上一瑕疵(记为点P )到外边框AB ,AD 的距离分别为1分米,2分米,现欲经过点P 锯掉一块三角形废料MAN ,其中M ,N 分别在AB ,AD 上,设AM ,AN 的长分别为m 分米,n 分米.(1)求证:211m n+=;(2)为使剩下木板MBCDN 的面积最大,试确定m ,n 的值;(3)求剩下木板MBCDN 的外边框长度(MB ,BC ,CD ,DN 的长度之和)的最大值及取得最大值时m ,n 的值.22.(12分)已知一元二次函数2(0)y bx c a ++≠(1)若0y >的解集为{}34x x -<<,解关于x 的不等式22(3)0bx ax c b +-+<(2)若对任意x R ∈,不等式2y ax b ≥+恒成立,求222b a c+的最大值.高一数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】若243a a +=-则1a =-或-3,当1a =-时242a a a +=-,与集合元素互异性矛盾,所以3a =-,此时{}12,3,5A --=,若231aa -=-⇒=-舍去综上3a =-故选D2.【答案】C【解析】若0ab >,则0a b >,0b a >,所以2b a a b +≥=,当且仅当b a a b =成立,充分若2b a a b +≥,则0a b >,0ba>,所以0ab >,必要故选C 3.【答案】A 【解析】由题意得2Δ4022k k =-≤⇒-≤≤,故选A4.【答案】D5.【答案】A 【解析】{}{}2010B x x x x x x =->=><或,由题意可知阴影部分对应的集合为()()U C A B A B ,∴{}12A B x x =<≤ ,A B R = ,即{}()12U C A B x x x =≤> 或,∴{}()()12UA B A B C x x x =≤> 或,故选A.6.【答案】C【解析】首先求出命题p 为真命题的a 的范围.若0a=,则不等式等价为230x +>,对于x R ∀∈不成立,若0a≠,则04120a a >⎧⎨∆=-<⎩,解得:13a >,∴命题p 为真命题的a 的取值范围为13a a⎧>⎫⎨⎬⎩⎭,∴使命题p 为假命题的a 的范围是13a a⎧≤⎫⎨⎩⎭.故选C.7.【答案】C【解析】因为关于x 的一元二次不等式20axbx c ++>的解集为{}13x x <<,所以1和3为方程20ax bx c ++=的两个根,所以3ca =,4b a =-,0a <,则0ax b cx a +>+,等价于4031x x ->+,即()()3140x x +->,故不等式的解集为()1,4,3⎛⎫-∞-+∞ ⎪⎝⎭.故选:C.8.【答案】C 【解析】()aba b b a +=-,可得()2210b a a b a +-+=,由于存在0b >,可得上式有两个正根,可得121b b =,21210a b b a-+=>,()222140a a --≥,即有212a a-≥,且()()2212120a a a a -+--≥,解得1a≤--或01a <≤,则a 1-,故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【答案】BC 【解析】∵22320xx --<,∴122x -<<,∵10,1,22⎛⎫⊆- ⎪⎝⎭,111,,2222⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,∴01x <<或1122x -<<是22320xx --<的充分不必要条件,故选:BC.10.【答案】A C 【解析】∵全集{}0,1,2,3,4U=,集合{}0,1,4A =,{}0,1,3B =,∴{}0,1A B = ,故A 正确,{}2,4U C B =,故B 错误,{}0,1,3,4A B = ,故C 正确,集合A 的真子集个数为3217-=,故D 错误故选:AC.11.【答案】ACD【解析】∵0a >,0b >,且1a b +=,∴10b a =->,∴01a <<,∴2221772212488a b a a a ⎛⎫+=-+=-+≥ ⎪⎝⎭,∴A 正确,∵1111()224b aa b a b a b a b ⎛⎫+=++=++≥= ⎪⎝⎭,当且仪当12a b ==时,等号成立,∴114a b +≥,∴B 错误,∵0a >,0b >,1a b =+≥,∴14ab ≤,当且仅当12a b ==时,等号成立,∴C 正确,∵2112a b =+++=≤,当且仅当12a b ==时,等号成立,∴D 正确,故选:ACD12.【答案】ACD【解析】由关于x 的不等式(1)(3)20(0)a xx a -++>≠的解集是()12,x x ,其中12x x <,所以0a<,且1x ,2x 是一元二次方程22230ax ax a ++-=的解,所以122x x +=-,1223233a x x a a-==-<-,所以1220x x ++=,1230x x +<,选项AD 正确,又因为124x x -=,所以选项C 正确.由方程(1)(3)20a xx -++=的解是-3和1,得出不等式(1)(3)20a x x -++>的解集为()12,x x ,此时1231x x <-<<,选项B 错误.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.13.【答案】[)3,+∞【解析】∵{}A x x a =≤,{}13B x x =≤≤,∴(,1)(3,)R C B =-∞+∞ ,又()R A R C B = ,∴3a ≥.14.【答案】【解析】22≤=⇒,当且仅当=等15.【答案】ED ;z y x≤≤【解析】由题意得:2a bOD+=,CD ab =,由于CD OC ⊥,CE OD ⊥,∴~OCD OEC △△,则OD CDCD ED=,故22a bab abED ED a b ab+=⇒=+,利用直角三角形的边的关系,得OD CD DE >>.当O 和C 重合时,ODCD DE ==,∴22ab a b ab a b +≤≤+,即z y x ≤≤.16.