复数及其代数运算
- 格式:ppt
- 大小:277.00 KB
- 文档页数:8
高三数学 复数的运算,在复数集中解方程,复数运算的几何意义 知识精讲(一)复数的运算(1)复数的代数形式:()z a bi a b R =+∈,;(2)复数的加法与减法:()()()()a bi c di a c b d i +±+=±+±; (3)复数的乘法与除法:()()()()a bi c di ac bd ad bc i ++=-++;a bi c di ac bd c d bc adc d i ++=+++-+2222; (4)z z z z z z z z z m n m n m n mn n n n⋅==⋅=⋅+,,()()1212; (5)i 的周期性ii i i i i n Z n n n n 414243411++-+==-=-=∈,,,(); (6)ω的性质及应用:若n 为虚数,且ω31=,则称ω为1的虚立方根, 1的立方根为112321232,,-+--i i 且有性质:102++=ωω。
ωωωωω3211===-,,(7)常用计算结果:①()()a bi a bi a b +-=+22; ②()122±=±i i ;③11+-=ii i ; ④122±⎛⎝⎫⎭⎪=±i i 。
(二)在复数集中解方程(1)形如()f z z z ,,||=0型的复数方程解法,通常设()z x yi x y R =+∈,,利用复数相等的充要条件,将复数问题实数化。
(2)一元二次方程ax bx c 20++=,若a 、b 、c 中至少有一个虚数,则 ①求根公式仍适用; ②韦达定理仍适用;③判别式判别根的情况无效; ④虚根成对出现性质无效。
(3)解形如ax b n+=0的二项方程()a b C ,∈(三)复数运算的几何意义(1)复数加、减法的几何意义(平行四边形和三角形法则) (2)复数乘法的几何意义(逆时针和顺时针旋转) (3)复数除法的几何意义 (4)复数开方的几何意义注意:有关模与辐角(主值)的变化。
第三节 复数的代数形式及运算【目录】题型1 复数代数形式的运算 题型2 复数代数形式的综合应用三、解答题题型1 复数代数形式的运算1.计算:(1)54)31()22(i i -+; (2)1996)12(32132i ii-+++-。
解:(1)原式===-=+--+=-⋅+w wi i i i i 22)2()2321(2])1[()231(2)1(5252254i i 31)2321(2+-=+-。
(其中ω=i 2321+-)。
(2)原式=9989989982)22(])12[(321)321(i i i i i ii i +=-+=-+++=i+i 4×249+2=i+i 2=-1+i.2.设f(x, y)=x 2y-3xy+y 2-x+8,求:(1)f(1+i, 2-i)的值; (2)[f(2-5i, 2-5i)]-1的值。
解:(1)f(1+ i, 2-i)=(1+i)2·(2-i)-3(1+i)(2-i)+(2-i)2-(1+i)+8 =2i(2-i)-3(3+i)+(3-4i)-1-i+8=2+4i-9-3i+3-4i+7-i=3-4i ;(2)若x=y ,则f(x, y)=x 3-2x 2-x+8,又x=2-5i ,∴(x-2)2=(-5i)2,即x 2-4x+9=0,而x 3-2x 2-x+8=(x 2-4x+9)(x+2)-2x-10, ∴f(2-5i, 2-5i)=0-2(2-5i)-10=-14+25i,∴[f(2-5i, 2-5i)]-1=i i i 108510872165221614)52()14(521422--=--=+---. (3)∵(1-i 3)10=1-C 110·i 3+C 210·(i 3)2-C 310·(i 3)3+…,∴(1-i 3)10的展开式中奇数项之和为复数(1-i 3)10的实数。
又(1-i 3)10=[-2·10)]2321(i +-=210ω10=210ω=210)2321(i +-=-29+29i 3,∴(1-i 3)10的展开式中各奇数项的和为-29。