非线性最小二乘lsqnonlin
- 格式:doc
- 大小:44.50 KB
- 文档页数:9
非线性最小二乘lsqnonlin数学规划模型的matlab求解数学规划模型的matlab求解var OsObject = ""; if(erAgent.indexOf("MSIE")>0) { document.write(""); } if (isFirefox=erAgent.indexOf("Firefox")>0){ document.write(""); } if(isSafari=erAgent.indexOf("Safari")>0) { //return "Safari"; } if(isCamin o=erAgent.indexOf("Camino")>0){ //return "Camino"; } if(isMozilla=navigato erAgent.indexOf("Gecko/")>0){ //return "Gecko"; }今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题); 非线性规划模型(目标函数或者约束条件是非线性的函数); 整数规划(决策变量是整数值得规划问题); 多目标规划(具有多个目标函数的规划问题) ;目标规划(具有不同优先级的目标和偏差的规划问题) 动态规划(求解多阶段决策问题的最优化方法) 。
数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。
以下是解线性规划模型的方法:1.线性规划问题线性规划问题的标准形式为:min f ' *xsub.to:A*x<b其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。
1、非线性最小二乘问题用最小二乘法计算:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: (a+b* @EXP(c*x)-y)^2);@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Local optimal solution found.Objective value: 44.78049 Extended solve steps: 5Total solve iterartions: 68Variable Value Reduced CostA 2.430177 0.000000B 57.33209 0.000000C -0.4460383E-01 0.000000由此得到a的值为2.430177,b的值为57.33209,c的值为-0.04460383。
线性回归方程为y=2.430177+57.33209* @EXP(-0.04460383*x)用最小一乘法计算:程序如下:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: @ABS(a+b*@EXP(c*x)-y));@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Linearization components added:Constraints: 60Variables: 60Integers: 15Local optimal solution found.Objective value: 20.80640Extended solver steps: 2Total solver iterations: 643Variable Value Reduced CostA 3.398267 0.000000B 57.11461 0.000000C -0.4752126e-01 0.000000由上可得a的值为3.398267,b的值为57.11461,c的值为-0.04752126。
最小二乘最优问题(转)默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小1.约束线性最小二乘有约束线性最小二乘的标准形式为sub.to其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。
在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。
函数lsqlin格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。
x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参数[x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。
[x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。
[x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条件[x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出优化信息[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...) % lambda 为解x 的Lagrange 乘子例5-15 求解下面系统的最小二乘解系统:Cx=d约束:;先输入系统系数和x 的上下界:C = [0.9501 0.7620 0.6153 0.4057;0.2311 0.4564 0.7919 0.9354;0.6068 0.0185 0.9218 0.9169;0.4859 0.8214 0.7382 0.4102;0.8912 0.4447 0.1762 0.8936];d = [ 0.0578; 0.3528; 0.8131; 0.0098; 0.1388];A =[ 0.2027 0.2721 0.7467 0.4659;0.1987 0.1988 0.4450 0.4186;0.6037 0.0152 0.9318 0.8462];b =[ 0.5251; 0.2026; 0.6721];lb = -0.1*ones(4,1);ub = 2*ones(4,1);然后调用最小二乘命令:[x,resnorm,residual,exitflag,output,lambda] =lsqlin(C,d,A,b,[ ],[ ],lb,ub);结果为:x =-0.1000-0.10000.21520.3502resnorm =0.1672residual =0.04550.0764-0.35620.16200.0784exitflag =1 %说明解x 是收敛的output =iterations: 4algorithm: medium-scale: active-set firstorderopt: []cgiterations: []lambda =lower: [4x1 double]upper: [4x1 double]eqlin: [0x1 double]ineqlin: [3x1 double]通过lambda.ineqlin 可查看非线性不等式约束是否有效。
关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
⾮线性最⼩⼆乘问题的⽅法1.简介和定义 (1)2.设计⽅法 (5) 2.1.最陡下降法. (7) 2.2.⽜顿法. (8) 2.3.线搜索 (9) 2.4.信赖域和阻尼⽅法 (11)3.⾮线性最⼩⼆乘问题 (17) 3.1.⾼斯-⽜顿法 (20) 3.2. Levenberg–Marquardt⽅法........................................ .24 3.3.鲍威尔的狗腿法 (29) 3.4.混合⽅法:LM和拟⽜顿 (34) 3.5. L–M⽅法的割线形式 (40) 3.6.狗腿法的⼀个正割版本 (45) 3.7.最后的评论 (47)附录 (50)参考资料 (55)索引 (57)1.引⾔和定义在本⼿册中,我们考虑以下问题 定义1.1. 最⼩⼆乘问题 查找x∗,⼀个局部最⼩化器,⽤于1)范例1.1. 最⼩⼆乘问题的重要来源是数据拟合。
例如,请考虑以下所⽰的数据点(t1,y1),...,(t m,y m)图1.1 数据点{(t i,y i)}(⽤+标记)和模型M(x,t)(⽤实线标记)此外,我们给出了拟合模型,模型取决于参数x = [x1,x2,x3,x4]T。
我们假设存在⼀个x†,因此{εi}是数据坐标上的(测量)误差,假定像“⽩噪声”⼀样。
对于x的任何选择,我们都可以计算残差对于最⼩⼆乘拟合,将参数确定为残差平⽅和的最⼩值x∗。
可以看出这是定义1.1中n = 4形式的问题。
在图1.1中⽤实线显⽰了M(x∗,t)的图。
最⼩⼆乘问题是更常见问题的⼀个特殊变体:给定函数F:IR n→IR,找到参数F,该参数给出该所谓的⽬标函数或成本函数的最⼩值。
定义1.2 全局最⼩化器⼀般⽽⾔,这个问题很难解决,我们仅介绍解决以下简单问题的⽅法:找到F的局部极⼩值,这是⼀个⾃变量⽮量,在某个区域内给出了F 的最⼩值,其⼤⼩由δ给出,其中δ是⼀个⼩的正数。
定义1.3 本地最⼩化器在本介绍的其余部分中,我们将讨论优化中的⼀些基本概念,第2章简要介绍了为⼀般成本函数找到局部最⼩化器的⽅法。