【答案】16914,,3223⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦ 【解析】法一:220(1)x tx t t x x +-<⇒-->,当1x >时211211x t x x x ->=-++--当1x <时,211211x t x x x -<=-++--,作出1()121f x x x =-++-的图像,如图所示,当1x >时,若()t f x ->有两个整数解,则(3)(4)f t f <-≤,即9161692332t t <-≤⇒-≤<-当1x <时,若()t f x -<有两个整数解,则(2)(1)f t f -≤-<-,即41143223t t -≤-<-⇒<≤综上.t 的取值范围为16914,,3223⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦ 法二:∵集合{}2x xtx t +-<中恰有两个元素是整数,∴不等式20x tx t +-<的解集中恰有两个整数解,而函数()2f x x tx t =+-恒过点()1,1,则①若0t<,则由(1)10f =>,02tx =->,抛物线开口向上,得到这两个整数解为2和3,则(2)0f <,(3)0f <,(4)0f ≥,∴t 的取值范围为169,32⎡⎫--⎪⎢⎣⎭,②若0t>,则由(1)10f =>,02tx =-<,抛物线开口向上,得到这两个整数解为-1和0,则(2)0f -≥,(1)0f -<,(0)0f <,∴t 的取值范围为14,23⎛⎤⎥⎝⎦,综上,t 的取值范围为16914,,3223⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦ .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【解析】①必要性:如果222a b c ab bc ca ++=++,则2220ab c ab bc ca ++---=所以222()()()0a b b c c a -+-+-=所以()0a b -=,()0b c -=,()0c a -=.即ab c ==.(2)充分性:若a b c ==.所以222()()()0ab bc c a -+-+-=所以2220a b c ab bc ca ++---=所以222ab c ab bc ca++=++综上可知:222a b c ab bc ca ++=++的充要条件是a b c ==.18.【解析】(1)当0a=时,{}11A x x =-<<,∴{}11R C A x x x =≤-≥或,∴(){}14R A B x C x =≤< .(2)∵A B ⊆,∴集合A 可以分为A =∅或A ≠∅两种情况讨论.当A =∅时,2131a a -≥+,即2a ≤-;当A ≠∅时,得2113142131a a a a -≥-⎧⎪+≤⎨⎪-<+⎩即01a ≤≤.综上,(][],20,1a ∈-∞- .19.【解析】210(1)(1)0ax x ax ax x +--<⇒+-<当0a=时,不等式的解集为{}1x x <当0a>时,不等式可化为1(1)0x x a ⎛⎫+-< ⎪⎝⎭,不等式的解集为11x x a ⎧⎫-<<⎨⎬⎩⎭当0a<时,不等式可化为1(1)0x x a ⎛⎫+-> ⎪⎝⎭若1a=-,则不等式的解集为{}1x x ≠若10a -<<,则不等式的解集为11x x x a >-<⎧⎫⎨⎬⎩⎭或若1a<-,则不等式的解集为11x x x a <->⎧⎫⎨⎬⎩⎭或20.【解析】因为1431143112x x x -≤⇒-≤-≤⇒≤≤(1)若p 是q 的充要条件,则不等式24310x ax a -+-≤的解集为112xx ⎧≤≤⎫⎨⎬⎩⎭,所以11421312a a ⎧+=⎪⎪⎨⎪=-⎪⎩,此方程组无解,所以不存在实数a ,使得p 是q 的充要条件(2)若p 是q的充分不必要条件,则集合1x ⎧≤≤⎫⎨⎬⎩⎭为不等式24310x ax a -+-≤解集的真子集所以231231030424014310a a a a a a a ⎧⎧≤-+-≤⎪⎪⇒⇒≤≤⎨⎨⎪⎪≥⎛⎫ ⎪⎭⎩⎝-+-≤⎩,当a =时,22431010x ax a x -+-≤⇒-≤⇒11x -≤≤,满足题意,当34a =时,22515431030422x ax a x x x -+-≤⇒-+≤⇒≤≤,满足题意所以实数a 的取值范围为30,4⎡⎤⎢⎥⎣⎦21.【解析】(1)证明:过点P 分别作AB 、AD 的垂线,垂足分别为E 、F ,则PNF △与MPE △相似,从而PE NFME PF=,所以1122n m -=-,即2mn m n =+,所以211m n+=;(2)要使剩下木板MBCDN 的面积最大,即要锯掉的三角形废料MAN 的面积12Smn =最小,由(1)可知,211m n +=≥,解得8mn ≥,11当且仅当21m n=,即4m =,2n =时取等号,故当4m =,2n =时,剩下木板MBCDN 的面积最大;(3)解:要使剩下木板MBCDN 的外边框长度最大,即要m n +最小,所以212()3332n m m n m n m n m n ⎛⎫+=++=++≥++ ⎪⎝⎭,当且仅当2n m m n=,即2m =+1n =+故当2m =+1n =MBCDN的外边框长度最大为33-分米.22.【解析】(1)∵20ax bx c ++>的解集为{}34x x -<<,∴0a <,34b a -+=-,34c b a a-⨯=⇒=-,12(0)c a a =-<,∴2222(3)02150(0)2150bx ax c b ax ax a a x x +-+<⇔-++<<⇔--<,∴解集为()3,5-.(2)∵22(2)0y ax b ax b a x c b ≥+⇔+-+-≥恒成立,∴22200Δ(2)4()0440a a b a a c b b a ac ⎧>>⎧⇔⎨⎨=---≤+-≤⎩⎩,∴204()b a c a ≤≤-,∴222222414()1c b a c a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭令1c t a =-,∵24()0a c a b -≥≥,∴010c c a t a≥>⇒≥⇒≥.∴22222441(1)22b t t ac t t t ≤=+++++,令24()(0)22t g t t t t =≥++.当0t =时,(0)0g =,当0t >时,4()222g t t t=≤=++∴222b a c +的最大值为2-.。
