2
将系数用ωm 表示
ℏω ℏω / kBT 3ω e m 1 k BT CV (T ) = 9 R ω 2 dω ∫ ωm 0 ( e ℏω / kBT − 1)2
2
kT = 9R ℏωm
3 ℏω / kT m
∫
0
(e
ξ 4 eξ
低温极限有特别意义, 在一定的温度 T, ħω >> kBT 的振动对热容几乎没有贡献, 热容主要来自
ɶ ℏω < k BT
的振动模。所以在低温极限, 热容决定于最低频率 的振动, 这些正是波长最长的弹性波 前面已经指出, 当波长远远大于微观尺 度时, Debye 的宏观近似是成立的。因此, Debye 理论在低温的极限是严格正确的
− β ℏω j
1 E j (T ) = ℏω j + − β ℏω j 2 1− e
ℏω j e
ℏω j 1 = ℏω j + β ℏω j 2 e −1
前一项为零点能,后一项代表平均热能 求内能对 T 的微商得到晶格热容
ℏω j ℏω j / kBT e d E j (T ) k BT = kB 2 ℏω j / k B T dT e −1
0
显然将发散
换句话说, 振动模的数目是无限的 这是因为理想的连续介质包含无限的自由度 然而实际晶体是由原子组成的, 如果晶体包含 N 个原子, 自由度只有 3N 个 表现出德拜模型的局限性
波长远大于微观尺度时, Debye 的 宏观处理方法应当是适用的 但当波长已短到和微观尺度可比, 以至更短时, 宏观模型必然会导致很大的偏差以致完全错误 Debye 的解决办法: 假设 ω大于某一ωm 的短波实际 上不存在, 而对ωm 以下的振动都应用弹性波的近似 ωm 则根据自由度确定