cos
2kπ n
i sin
2kπ n
(k 0, 1, 2, )
当 k 0,1,2, ,n 1时,得到 n 个相异的根 :
w0
r
1 n
cos
n
i
sin
n
,
w1
r
1 n
cos
2π n
i
sin
2π n
,
对于 x, y R, 称 z x yi或 z x iy 为复数.
实部(Real)
记做:Re(z)=x
虚部(Imaginary) 记做:Im(z)=y
当 x 0, y 0 时, z iy 称为纯虚数;
当 y 0时, z x 0i x为实数.
3. 两复数相等: 当且仅当它们的实部和虚部分别相等.
n(cosn i sin n ) r(cos i sin )
于是 n r, cosn cos , sin n sin ,
显然 n 2kπ, (k 0, 1, 2, )
故
1
rn,
2kπ ,
n
w
n
z
r
1 n
z1 z2 z1 z2 z1 z2
等号成立的充要条件是 z1, z2位于同一直线上.
y
几何意义如图:
z2 z1 z2
z1 z2
z1
o
x
5、 复数的三角表示法
利用直角坐标与极坐标的关系
x r cos
y