2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。
2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
2020-2021学年江苏省连云港市高一(上)期末数学试卷一、选择题(共8小题).1.若命题p:∃x∈R,x2+2x+1≤0,则命题p的否定为()A.∃x∉R,x2+2x+1>0B.∃x∈R,x2+2x+1<0C.∀x∉R,x2+2x+1>0D.∀x∈R,x2+2x+1>02.若集合M={x|x2<1},N={x|0≤x<2},则M∩N=()A.{x|﹣1<x<2}B.{x|0≤x<1}C.{x|0<x<1}D.{x|﹣1<x<0} 3.cos(﹣)=()A.B.C.D.4.某班45名学生中,有围棋爱好者22人,足球爱好者28人,则同时爱好这两项的人最少有()A.4人B.5人C.6人D.7人5.已知a=30.2,b=log30.3,c=0.30.2,()A.a<c<b B.a<b<c C.c<a<b D.b<c<a6.在一次数学实验中,某同学运用图形计算器采集到如表一组数据:x123458y0.5 1.5 2.08 2.5 2.82 3.5在四个函数模型(a,b为待定系数)中,最能反映x,y函数关系的是()A.y=a+bx B.y=a+b x C.y=a+log b x D.y=a+7.函数f(x)=•sin x的部分图象大致为()A.B.C.D.8.已知函数f(x)是定义在R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(2sin x+1)|≤1的解集为()A.{x|kπ﹣≤x≤kπ+,k∈Z}B.{x|2kπ+≤x≤2kπ+,k∈Z}C.{x|kπ﹣≤x≤kπ+,k∈Z}D.{x|2kπ﹣≤x≤2kπ+,k∈Z}二、选择题(共4小题).9.下列结论正确的是()A.若ac>bc,则a>b B.若a>|b|,则a2>b2C.若a>b>0,则>D.若a<|b|,则a2<b210.若x>0,y>0,n≠0,m∈R,则下列各式中,恒等的是()A.lgx+lgy=lg(x+y)B.lg=lgx﹣lgyC.log xn y m=log x y D.lgx=11.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时,则()A.点P第一次到达最高点需要20秒B.当水轮转动155秒时,3.点P距离水面2米C.当水轮转动50秒时,点P在水面下方,距离水面2米D.点P距离水面的高度h(米)与t(秒)的函数解析式为h=4sin(t+)+2 12.已知函数f(x),x∈(﹣∞,0)∪(0,+∞),对于任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),则()A.f(x)的图象过点(1,0)和(﹣1,0)B.f(x)在定义域上为奇函数C.若当x>1时,有f(x)>0,则当﹣1<x<0时,f(x)<0D.若当0<x<1时,有f(x)<0,则f(x)>0的解集(1,+∞)三、填空题(共4小题,每小题,5分,满分20分)13.已知函数f(x)=,x>1,则f(f(1))=.14.函数f(x)=3sin(2x﹣)的减区间是.15.若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则实数a的取值范围是.16.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为P=P0•e kt,其中e是自然对数的底数,k为常数,(P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,则k=;要能够按规定排放废气,还需要过滤n小时,则正整数n的最小值为.(参考数据:log52≈0.43)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在①角α的终边经过点P(4m,﹣3m)(m≠0);②tan(﹣α)=;③3sinα+4cosα=0这三个条件中任选一个,求sin2α﹣sinαcosα﹣2cos2α的值.18.已知集合A={x|log2(x﹣1)≤2},集合.B={x|x2﹣2ax+a2﹣1≤0},其中a∈R.(1)若a=1,求A∪B;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.19.受疫情的影响及互联网经济的不断深化,网上购物已经逐渐成为居民购物的新时尚,为迎接2021年“庆元旦”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,经调查测算,该促销产品在“庆元旦”网购狂欢节的销售量p(万件)与促销费用x(万元)满足p=3﹣(其中0≤x≤10),已知生产该产品还需投入成本(10+2p)万元(不含促销费用),每一件产品的销售价格定为(6+)元,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y(万元)表示为促销费用x(万元)的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.20.已知函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R)的最小值为g(a),且g(a)=.(1)求实数a的值;(2)求函数f(x)的最大值,并求此时x的取值集合.21.已知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为g(x),若不等式g(x)﹣m≤0在x∈[0,6]恒成立,求实数m的取值范围.22.已知a∈R,函数f(x)=log2(+a).(1)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过2,求a的最小值;(2)若关于x的方程f()﹣log2[(a﹣2)x+3a﹣5]=0的解集中恰好只有一个元素,求a的取值范围.参考答案一、选择题(共8小题).1.若命题p:∃x∈R,x2+2x+1≤0,则命题p的否定为()A.∃x∉R,x2+2x+1>0B.∃x∈R,x2+2x+1<0C.