隧道爆破设计方案(大综合)
- 格式:doc
- 大小:268.00 KB
- 文档页数:23
爆破工程的专项方案1. 项目背景爆破工程是利用爆炸能量将岩石或混凝土等硬质材料破碎或分离的一种施工方法。
在基础建设、矿山开采、隧道工程等领域都有广泛的应用。
本文将以某隧道工程爆破工程为例,详细介绍爆破工程的专项方案。
2. 爆破工程方案概述本项目为一条隧道工程,共计长2000米,宽15米,高12米。
地质条件为花岗岩和片岩交替分布,隧道深度在500米左右。
爆破工程主要是对隧道内部岩石进行爆破破碎,以便后续进行挖掘和支护。
3. 爆破工程前期准备3.1 地质勘察在爆破工程前,需要对隧道周边的地质条件进行详细勘察,了解岩石的种类、密度、裂缝等情况。
同时,还需进行地下水位的测定。
3.2 爆破方案设计根据地质勘察结果,确定爆破参数,包括爆炸药品种及用量、起爆序列、起爆时间等。
3.3 安全防护措施在爆破工程进行期间,需要设置爆破区域的限制线,并做好警戒工作,以确保周边人员和设施的安全。
4. 爆破工程具体方案4.1 爆破药品选择考虑到花岗岩和片岩的不同性质,我们选择使用不同种类的爆炸药品。
对于花岗岩,采用乳化炸药,以其爆炸速度快、能量高的特点;对于片岩,采用炸药捆包、炸药导爆管的方式进行爆破。
4.2 爆破参数确定在选择了适当的爆炸药品后,需要根据地质勘察结果,确定具体的爆破参数。
首先要确定爆破的钻孔深度和布孔距离,其次是合理设置爆破药量和装药方式。
同时,还要考虑到隧道内的地下水位,避免对地下水系统造成破坏。
4.3 起爆序列和起爆时间根据隧道的具体情况,确定起爆序列和起爆时间。
一般来说,需要先进行远端钻孔的爆破,然后再进行近端钻孔的爆破。
同时,要确保每个钻孔的起爆时间合理,以避免产生不均匀的爆炸效果。
4.4 安全防护措施在进行爆破工程时,需要在爆破区域周围设置警戒线,并由专人进行警戒工作。
同时,还需要对爆破现场进行视频监控,确保周边设施和人员的安全。
5. 爆破工程实施在做好前期准备工作后,可以开始进行爆破工程的实施。
隧道爆破方案第1篇隧道爆破方案一、项目背景随着我国基础设施建设的快速发展,隧道工程在公路、铁路、城市轨道交通等领域发挥着重要作用。
在隧道施工过程中,爆破作业是加快施工进度、提高工程效率的重要手段。
为确保隧道爆破作业的顺利进行,降低安全风险,提高爆破效果,特制定本方案。
二、爆破目标与原则1. 爆破目标:在确保安全的前提下,实现隧道开挖轮廓的整齐、稳定,减少对周边环境的影响。
2. 爆破原则:(1)安全第一:确保爆破作业过程中人员、设备、环境的安全。
(2)环保节能:降低爆破作业对周边环境的污染,提高爆破材料利用率。
(3)经济合理:合理选择爆破参数,降低工程成本。
(4)技术先进:采用国内外先进的爆破技术和设备,提高爆破效果。
三、爆破方案设计1. 爆破方法:采用深孔爆破法。
2. 爆破参数:(1)炮孔布置:根据隧道断面形状、大小及地质条件,合理布置炮孔,确保炮孔间距、排距符合规范要求。
(2)炮孔深度:根据隧道围岩等级、开挖断面及施工要求,确定炮孔深度。
(3)装药结构:采用乳化炸药,采用连续装药结构。
(4)起爆方式:采用非电导爆管雷管起爆。
3. 爆破安全措施:(1)爆破作业前,对爆破人员进行安全技术培训,确保熟悉爆破作业流程及安全操作规程。
(2)对爆破区域进行安全警戒,设立明显的警戒标志,确保无关人员不得进入。
(3)爆破作业过程中,严格按照国家相关法律法规和标准要求,做好安全防护措施。
(4)加强爆破作业现场监测,及时处理安全隐患。
