测井方法4自然电位解释
- 格式:pptx
- 大小:310.63 KB
- 文档页数:24
自然电位测井曲线的分析解释自然电位测井曲线是一种常见的地球物理测井方法,通过测量地层自然电位的变化来获取地下地质信息。
本文将对自然电位测井曲线的分析解释进行详细探讨,帮助读者更好地了解和应用该方法。
一、自然电位测井曲线的概述自然电位测井曲线是通过电极在地层中测量地下电场的差异而得到的测井曲线。
电极对地下电场的测量可以反映地层的电性、含水层、岩石类型和地下流体性质等信息。
自然电位测井曲线通常以深度为横坐标,电位值为纵坐标,形成一条随深度变化的曲线。
二、自然电位测井曲线的主要特征1. 深度响应特征:自然电位测井曲线随深度变化,可以发现一些特殊的变化规律,如异常电位值、陡降和平缓变化等。
2. 地层特征反映:自然电位测井曲线能够反映地下地层的一些特征,如含水层界面、地层厚度和地下流体类型等。
3. 岩性识别:不同岩石具有不同的导电特性,自然电位测井曲线可以通过岩性识别来帮助解释地下岩石类型。
4. 地下流体性质分析:自然电位测井曲线的变化可以推测地下流体(如水、油、气)的存在和特性。
三、自然电位测井曲线的解释方法1. 异常值分析:通过对自然电位测井曲线的异常值进行分析,可以判断是否存在异常地层或地下流体的存在。
异常值可能是由含水层边界、地下断层、堆积岩层等引起的。
2. 曲线趋势分析:对自然电位测井曲线的整体趋势进行分析,可以发现地层的变化规律,如地下流体的分布、地层的递增或递减等。
3. 地下流体判别:通过自然电位测井曲线的变化,结合其他地球物理测井数据,可以判别地下流体的类型和性质。
4. 岩性推测:利用自然电位测井曲线与岩石类型的关系,可以对地下岩石进行识别和推测。
四、自然电位测井曲线的应用领域1. 油气勘探:自然电位测井曲线在油气勘探中起到重要的作用,通过分析曲线特征和解释结果,可以确定油气藏的存在和性质。
2. 水源勘探:自然电位测井曲线可以用于水源勘探,通过测量地下含水层的特征,判断水源的位置和质量。
3. 工程应用:自然电位测井曲线在地质工程和水文地质工程中也有广泛应用。
⾃然电位、⾃然伽马测井基本原理⾃然电位测井⽅法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是⾃然产⽣的,故称为⾃然电位。
使⽤图1所⽰电路,沿井提升M电极,地⾯仪器即可同时测出⼀条⾃然电位变化曲线。
⾃然电位曲线变化与岩性有密切关系,能以明显的异常显⽰出渗透性地层,这对于确定砂岩储集层具有重要意义。
⾃然电位测井⽅法简单,实⽤价值⾼,是划分岩性和研究储集层性质的基本⽅法之⼀。
图 1⾃然电位测井原理⼀、井内⾃然电位产⽣的原因井内⾃然电位产⽣的原因是复杂的,但对于油井,主要有以下两个原因:地层⽔的含盐量(矿化度)与泥浆的含盐量不同,地层压⼒和泥浆柱压⼒不同,在井壁附近产⽣了⾃然电动势,形成了⾃然电场。
1.扩散电动势(Ed)的产⽣如图2所⽰,在⼀个玻璃容器中,⽤⼀个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放⼈⼀只电极,此时表头指针发⽣偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的⾃然趋势,即⾼浓度溶液中的离⼦受渗透压的作⽤要穿过渗透性隔膜迁移到低浓度溶液中去,这⼀现象称为离⼦扩散。
在扩散过程中,由于Cl-的迁移率⼤于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,⾼浓度溶图2扩散电动势产⽣⽰意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产⽣了电动势,所以可测到电位差。
离⼦在继续扩散,⾼浓度溶液中的Cl-,由于受⾼浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;⽽⾼浓度溶液中的Na+,由于受⾼浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触⾯附近的电荷聚集使正、负离⼦的迁移速度相等时,电荷聚集就停⽌了,但离⼦还在继续扩散,溶液达到了动平衡,此时电动势将保持⼀定值:这个电动势是由离⼦扩散作⽤产⽣的,故称为扩散电位(Ed),也称扩散电动势,可⽤下式表⽰:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时S P为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种最简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面淡水泥浆裸眼井必测的项目之一。
对于区分岩石性质,尤其是在区分泥质和非泥质地层方面,更有其突出的优点。
第一节自然电场的产生井内有自然存在的电位变化,说明井内有自然电流流动,井内必然有自然产生的电动势。
实践研究表明,能够引起井内自然电流,进而产生一定电位值的自然电动势有多种,包括扩散电动势、扩散吸附电动势、过滤电动势、氧化还原电动势等。