∀x∉R,x2+2x+1>0D.∀x∈R,x2+2x+1>0解:命题为特称命题,则命题的否定为∀x∈R,x2+2x+1>0,故选:D.2.若集合M={x|x2<1},N={x|0≤x<2},则M∩N=()A.{x|﹣1<x<2}B.{x|0≤x<1}C.{x|0<x<1}D.{x|﹣1<x<0}解:∵M={x|﹣1<x<1},N={x|0≤x<2},∴M∩N={x|0≤x<1}.故选:B.3.cos(﹣)=()A.B.C.D.解:cos(﹣)=cos=cos(2)=cos=.故选:D.4.某班45名学生中,有围棋爱好者22人,足球爱好者28人,则同时爱好这两项的人最少有()A.4人B.5人C.6人D.7人解:设同时爱好这两项的人最少有a人,作出韦恩图:∵某班45名学生中,有围棋爱好者22人,足球爱好者28人,∴22﹣a+a+28﹣a=45,解得a=5.故选:B.5.已知a=30.2,b=log30.3,c=0.30.2,()A.a<c<b B.a<b<c C.c<a<b D.b<c<a 解:∵30.2>30=1,log30.3<log31=0,0<0.30.2<0.30=1,∴b<c<a.故选:D.6.在一次数学实验中,某同学运用图形计算器采集到如表一组数据:x123458y0.5 1.5 2.08 2.5 2.82 3.5在四个函数模型(a,b为待定系数)中,最能反映x,y函数关系的是()A.y=a+bx B.y=a+b x C.y=a+log b x D.y=a+解:由表格中数据作出散点图:由图可知,y是关于x的增函数,且递增的比较缓慢,故选:C.7.函数f(x)=•sin x的部分图象大致为()A.B.C.D.解:f(﹣x)=•sin(﹣x)=•(﹣sin x)=•sin x=f(x),则f(x)是偶函数,图象关于y轴对称,排除C,D,由f(x)=0得x=0或sin x=0,即x=π是右侧第一个零点,当0<x<π时,f(x)>0,排除B,故选:A.8.已知函数f(x)是定义在R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(2sin x+1)|≤1的解集为()A.{x|kπ﹣≤x≤kπ+,k∈Z}B.{x|2kπ+≤x≤2kπ+,k∈Z}C.{x|kπ﹣≤x≤kπ+,k∈Z}D.{x|2kπ﹣≤x≤2kπ+,k∈Z}解:由已知得f(0)=﹣1,f(3)=1,则不等式|f(2sin x+1)|≤1,即﹣1≤f(2sin x+1)≤1,即f(0)≤f(2sin x+1)≤f(3),又因为函数f(x)是定义在R上的增函数,所以0≤2sin x+1≤3,即﹣≤sin x≤1,结合正弦函数的图象,可得2kπ﹣≤x≤2kπ+,k∈Z,即不等式的解集为{x|2kπ﹣≤x≤2kπ+,k∈Z}.故选:D.二、选择题(共4小题,每小题5分,满分20分)9.下列结论正确的是()A.若ac>bc,则a>b B.若a>|b|,则a2>b2C.若a>b>0,则>D.若a<|b|,则a2<b2解:对于A:若c>0时,不等式成立,当c<0时,不等式不成立,故A错误;对于B:由于a>|b|,则a2>b2,故B正确;对于C:由于a>b>0,则>,故C正确;对于D:当a=﹣5,b=1时,不等式不成立,故D错误;故选:BC.10.若x>0,y>0,n≠0,m∈R,则下列各式中,恒等的是()A.lgx+lgy=lg(x+y)B.lg=lgx﹣lgyC.log xn y m=log x y D.lgx=解:由x>0,y>0,n≠0,m∈R,得:对于A,lgx+lgy=lg(xy)≠lg(x+y),故A错误;对于B,lg=lgx﹣lgy,故B正确;对于C,log xn y m===log x y,故C正确;对于D,lgx=lgx=,故D正确.故选:BCD.11.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时,则()A.点P第一次到达最高点需要20秒B.当水轮转动155秒时,3.点P距离水面2米C.当水轮转动50秒时,点P在水面下方,距离水面2米D.点P距离水面的高度h(米)与t(秒)的函数解析式为h=4sin(t+)+2解:设点P距离水面的高度为h(米)和t(秒)的函数解析式为h=A sin(ωt+φ)+B(A >0,ω>0,|φ|<),由题意,h max=6,h min=﹣2,∴,解得,∵T==60,∴ω=,则h=4sin(+φ)+2.当t=0时,h=0,∴4sinφ+2=0,则sinφ=﹣,又∵|φ|<,∴φ=﹣.h=,故D错误;令h==6,∴sin()=1,得t=20秒,故A正确;当t=155秒时,h=4sin()+2=4sin5π+2=2米,故B正确;当t=50秒时,h=4sin()+2=4sin+2=﹣2,故C正确.故选:ABC.12.已知函数f(x),x∈(﹣∞,0)∪(0,+∞),对于任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),则()A.f(x)的图象过点(1,0)和(﹣1,0)B.f(x)在定义域上为奇函数C.若当x>1时,有f(x)>0,则当﹣1<x<0时,f(x)<0D.若当0<x<1时,有f(x)<0,则f(x)>0的解集(1,+∞)解:对于A,对任意的x,y∈(﹣∞,0)∪(0,+∞),f(xy)=f(x)+f(y),令x=y=1,则f(1×1)=f(1)+f(1),解得f(1)=0,再令x=y=﹣1,则f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1),解得f(﹣1)=0,所以f(x)的图象过点(1,0)和(﹣1,0),故A正确;对于B,令y=﹣1,则f(﹣x)=f(x)+f(﹣1),所以f(﹣x)=f(x),又函数f(x)的定义域关于原点对称,所以函数f(x)为偶函数,故B错误;对于C,设x1,x2∈(0,+∞),且x1>x2,则>1,若当x>1时,有f(x)>0,所以f()>0,所以f(x1)﹣f(x2)=f(x2•)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,所以f(x1)>f(x2),所以f(x)在(0,+∞)上的是增函数,由函数f(x)为偶函数,可得f(x)在(﹣∞,0)上是减函数,所以当﹣1<x<0时,f(x)<f(﹣1)=0,故C正确;对于D,设x1,x2∈(0,+∞),且x1<x2,则0<<1,当0<x<1时,有f(x)<0,则f()<0,所以f(x1)﹣f(x2)=f(x2•)﹣f(x2)=f(x2)+f()﹣f(x2)=f()<0,所以f(x1)<f(x2),所以f(x)在(0,+∞)上的是增函数,由函数f(x)为偶函数,可得f(x)在(﹣∞,0)上是减函数,因为当0<x<1时,f(x)<0,可得当﹣1<x<0时,f(x)<0,当x<﹣1时,f(x)>f(﹣1)=0,当x>1时,f(x)>f(1)=0,故D错误.