四、爆破作业实施1. 爆破作业前准备:(1)办理爆破作业许可证。
(2)编制爆破作业设计书。
(3)采购合格的爆破材料。
(4)对爆破人员进行安全技术培训。
2. 爆破作业流程:(1)炮孔测量:根据设计图纸,对炮孔位置进行测量,确保炮孔布置合理。
(2)炮孔钻孔:采用合适的钻机进行钻孔,确保炮孔质量。
(3)装药:按照设计要求,进行装药作业。
(4)堵塞:采用适当的材料进行炮孔堵塞,确保堵塞质量。
目录一、工程概况 (1)1.工程简介 (1)2.重要工程数量 (2)3.重要技术标准 (2)二、钻爆设计控制要点 (3)三、减震措施 (3)四、重要部位爆破设计 (4)1.Ⅲ级围岩采用上下台阶法钻爆施工 (4)2.Ⅳ级围岩采用台阶法弧形导坑留核心土钻爆施工 (6)3.V级围岩CRD法钻爆施工 (12)4.V级围岩紧急停车带采用双侧壁导坑法开挖 (15)五、爆破施工程序及作业标准 (20)六、爆破震动监测 (23)七、施工中异常现象应对措施 (24)隧道爆破施工方案一、工程概况1.工程简介⑴宝鸡至坪坎高速公路项目位于陕西西部的宝鸡市南部秦岭山区, 路线起于银洞峡隧道进口, 在神沙河设连续钢构桥后折向南设15.5公里专长隧道翻越秦岭, 沿车道河河谷向南, 经岩湾、田坝, 止于凤县坪坎, 向南与拟建定汉线坪坎至汉中(石门)公路衔接。
路线全长42.558公里。
其中秦岭专长隧道建筑规模(双向六车道)目前居世界第一, 是全线控制性工程, 我标段承建此隧道出口段施工, 设计为分离式隧道。
左线长3735m, 设计纵坡1.65%, 起讫里程为ZK164+265~ZK168+000;右线长3790m, 设计纵坡 1.65%, 起讫里程为K164+350~K168+140,设计净空为1400cm*500cm, 洞门形式均采用端墙式。
⑵地形、地貌及工程地质本标段跨越秦岭中山地貌区(K164+265~K168+150)和车道河河谷(K168+150-k168+217)。
中山地貌区属于花岗岩侵蚀地貌, 山高坡陡, 高耸的山峰与深切峡谷相间出现, 地形起伏大, “V”型谷发育, 相对高差一般在400m以上, 河流纵比降大, 河流冲积物重要为漂卵石, 两岸谷坡上基岩裸露;车道河属汉江一级支流褒河的支流。
发源于秦岭南坡, 由北向南流经岩湾、核桃坝、坪坎, 在留坝县江西营北侧汇入褒河。
车道河两岸谷坡较缓, 呈阶梯状, 谷坡上发育高阶地, 谷底宽阔平坦, 发育一级阶地, 冲积物为漂卵石和砂砾土, 厚度不超过15m。
一、编制依据为确保隧道爆破施工的安全、高效和质量,根据国家、交通部、建设部、山西省现行设计、施工规范、验收标准及有关文件,结合施工现场实际情况,特制定本爆破隧道专项方案。
二、工程概况本项目隧道全长X公里,属于中长隧道,地质条件复杂,围岩等级为IV级。
隧道进出口浅埋,岩溶发育,易发生坍塌。
隧道施工采用光面爆破技术,以确保施工质量和安全。
三、爆破方案设计1. 爆破方案选择根据隧道地质条件和施工要求,本工程采用光面爆破技术,实现隧道爆破施工的安全、高效和质量。
2. 爆破参数设计(1)炮孔布置:采用直眼掏槽、直眼爆破孔、斜眼光面爆破孔的布置方式。
(2)钻孔直径:根据岩石硬度,钻孔直径为Φ76mm。
(3)钻孔深度:根据隧道围岩等级,钻孔深度为4-6m。
(4)装药量:根据岩石硬度、钻孔深度和隧道围岩等级,采用分段装药,周边眼装药量应小于1kg/m,掏槽眼装药量应小于2kg/m。
(5)起爆顺序:先引爆掏槽眼,再引爆光面爆破孔。
四、爆破安全措施1. 安全防护措施(1)爆破作业人员必须经过专业培训,取得爆破作业资格证书。
