热容的量子理论
- 格式:ppt
- 大小:1.04 MB
- 文档页数:96
第一章材料热学性能内容概要:本章讲述材料的热容、热膨胀、热传导、热稳定性等方面的内容,并简述其物理本质。
主要内容和学时安排如下:第一节材料的热容重点掌握经典热容理论和量子热容理论的内容;理解温度、相变等对热容的影响;了解热容的几种测量方法,对热分析法的原理和应用要重点理解。
第二节材料的热膨胀重点掌握线膨胀系数、体膨胀系数、热膨胀的物理本质;了解热膨胀的测量方法;理解热膨胀分析方法在材料中的应用。
第三节材料的热传导掌握热传导定律;热传导的物理本质;理解热传导的影响因素。
(共6个学时)第一节 材料的热容一、热容的定义:不同的物体升高相同的热量时其温度会不同,温度升高1K 所需要的能量定义为热容: ∆T ∆=Q C 定容热容:如果在加热过程中,体积不变,则所提供的热量全部用于粒子动能(温度)的增加,用Cv 表示 ()V V Q C ∆=∆T定压热容:如果在加热过程中保持压力不变,则物体的体积自由膨胀,这时所提供的热量一部分用于升高体系的温度,一部分用于体系对外做功,用Cp 表示()()V V V Q U P V U C T ∆∆+∆∆===∆T ∆∆T ()()()()()P P P P P P Q U P V U V H C P T T T∆∆+∆∆∆∆===+=∆T ∆∆T ∆∆ T c m H =c 为0-TK 时平均比热容,即质量为1Kg 的物质在没有化学反应条件下,温度升高1K 时所需的热量,单位为J/(Kg.K )定压热容>定容热容,一般实验测得的是恒压热容CpTQ m C P ∆∆=1 即在T T T -+∆温度范围内的平均热容: 当0T ∆→时,P C 即可认为是TK 时的热容dTdQ m C P 1= 摩尔恒压热容:1mol 物质在没有化学反应和相改变条件下,升高1K 所需的能量,用C pm 表示 摩尔恒容热容:KT V v C C m Vm Pm 2∂=- M C C P Pm =(M 为摩尔质量)二、热容理论实验发现:在不发生相变条件下,多数物质的热容Cv 在高温下,逐于一恒定值;低温区3V C T ∝;0T →时,0V C =。
3.3 固体热容的量子理论一. 经典理论二. 爱因斯坦模型(Einstein 1907年)D b1912三. 德拜模型(Debye 1912年)四. 实际晶体的热容参考:黄昆书 3.8节(p122-132)Kittel 书5.1节(79-87)前面提到:热容是固体原子热运动在宏观性质上的最直接体现,因而对固体原子热运动的认识实际上首先是从固体热容研究开始的。
我们讨论固体热容仍是以揭示原子热运动特征为目的,而完整地介绍热容统计理论应是统计物理的内容。
而完整地介绍热容统计理论应是统计物理的内容固体热容由两部分组成:部分来自晶格振动的贡献,称为固体热容由两部分组成:一部分来自晶格振动的贡献称为晶格热容;另一部分来自电子运动的贡献,称为电子热容。
除非在极低温度下,电子热容是很小的(常温下只有晶格热容的1%)。
这里我们只讨论晶格热容。
经典理论的失败固体比热Dulong-Petit 定律曾在多年间被用作量度原子质量的一种技巧,然而,后来詹姆斯·杜瓦及海因里希·夫里德里希·韦伯的研究表明杜隆-珀蒂定律只于高温时成立;在低温时或像金刚石这种异常地硬的固体,比热还要再低一点。
在低温时或像金刚石这种异常地硬的固体热要再低点双原子气体比热气体比热的实验观测也引起了对均分定理是否有效的质疑。
定理预测简单单元子气体的摩尔比热容应约为3cal/(mol·K),而双原子气体则约为()7cal/(mol·K)。
实验验证了预测的前者,但却发现双原子气体的典型摩尔比热容约为5cal/(mol·K),并于低温时下跌到约3cal/(mol·K)。
麦克斯韦于1875年指出实验与均分定理的不合比这些数字暗示的要坏得多。
金属的比热根据古典德鲁德模型,金属电子的举止跟几乎理想的气体一样,因此它们应该向(3/2)NekB 的热容,其中Ne 为电子的数量。
不过实验指出电子对热容的供给并不多很多的金属的摩尔比热容与绝缘体几乎样给并不多:很多的金属的摩尔比热容与绝缘体几乎一样。
关于固体热容爱因斯坦量子理论的一点讨论(杨宇轩 南漳县第二中学 湖北 襄阳 441100)摘要:阐述了固体热容的经典理论所遇到的困难。