故选:AC.三、填空题(共4小题,每小题,5分,满分20分)13.已知函数f(x)=,x>1,则f(f(1))=﹣2.解:f(1)=21+2=4,所以.故答案为:﹣2.14.函数f(x)=3sin(2x﹣)的减区间是[kπ+,kπ+],(k∈Z)..解:由2kπ+≤2x﹣≤2kπ+,可得:kπ+≤x≤kπ+,(k∈Z),故答案为:[kπ+,kπ+],(k∈Z).15.若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则实数a的取值范围是(0,).解:若函数f(x)=x2+ax﹣在区间(﹣1,1)上有两个不同的零点,则,解得:0<a<,故答案为:(0,).16.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为P=P0•e kt,其中e是自然对数的底数,k为常数,(P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,则k=﹣;要能够按规定排放废气,还需要过滤n小时,则正整数n的最小值为8.(参考数据:log52≈0.43)解:由题意,前4个小时废气中的污染物被过滤掉了80%,∵P=P0•e kt,∴(1﹣80%)P0=P0•e4k,得0.2=e4k,即k=﹣,由0.25%P0=P0•e kt,得0.0025=﹣,∴t==4log5100=8(1+log52)=11.44.故整数n的最小值为12﹣4=8.故答案为:;8.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在①角α的终边经过点P(4m,﹣3m)(m≠0);②tan(﹣α)=;③3sinα+4cosα=0这三个条件中任选一个,求sin2α﹣sinαcosα﹣2cos2α的值.解:sin2α﹣sinαcosα﹣2cos2α==,若选①角α的终边经过点P(4m,﹣3m)(m≠0);可得tan=﹣,原式==﹣.若选②tan(﹣α)=,可得tanα=,原式==﹣.若选③3sinα+4cosα=0,tanα=﹣,原式==.18.已知集合A={x|log2(x﹣1)≤2},集合.B={x|x2﹣2ax+a2﹣1≤0},其中a∈R.(1)若a=1,求A∪B;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.解:A={x|log2(x﹣1)≤2}={x|log2(x﹣1)≤log24}={x|1<x≤5},B=={x|(x﹣a+1)(x﹣a﹣1)≤0}={x|a﹣1≤x≤a+1},(1)若a=1时,B=[0,2],A∪B=[0,5];(2)因为“x∈A”是“x∈B”的必要条件,所以“x∈B”是“x∈A”的充分条件,即B⊆A,即,解得:2<a≤4,综上所述:a的取值范围(2,4].19.受疫情的影响及互联网经济的不断深化,网上购物已经逐渐成为居民购物的新时尚,为迎接2021年“庆元旦”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,经调查测算,该促销产品在“庆元旦”网购狂欢节的销售量p(万件)与促销费用x(万元)满足p=3﹣(其中0≤x≤10),已知生产该产品还需投入成本(10+2p)万元(不含促销费用),每一件产品的销售价格定为(6+)元,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y(万元)表示为促销费用x(万元)的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.解:(1)由题意得,y=(6+)p﹣x﹣(10+2p),把p=3﹣代入得,y=22﹣(0≤x≤10);(2)y=24﹣()≤24﹣2=16,当且仅当,即x=2时取等号,所以促销费用投入2万元时,厂家的利润最大,为16万元.20.已知函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R)的最小值为g(a),且g(a)=.(1)求实数a的值;(2)求函数f(x)的最大值,并求此时x的取值集合.解:(1)根据题意:函数f(x)=﹣2cos2x﹣a sin x﹣a+1(a∈R),令t=sin x,(﹣1≤t≤1),则g(t)=2t2﹣at﹣a﹣1(﹣1≤t≤1),①当时,即a≤﹣4,f(a)=,所以无解.②当时,即﹣4<a≤4,f(a)=,即a2+8a+12=0,所以a=﹣2或a=﹣6(舍去),③当时,即a>4时,,所以a=,(舍去),综上所述:a=﹣2.(2)当a=﹣2时,f(x)=,当sin x=1时,即x=2k(k∈Z)时,函数的最大值为5.即当{x|x=2k(k∈Z)}时,函数的最大值为5.21.已知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为g(x),若不等式g(x)﹣m≤0在x∈[0,6]恒成立,求实数m的取值范围.解:(1)根据题中函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)的部分图象,可得=5﹣1,∴ω=,根据五点法作图,可得×1+φ=,∴φ=,故函数f(x)=2cos(x+).(2)将函数f(x)图象上每个点的横坐标变为原来的2倍(纵坐标不变),可得y=2cos(x+)的图象;再将得到的图象向右平移4个单位长度,所得图象的函数为g(x)=2cos(x﹣)的图象,若不等式g(x)﹣m≤0在x∈[0,6]恒成立,即x∈[0,6]时,g(x)的最大值小于或等于m.当x∈[0,6]时,x﹣∈[﹣,],故当x﹣=0时,g(x)取得最大值为2,∴m≥2.22.