自然电位1-1
- 格式:ppt
- 大小:2.00 MB
- 文档页数:49
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1 自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:mv g/L。
自然电位测井中国石油新闻中心[ 2007-04-24 15:43 ]早期的测井是将电极系放到井下,在供电电极供给电流时,地面用电位计观察测量电极间电位差的变化。
然而,在供电电极停止供电后,当提升电极跨过地层界面时,仍然观察到电位计指针的变化。
于是,发现了自然电位测井。
生活中,当我们信步在绿草花丛中,会闻到阵阵花香;当我们穿行于茶市酒楼间,会飘来茶香酒香,这都是气体分子在空气中的扩散。
同样,液体中也会发生扩散,把墨水滴入水中,颜色范围就会逐渐扩大,即使同一种液体,由于浓度不同也会发生高浓度向低浓度的扩散。
从化学实验中知道,当浓度不同的氯化钠盐水用渗透性膜隔开时,会发生扩散,即高浓度盐水的离子穿过渗透膜移向低浓度。
然而,钠离子和氯离子的迁移率是不同的,氯离子的迁移率大于钠离子。
于是,在渗透膜的低浓度一侧负离子增多,呈现负电荷;而高浓度一侧正离子增多,呈现正电荷。
此时,若把连接电位计的两个电极分别放到高浓度和低浓度溶液中,则可观察到电位计指针的变化,这种由于扩散作用产生的自然电位称扩散电动势。
油气井中,砂岩地层孔隙中通常饱含盐水,其氯化钠浓度常常高于井内钻井液的盐浓度,因此,在正对砂岩地层处,井壁钻井液一侧呈现负电荷,而砂岩地层呈现正电荷。
由于离子扩散而引起自然电位只是产生自然电位的一种原因,由于吸附、压差、氧化还原等原因也会引起自然电位。
在石油勘探中,主要是扩散、吸附产生的自然电位。
在上述诸多原因的作用下,井内自然电位的分布如图所示。
泥岩层的自然电位为“正”,砂岩层的自然电位为“负”。
如果以泥岩的自然电位为基线,则砂岩的自然电位向负偏,且砂岩的渗透性愈好,其自然电位相对泥岩愈“负”。
由于油、气、水都是贮藏在孔隙性好、渗透性好的砂岩中,因此用自然电位测井曲线找出渗透性地层,然后再配合其他测井曲线分辨油、气、水层。
视电阻率apparent resistivity 是电阻率法用来反映岩石和矿石导电性变化的参数。
自然电位的概念自然电位(Resting membrane potential)是细胞膜在静息状态下的电位差,通常指神经元或肌肉细胞的电位。
它是细胞内外离子浓度和通透性的结果,是神经元和肌肉细胞的重要生理指标。
神经元和肌肉细胞的自然电位是维持其正常功能的重要基础,对于神经传导、兴奋传递和肌肉收缩等生理过程起着至关重要的作用。
在细胞膜的生物电学性质中,自然电位是一个极为重要的参数。
自然电位的产生与细胞膜上的离子通道、静息离子内外浓度差异以及细胞膜的电容性质等密切相关。
这些因素共同导致了细胞膜内外的电位差,维持了细胞在静息状态下的电位稳定性。
自然电位的维持是靠离子泵和离子通道的共同作用。
在细胞膜上,存在着多种离子泵和离子通道,它们对细胞内的离子浓度和电位稳定起着关键作用。
其中,Na+/K+泵、Ca2+泵等离子泵通过主动转运维持了细胞膜内外的Na+、K+、Ca2+等离子浓度差异,而离子通道如Na+通道、K+通道、Cl-通道等则可以让离子在膜上自由扩散,从而调节细胞内外的电位。
在静息状态下,细胞内外离子浓度差异导致了自然电位的形成。
在神经元和肌肉细胞中,自然电位的值通常为-70mV左右。
这是由于在细胞膜上Na+/K+泵的作用下,细胞内外Na+、K+离子浓度产生了梯度,在添加上细胞质中还有蛋白质负电荷和其他阴离子的存在,导致在细胞膜上形成了负电位,细胞膜内外离子浓度不同也使得不同离子的渗透性也不同,K+离子内外渗透能力高,进一步增强了细胞膜上的负电位。
细胞静息状态的自然电位是细胞正常生理功能的基础。
首先,它是神经元和肌肉细胞的兴奋传导的基础。
在神经元兴奋传导的过程中,细胞外的刺激能够改变细胞膜上的离子通道的状态,导致离子通道的开放和关闭,从而改变了细胞膜的电位。
而对于神经元来说,只有当细胞膜上的电位达到一定的阈值时,才能够引发动作电位的产生,从而实现神经信号的传导。
而这一系列的兴奋传导,正是依赖于细胞膜上的自然电位的稳定性。
自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种最简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面淡水泥浆裸眼井必测的项目之一。
对于区分岩石性质,尤其是在区分泥质和非泥质地层方面,更有其突出的优点。
第一节自然电场的产生井内有自然存在的电位变化,说明井内有自然电流流动,井内必然有自然产生的电动势。
实践研究表明,能够引起井内自然电流,进而产生一定电位值的自然电动势有多种,包括扩散电动势、扩散吸附电动势、过滤电动势、氧化还原电动势等。