在沉积岩地区的油气钻井中,主要遇到的是前三种,而且常常以前两种占绝对优势。
一、扩散电动势(地层水与泥浆之间的直接扩散)砂岩孔隙中的地层水与井内泥浆之间,相当于不同浓度的两种NaCl溶液呈直接接触。
溶液中的Cl-和Na+将从高浓度的岩层一方朝着井内直接扩散(图1-1a)。
由于两种离子的移动速度(在电化学中称迁移率)不同,Cl-的移动速度比Na+大,于是扩散之后,在低浓度的泥浆一方将出现过多的移动速度快的Cl-,带负电;而在高浓度的岩层一方,则将出现移动速度慢的Na+离子,带正电。
正负离子在不同浓度的溶液两方相对集中的结果,便产生了电位差——地层一方的电位高于泥浆一方的电位。
但是,随着扩散过程的继续进行,所形成的电场反过来会影响离子进一步的扩散。
也就是使原来移动速度快的Cl-离子减慢,而使移动速度慢的Na+加快。
当溶液两方电荷积累到一定程度,使不同符号的离子以相等的速度继续扩散,达到所谓动态平衡时,电荷的积累便停止。
于是在不同浓度的两种溶液之间形成一固定的电动势。
这种由于溶液直接接触,并通过离子的自由扩散所形成的电动势,称为扩散电动势,如图1-1b中砂岩与泥浆接触处的情况。
图1-1 井中砂、泥岩接触情况下离子扩散及形成的电荷分布(C w >C mf )可以看出,扩散电动势的极性是,低浓度溶液一方为负,高浓度溶液一方为正。
名词解释:1、储集层的厚度:储集层顶、底界面之间的厚度即为储集层的厚度。
2、油气层有效厚度:指在目前经济技术条件下能够产出工业性油气的油气层实际厚度,即符合油气层标准的储集层厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剥下的厚度。
3、高侵剖面:冲洗带电阻率Rxo明显大于原状地层电阻率Rt称为泥浆高侵,高侵地层电阻率的径向变化称为高侵剖面。
4、低侵剖面:Rxo明显低于Rt,称为泥浆低侵,低侵地层电阻率的径向变化称为低侵剖面。
5、自然电位:在电阻率测井过程当中,在供电电极不供电时,仍可在井内测量到电位的变化,这个电位是自然存在的,故称为自然电位。
6、泥饼:泥浆在失水时所形成的附着于井壁的泥糊叫泥饼。
7、标准测井在一个地区,为了进行地层对比,选择几种有效的测井方法,分别对每口井全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。
8、地层水电阻率地层孔隙中所含水的电阻率,用Rw表示。
9、泥浆滤液电阻率泥浆经过渗滤,除去固体颗粒后所剩余液体的电阻率。
10、泥浆侵入在钻井时,为防止井喷和工程上的需要,通常井内泥浆柱的静压力要略高于地层压力,此压力差将造成泥浆滤液进入渗透层,即所谓泥浆侵入。
简答题:1、声波(时差)测井的主要用途?答:(1)声波(时差)测井可以用来求储层孔隙度;(2)与中子或密度结合可以确定岩性;(3)识别气层,气层纵波时差有周波跳跃现象。
2、如何用声变测井资料评价套管固井质量?答:声变测井资料包括声幅(首波)及全波变密度信息,声幅大说明固井质量差,反之固井质量好。
当胶结好时,地层波信号很强,套管波信号很弱,当胶结不好时,相反。
3、、水层的主要电性特征?1)自然电位异常大,一般大于油层,这是地层岩性较纯、渗透性较好和厚度较大的水层的标志;2)深探测电阻率数值低,砂泥岩剖面水层电阻率一般为2—3欧姆米;3)明显高侵、即浅探测电阻率明显大于深探测电阻率淡水泥浆中,水层由于泥浆侵入的影响,使浅探测电阻率较高,有时会接近于油层,淡水层的深探测电阻率明显低值。
1.自然电位测井:进行自然电位测井时,将电极N 放在地面,电极M 用电缆送至井下,沿井轴提升电极M 测量自然电位随井深的变化,所记录的自然电位随井深变化的曲线叫自然电位测井曲线1.扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed 。
2.扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda 。
3.自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。
4.自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。
5、梯度电极系:成对电极之间的距离小于单电极到相邻成对电极之间的距离,即AM MN <6、泥浆低侵:地层孔隙中原来含有的流体电阻率,比渗入地层的泥浆滤液电阻率高时,泥浆滤液侵入后,浸入带岩石电阻率降低。
它一般出现在地层水矿化度不很高的油层7、泥浆高侵:地层孔隙中原来含有的流体电阻率较低,电阻率较高的泥浆滤液侵入后,使侵入带岩石电阻率升高。
它多出现在水层8、电位电极系:成对电极间的距离大于单一电极最近的一个成对电极之间的距离的电极系。
9、理想电位电极系:成对电极间距离趋向无穷大的电极系叫~10、地层因素:含水岩石的电阻率与所含地层水电阻率的比值总是一个常数,它只与岩样的孔隙度,胶结情况和孔隙形状有关,而与饱和含在岩样孔隙中的地层水电阻率无关。
这个比值定义为~。
11、理想梯度电极:成对电极之间距离趋近于零的电极系叫~。
12、成对电极:在电极系中A 与B (或M 与N )叫~。