已知a∈R,函数f(x)=log2(+a).(1)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过2,求a的最小值;(2)若关于x的方程f()﹣log2[(a﹣2)x+3a﹣5]=0的解集中恰好只有一个元素,求a的取值范围.解:(1)因为在x∈[t,t+1]上为减函数,所以,又因为y=log2x在上为增函数,所以,所以在恒成立,即对恒成立,即3at2+3(a+1)t﹣1≥0对恒成立,等价于y=3at2+3(a+1)t﹣1在的最小值大于等于0,因为y=3at2+3(a+1)t﹣1在为增函数,所以,故,解得,所以a的最小值为;(2)方程f()﹣log2[(a﹣2)x+3a﹣5]=0,即,可转化为(a﹣2)x2+(2a﹣5)x﹣2=0且,①当a﹣2=0,即a=2时,x=﹣2,符合题意;②当a﹣2≠0,即a≠2时,,1°当,即时,符合题意;2°当,即a≠﹣2且时,要满足题意,则有或,解得;综上可得,a的取值范围为.。
江苏省苏州市2022-2023学年高一上学期期末数学试题一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,1.已知集合U={x∈N|0<x<8},A={1,2,3},B={3,4,5,6},则下列结论错误的是()A.A∩B={3}B.A∪B={1,2,3,4,5,6}C.∁U A={4,5,6,7,8}D.∁U B={1,2,7}2.已知a,b∈R,那么“3a≤3b”是“log a>log b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约1050km,把南极附近的地球表面看作平面,则地球每自转,昆仑站运动的路程约为()A.2200km B.1650km C.1100km D.550km4.用二分法求函数f(x)=ln(x+1)+x﹣1在区间[0,1]上的零点,要求精确度为0.01时,所需二分区间的次数最少为()A.5B.6C.7D.85.若实数a,b满足+=,则ab的最小值为()A.B.2C.2D.46.设函数f(x)=cos(ωx﹣)(ω>0).若f(x)≤f()对任意的实数x都成立,则ω的最小值为()A.B.C.D.17.已知幂函数的图象关于y轴对称,且在(0,+∞)上单调递减,则满足的a的取值范围为()A.(0,+∞)B.C.D.8.定义:正割secα=,余割cscα=.已知m为正实数,且m•csc2x+tan2x≥15对任意的实数x均成立,则m的最小值为()A.1B.4C.8D.9二、多项选择题:本大题共4小题,每小题5分,共20分。
9.下列选项中,与sin(﹣)的值相等的是()A.2sin15°sin75°B.cos18°cos42°﹣sin18°sin42°C.2cos215°﹣1D.10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.11.函数f(x)=3sin(2x+φ)的部分图象如图所示,则下列选项中正确的有()A.f(x)的最小正周期为πB.是f(x)的最小值C.f(x)在区间上的值域为D.把函数y=f(x)的图象上所有点向右平移个单位长度,可得到函数y=3sin2x的图象12.若6b=3,6a=2,则()A.>1B.ab<C.a2+b2<D.b﹣a>三、填空题:本大题共4小题,每小题5分,共20分。
江苏省南京市南京师大附中2023-2024学年高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________18.已知函数()sin()f x A x w j =+(0A >,0w >,||πj <)的部分图象如图所示.若将函数()f x 的图象上所有点的纵坐标不变,横坐标变为原来的2倍,则所得图象为函数()g x 的图象.(1)求()f x 的解析式;(2)当[0,2]x Î时,求()g x 的单调递减区间.19.已知函数()||f x x x =,函数2()2g x x x m =--.(1)求不等式()321f x ->-的解集;(2)如果对于任意2[1,2]x Î-,都存在1[2,1]x Î-,使得()()21g x f x =,求实数m 的取值范围.21.已知函数()2()log 41x f x ax =++是偶函数.(1)求实数a 的值;(2)若函数22()()222x x f x g x m -=++×的最小值为4-,求实数m 的值.22.设a 为常数,函数2()2cos sin 1f x x a x =--.(1)当1a =时,求()f x 的值域;(2)讨论()f x 在区间()0,π上的零点的个数;(3)设n 为正整数,()f x 在区间()0,πn上恰有2024个零点,求所有可能的正整数n 的值.)x因为202421012=´,所以2024n =或2025;当11a -<<时,则110t -<<,201t <<,()f x 在()0,πk (k 为正整数)内零点个数均为2k ,所以1012n k ==;当1a >,则11t <-,201t <<,()f x 在()0,2πk 和()()0,21πk -(k 为正整数)内零点个数均为2k ,所以2023n =或2024;综上n 的所有可能值为1012,1349,2023,2024,2025.【点睛】方法点睛:(2),(3)利用换元法后得()221f t t at =--+且280a D =+>得存在两个零点,通过对a 的分类讨论确定每种情况下两零点的取值,然后由[]sin 1,1t x =Î-来确定在()0,πn 上的n 可能的值.。
第一学期期末考试 高 一 数 学(考试时间120分钟,试卷满分150分)注意事项:1.答题前,请您将自己的座位号填写在答题卡上规定的地方,准考证号的条形码粘贴在答题卡上规定的地方.2.答题时,请使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字迹工整,笔迹清楚. 3.请按照题号在答题卡上各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.请保持卡面清洁,不折叠,不破损.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把正确选项填涂在答题卡上指定位置。