在沉积岩地区的油气钻井中,主要遇到的是前三种,而且常常以前两种占绝对优势。
一、扩散电动势(地层水与泥浆之间的直接扩散)砂岩孔隙中的地层水与井内泥浆之间,相当于不同浓度的两种NaCl溶液呈直接接触。
溶液中的Cl-和Na+将从高浓度的岩层一方朝着井内直接扩散(图1-1a)。
由于两种离子的移动速度(在电化学中称迁移率)不同,Cl-的移动速度比Na+大,于是扩散之后,在低浓度的泥浆一方将出现过多的移动速度快的Cl-,带负电;而在高浓度的岩层一方,则将出现移动速度慢的Na+离子,带正电。
正负离子在不同浓度的溶液两方相对集中的结果,便产生了电位差——地层一方的电位高于泥浆一方的电位。
但是,随着扩散过程的继续进行,所形成的电场反过来会影响离子进一步的扩散。
也就是使原来移动速度快的Cl-离子减慢,而使移动速度慢的Na+加快。
当溶液两方电荷积累到一定程度,使不同符号的离子以相等的速度继续扩散,达到所谓动态平衡时,电荷的积累便停止。
于是在不同浓度的两种溶液之间形成一固定的电动势。
这种由于溶液直接接触,并通过离子的自由扩散所形成的电动势,称为扩散电动势,如图1-1b中砂岩与泥浆接触处的情况。
图1-1 井中砂、泥岩接触情况下离子扩散及形成的电荷分布(C w >C mf )可以看出,扩散电动势的极性是,低浓度溶液一方为负,高浓度溶液一方为正。
第四章 自然电位斯仑贝谢在1928年发现了这样的现象:井中电极与放在远处的地面参考电极之间有电位差,该电位差随地层变化,通常相对于泥岩的电平有几十到几百毫伏(图4—1)。
研究过该现象的科学家有:道尔(1948和1950),威利(1949和1951),贡多尼(GO-ndouinndouin)等(1957,1962),贡多尼(Gon-douin)和斯卡拉(Scala)(1958),希尔(Hill)和安德森(Anderson)(1959)。
下文简要说明他们的论述和结论。
对着一种地层的自然电位能够由有关离子运移的两个过程引起:1)动电(电过滤或流动)电位(符号为{EK)是在电解质穿过多孔的非金属介质时产生的;2)电化学电位(符号为Ec .)是在两种不同矿化度的流体直接接触,或由半渗透膜(与泥岩相当)将它们隔开的条件下出现的。
4.1. 动电电位的起因 动电电位是在钻井液柱和地层之间存在压差,钻井液滤液被迫流入地层时出现的。
滤液通过以下地层流动,就产生动电电位:1.)渗透层的泥饼;2)正在受到侵入的渗透性地层;3)泥岩层。
希尔和安德森(1959)研究了通过泥饼的流动电势(图4—2),而在此几年以前(1951)威利提出了通过泥饼的如下的电势E 的关系式:()][1mV p K E ykm c ∆=其中y 值在0.57到0.900之间。
通过泥岩存在的过滤电位已在实验室中由贡多尼和斯卡拉(1958),希尔和安德森(1959)得到了验证(图4—3.)。
安德森等发表的现场资料也证实了泥岩动电电位的存在。
贡多尼和斯卡拉给出了泥岩的电动势:()][1mV p K E yksh ∆=其中的K 2=-0.018(R mf )1/3。
流动电位的大小取决于几个因素: 1) 过介质的压差△p ;2) 移动滤液的有效电阻率R mf ; 3) 滤液的介电常数D 1 4) 仄塔电位ξ。
5)滤液粘度μ。
因为泥饼的渗透率很低(10-2~10-4毫达西),所以钻井液柱和地层之间的压差大部分都降落在泥饼处。
自然电位与腐蚀电位
自然电位与腐蚀电位
自然电位是金属埋入土壤后,在无外部电流影响时的接地电位。
自然电位随着金属结构的材质、表面状况和土质状况、含水量等因素不同而异,一般有涂层的钢材的自然电位在一0.4~ -0. 7V( CSE)之间,在雨季土壤湿润时,自然电位会偏负,一般取平均值-0.55 V。
每种金属浸在一定的介质中都有其特定的电位,一般被称为该金属的阴极保护工程的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如铁原子失去电子而变成铁离子溶人土壤)受到腐蚀而阴极区得到电子受到保护。
在同一电解质中,不同的金属具有不同的腐蚀电位。
如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。
钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0. 275V。
埋入地下后,电位低的部位遭受腐蚀。
新旧储罐连接后,由于新储罐腐蚀电位低,旧储罐电位高,电子从新储罐流向旧储罐,新储罐首先腐蚀。
同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。
自然电位与保护效果
保护电位达到了保护标准规定的-0.85 V,保护效果好。
产生原因
由于离子扩散而引起自然电位只是产生自然电位的一种原因,由于吸附、压差、氧化还原等原因也会引起自然电位。
在石油勘探中,主要是扩散、吸附产生的自然电位。