对固体热容的爱因斯坦量子理论作了一些讨论;并评述了爱因斯坦对固体热容及量子理论的发展所做的重大贡献。
关键词:热容 量子理论 谐振子引言热容是研究固体物质性质时一个非常重要的参数;因此,热容是化学家和物理学家共同关心的问题。
1819年,原是化学家的杜隆(P.L.Dulong ,1785—1838)和物理学家珀替(A.T.Petit ,1790—1820)在长期合作研究物质的物理性质与原子特性的关系之后,进行了一系列比热实验。
他们选择的对象是各种固体,想通过热容研究其物理性质。
在大量数据的基础上他们发现,对于许多物质原子量和比热的乘积往往是同一常数。
由此总结出杜隆---珀替定律:“所有简单物体的原子都精确地具有相同的热容量。
” 在固体中讨论的热容,一般指的是定容热容V C 。
由经典理论,固体热容主要由两部分贡献:晶格振动的晶格热容;电子热运动的电子热容。
根据经典统计理论的能量均分定理推导出来,固体热容3V B C Nk =;也就是说固体的热容是一个与温度和材料无关的常数,这就是杜隆---珀替定律。
在高温时,该定律与实验结果符合的很好。
但是,在低温时,实验中发现固体热容不再保持常数,而是随着温度的下降而趋于零。
为了解决这个矛盾,爱因斯坦在1907年发展了普朗克的量子假说,第一次提出了固体热容的量子理论。
固体比热的量子统计推导固体中原子的热运动可以等效为个谐振子的振动。
根据量子理论,谐振子的能量本征值为:n 1()2j j n εω=+ (其中0,1,2,3...j n =) (1)将晶体看作热力学系统,在简谐近似下,每个谐振子所代表的振动是独立的,可以分辨的粒子服从波尔兹曼分布。
谐振子的统计平均能量为:121j J j j E e βωωω=+- (2) 晶格的定容热容为: 22()(1)j B j B k T jB V B k T e k TC k e ωωω=- (3)由公式(3),可以看出,谐振子的能量在量子理论中与振动频率有关,而且晶格的热容确实与温度有关。
§3-5 晶格比热容的量子理论研究固体的比热容是探索固体微观结构与运动机理和重要手段。
固体物理学中的比热容一般是指定容比热容,即()()V VE T C T T ⎛⎫∂= ⎪∂⎝⎭…………………………………………………………(3-5-1)其中()E T 为固体在温度T 时的热力学平均能量。
()V C T 主要是由两部分组成,即()()()V Vc Ve C T C T C T =+………………………………………………………(3-5-2)其中()Vc C T 是晶格(离子)热运动的结果,称晶格比热容;()Ve C T 是电子热运动的结果,称为电子比热容。
电子比热容仅在低温下才起作用。
本节仅涉及晶格比热容。
3. 5. 1 经典理论的困难如果不考虑量子效应,用经典的能量均分定理求N 个原子三维运动的总能量E 。
设晶体有N 个原子,则自由度数为3N ,根据经典统计的能量均分定理,每个简谐振动的平均能量为j B E k T =,因而晶体的总能量为3B E Nk T =,比热容为() 3V B C T Nk =,摩尔比热容为V 0B C (T) =3N k =3R (大约为-125J K mol ⋅⋅),是一个与材料性质和温度无关的常数,此即为杜隆—珀替定律。
该定律在高温下成立,但在低温下不成立。
经实验发现,温度很低时,V C 很快下降,并当T →0时,3V C T ∝,很快趋势于零,如图3-5-13. 5. 2 晶格比热的一般公式我们知道,晶体中原子的热振动可归结为3N 个相互独立的简谐振动模。
每个谐振子的能量均是量子化的。
由于量子化,使得每个振动平均热运动能量不再是B k T ,如果忽略零点能,而成为()() j j n ω q q ,则由式(3-3-14)可得:()B ()1j j j k T E T eωω=- ……………………………………………………………(3-5-3)晶体的总的能量为:()B 3()11j Nj k T j E T eωω==-∑…………………………………………………………(3-5-4)晶体的总热容:()()()()3311N N j j V V Vj j VdE T E T C T C T C T dT ==⎛⎫∂=== ⎪∂⎝⎭∑∑或……………………(3-5-5) 但在具体计算过程中碰到了求和的困难,计算出成果N 个简正振动频率往往是十分复杂的。