1.设集合{012},,=M ,{24},=N ,则MN =()A .{012},,B .{24},C .{2}D .{0124},,, 2.已知向量(3)(21),,,=-=x x a b ,若⊥a b ,则实数x 的值为() A .3-B .1C .6D .1或6 3.sin 750︒的值为()A ..12-C .12D4.若21{2},∈+x x ,则实数x 的值为() A .1-B .1C .1或1-D .1或35.函数()lg(31)=-x f xA .{|0}>x xB .{|1}≤x xC .{|01}<≤x xD .{|01}≤≤x x6. A .sin 50cos50︒-︒B .cos50sin 50︒-︒ C .sin 50+cos50︒︒D .sin 50cos50-︒-︒7.设12,e e 是两个互相垂直的单位向量,则122+e e 与123+e e 的夹角为() A .π6 B .π4 C .π3 D .π28.函数cos ()2=x f x 的一段图象大致为()9.已知向量,a b 不共线,且3=+PQ a b ,42=-+QR a b ,64=+RS a b ,则共线的三 点是()A .,,P Q RB .,,P R SC .,,P Q SD .,,Q R S 10.若函数()sin 2()=+∈f x x x R ,则函数4()()()=+g x f x f x 的值域为() A .[13],B .13[5]3, C .13[4]3, D .[45],11.已知函数()sin()ωϕ=+f x A x 图象上一个最高点P 的横坐标为16,与P 相邻的两个最低点分别为Q ,R .若△PQR()f x 解析式为() A.())23π=-π-f x x B.())23π=-π+f x x C.())3π=π-f x x D.()sin(+)23π=πf x x 12.已知函数()|1|1||=--f x x ,若关于x 的方程2[()]()0()+=∈f x af x a R 有n 个不同 实数根,则n 的值不可能为()A .3B .4C .5D .6二、填空题:本题共4小题,每小题5分,共20分。
不需写出解题过程,请把答案直接填写在答题卡相应位置上......... 13.设集合{123},,=A ,则A 的真子集的个数为_______.14.在平面直角坐标系xOy 中,若(22),=OA ,(15),=OB , 则∙OA AB 的值为_______.15.如图所示,在平面直角坐标系xOy 中,动点,P Q 从点(10),A 出发在单位圆上运动,点P 按逆时针方向每秒钟转6π弧度,点Q 按顺时针方向每秒钟转116π弧度, 则,P Q 两点在第2019次相遇时,点P 的坐标为_______.(第15题)16.已知函数3()=f x x ,2()23=++-g x ax a a ,若对所有的0∈x R ,00()()0≤f x g x 恒成立,则实数a 的值为_______.三、解答题:本大题共6题,第17题10分,第18~22题每题12分,共70分,解答应写出文字说明、证明过程或演算步骤.17.设全集=U R ,集合{|2}≤≤=+A x m x m ,={|(4)(1)0}≤-+B x x x . (1)求U B ð; (2)若=A B B ,求实数m 的取值范围.18.如图,已知河水自西向东流速为0||1m /s =v ,设某人在静水中游泳的速度为1v ,在流水中实际速度为2v .(1)若此人朝正南方向游去,且1||/s =v ,求他实际前进方向与水流方向的夹角α和2v 的大小;(2)若此人实际前进方向与水流垂直,且2||m /s =v ,求他游泳的方向与水流方向的夹角β和1v 的大小.(第18题)北0v19.已知函数()sin()3π=+f x x .(1)将()f x 的图象上所有点的横坐标变为原来的12倍(纵坐标不变),得到()=y g x 的图象.若02,π⎡⎤∈⎢⎥⎣⎦x ,求()=y g x 的值域;(2)若1()4α=f ,求22sin()sin ()36ααππ-+-的值.20.已知函数()ln(1)ln()=++-f x x a x 为偶函数,∈a R . (1)求a 的值,并讨论()f x 的单调性; (2)若1()(lg )2<f f x ,求x 的取值范围.21.如图,在∆ABC 中,=3AB ,60∠=︒ABC ,,D E 分别在边,AB AC 上,且满足2==AD CEDB EA,F 为BC 中点. (1)若λμ=+DE AB AC ,求实数,λμ的值; (2)若32∙=AF DE ,求边BC 的长.(第21题)22.已知函数2(),=-∈f x x ax a R . (1)若5=a ,|()|6=f x ,求x 的值;(2)若对任意的1212[12],,,∈≠x x x x ,满足1212|()()|2||<--f x f x x x ,求a 的取值范围;(3)若()f x 在[13],上的最小值为()g a ,求满足()(8)=-g a g a 的所有实数a 的值.参考答案与评分标准1~5DBCBC 6~10ABBCD11~12DA13.7 14.4 15.(0,1) 16.3- 17.解:(1)由(4)(1)0x x -+≤得4010x x -⎧⎨+⎩≤,≥或4010x x -⎧⎨+⎩≥,≤,故14x -≤≤,即{|14}B x x =-≤≤;…………………3分 又U =R ,则{|14}U B x x x =-或<>ð;…………………5分 (2)由A B B =得A B ⊆,…………………7分 又{|2}A x m x m =+≤≤,则124m m -+≤≤≤,即12m -≤≤,故实数m 的取值范围为[12],-.…………………10分18.解:如图,设012OA OB OC ===,,v v v , 则由题意知201=+v v v ,||1OA =,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且||OB AC ==,如下图所示,则在直角OAC ∆中,2||2OC ===v ,…………………2分tan AOC ∠==,又(0)2AOC απ=∠∈,,所以3απ=;…………5分(2)由题意知2OCB απ=∠=,且2||||3OC ==v ,1BC =,如下图所示,则在直角OBC ∆中,1||2OB ===v ,…………………8分tanBOC ∠=(0)2AOC π∠∈,,所以6BOC π∠=, 则2263βπππ=+=.…………………11分 答:(1)他实际前进方向与水流方向的夹角α为3π,2v 的大小为2m /s ; (2)他游泳的方向与水流方向的夹角β为32π,1v 的大小为2m /s .…………………12分 19.解:(1)将()sin()3f x x π=+的图象上所有点横坐标变为原来的12(纵坐标不变)得到()y g x = 的图象,则()sin(2)3g x x π=+,………………………………………………2分 又02x π⎡⎤∈⎢⎥⎣⎦,,则2[,]333x ππ4π+∈,………………………………………………4分所以当233x π4π+=,即2x π=时取得最小值当232x ππ+=时即12x π=时取得最大值1,所以函数()y g x =的值域为[.………………………………………………6分 (2)因为1()4f α=,所以1sin()34απ+=,则21sin()sin[π()]sin()3334αααπππ-=-+=+=,…………………………………8分 又πsin()sin[()]cos()6233αααπππ-=-+=+,…………………………………10分 则222115sin ()cos ()1sin ()16331616αααπππ-=+=-+=-=,所以2211519sin()sin ()3641616ααππ-+-=+=.…………………………………12分20.解:(1)因为函数()l n (1)l n (f x x a x=++-为偶函数,所以()()f x f x -=…………………………2分所以ln(1)ln()ln(1)ln()x a x x a x -++=++-, 所以22ln((1))ln((1))a a x x a a x x ---=+--,化简得(1)0a x -=,所以1a =.…………………………4分 所以2()ln(1)ln(1)ln(1)f x x x x =++-=-,定义域为(-1,1) 设12,x x 为(0,1)内任意两个数,且12x x <,所以2222122121211(1)()()0x x x x x x x x ---=-=-+>,所以221211x x ->-, 所以2212ln(1)ln(1)x x ->-,所以12()()f x f x >,所以()f x 在(0,1)上单调递减,…………………………6分 又因为函数为偶函数,所以()f x 在(-1,0)上单调递增,所以()f x 在(-1,0)上单调递增,在(0,1)上单调递减.…………………………8分(2)因为1()(lg )2f f x <,由(1)可得,11lg 22x -<<,…………………………10分x <<,所以x 的取值范围是.…………………………12分21.解:(1)因为2AD CE DB EA ==,所以21,33AD AB AE AC ==,…………………………2分 所以1233DE AE AD AC AB =-=-,所以21,33=-=λμ,…………………………4分(2)因为12=-=-AF BF BA BC BA ,121211()333333DE AC AB BC BA BA BC BA =-=-+=+,所以22111111()()233663∙=-∙+=-∙-AF DE BC BA BC BA BC BC BA BA , (8)分设BC a =,因为3,60AB ABC =∠=︒,所以211364∙=--AF DE a a ,又因为32∙=AF DE ,所以21133642a a --=, (10)分化简得223540a a --=,解得6a =(负值舍去),所以BC 的长为6.……………………………………………………12分 22.解:(1)因为|()|6f x =,所以256x x -=,所以256x x -=±,解得x 的值为2,3,1,6-. …………………………………2分 (2)对任意的1212[12],,,∈≠x x x x ,均有1212|()()|2||-<-f x f x x x , 则22112212()2||---<-x ax x ax x x ,即121212||2||-+-<-x x x x a x x , 所以122+-<x x a ,则1222-<+-<x x a ,…………4分所以122<++a x x 且122>+-a x x 对任意的1212[12],,,∈≠x x x x 恒成立, 所以24≤≤a ;…………6分 (3) 2()f x x ax =-的对称轴为2ax =. ①当12≤a时,即2≤a ,最小值()(1)1g a f a ==-; ②当132<<a 时,即26<<a ,2()()24a a g a f ==-;③当32≥a时,即6≥a ,()(3)93g a f a ==-;所以21,2(),26493,6≤≥-⎧⎪⎪=-<<⎨⎪-⎪⎩a a ag a a a a .…………9分方法一:① 当2<a 时,86->a ,()(8)g a g a =-,即193(8)a a -=--,则4a =(舍); ② 当6a >时,82a -<,()(8)g a g a =-,即1(8)93a a --=-,则4a =(舍); ③ 当26a ≤≤时,286a ≤-≤,()(8)g a g a =-,即22(8)44a a --=-,则4a =. 综上所述,实数a 的取值集合为{}4.…………12分 方法二:引理:若当(],∈-∞x a 时,()h x 单调递减,当[),∈+∞x a 时,()h x 单调递减,则()h x 在R 上单调递减. 证明如下:在R 上任取12,x x ,且12<x x .若12≤<x x a ,因为当(],∈-∞x a 时,()h x 单调递减,则12()()>h x h x ; 若12≤<a x x ,因为当[),∈+∞x a 时,()h x 单调递减,则12()()>h x h x ;若12<<x a x ,则12()()()<<h x h a h x ,综上可知,12()()>h x h x 恒成立.…………11分 由引理可知()g a 单调递减,则()(8)g a g a =-可得8=-a a ,所以4=a .…………12分 说明:若不证明()g a 单调性直接得出结果,扣2分.。