(2)爆破作业前,应对施工现场进行安全检查,确保无安全隐患。
(3)爆破作业区域应设置警戒线,禁止无关人员进入。
(4)爆破作业时,爆破人员应站在安全位置,确保安全。
2. 爆破振动控制(1)根据地质条件和隧道结构,合理选择爆破参数,以降低爆破振动。
(2)爆破振动监测:在隧道进出口、洞内及洞口附近设置监测点,实时监测爆破振动。
(3)爆破振动超标时,应及时调整爆破参数,降低爆破振动。
3. 爆破飞石控制(1)根据地质条件和隧道结构,合理选择爆破参数,以降低爆破飞石。
(2)爆破作业时,爆破人员应站在安全位置,确保安全。
(3)爆破作业区域应设置警戒线,禁止无关人员进入。
五、爆破器材管理1. 爆破器材采购:严格按照国家相关规定,采购合格的爆破器材。
2. 爆破器材储存:将爆破器材存放在专用仓库,确保安全。
3. 爆破器材使用:爆破人员应严格按照操作规程使用爆破器材。
一、项目概述本项目为某大型基础设施建设,涉及道路、隧道、桥梁等工程。
为确保施工安全和工程质量,特制定本爆破专项设计方案。
二、爆破工程概况1. 工程地点:某市某县2. 工程规模:道路全长30km,隧道全长2km,桥梁5座3. 工程地质条件:主要包括硬质岩、软岩、断层、节理等4. 施工工期:预计工期为3年三、爆破设计方案1. 爆破方法(1)隧道爆破:采用台阶法开挖,爆破方法为光面爆破,以减少对围岩的扰动。
(2)道路爆破:采用钻爆法,爆破方法为深孔爆破,确保路基稳定。
(3)桥梁爆破:根据实际情况,采用爆破或切割法进行拆除。
2. 爆破材料(1)炸药:选用2#岩石乳化炸药,药卷直径32mm,装药系数0.6-0.8。
(2)雷管:选用抗杂散电流电雷管,确保爆破安全。
(3)导爆索:选用抗杂散电流导爆索,确保导爆索的传爆性能。
3. 爆破参数(1)炮眼直径:根据岩石性质和施工要求,炮眼直径为38mm。
(2)炮眼深度:隧道爆破炮眼深度为1.8m~2.0m,道路爆破炮眼深度为2.5m~3.0m。
(3)装药量:根据岩石性质、炮眼深度和施工要求,装药量为每米炮眼深度0.6kg。
(4)炮眼数目:根据岩石性质、炮眼深度和施工要求,炮眼数目为每米炮眼深度4个。
4. 爆破施工组织(1)成立爆破施工领导小组,负责爆破施工的全面管理工作。
(2)建立健全爆破施工管理制度,确保爆破施工安全。
(3)对爆破人员进行专业培训,提高爆破人员的安全意识和操作技能。
(4)严格按照爆破设计方案进行爆破施工,确保爆破效果。
四、爆破安全措施1. 制定爆破安全操作规程,确保爆破施工安全。
2. 对爆破施工区域进行封闭,防止无关人员进入。
3. 在爆破施工前,对爆破区域进行清场,确保爆破安全。
4. 在爆破施工过程中,设置警戒线,确保爆破安全。
5. 对爆破产生的飞石、空气冲击波和地震效应进行监测,确保爆破安全。
五、爆破效果评估1. 爆破效果评估指标:爆破震动、爆破飞石、爆破地震波、爆破破坏等。
隧道爆破方案范文隧道爆破是一种常用的拆除或改造隧道结构的方法,它可以用于建设新的交通隧道、拆除老化的隧道、修复遭受损坏的隧道以及扩大现有隧道的尺寸等。
隧道爆破方案需要综合考虑隧道的结构、材料、地质条件以及周围环境等因素。
一、前期准备工作在进行隧道爆破之前,需要开展一系列的前期准备工作,包括对隧道的勘察与测量、地质灾害风险评估、环境评估和安全评估等。
根据前期调查的结果,确定隧道爆破的具体方案。
二、爆破方案设计1.爆破参数确定根据地质条件和隧道结构等因素,确定爆破参数,包括爆破药剂种类、使用的雷管数量和间距、起爆时间等。
同时,还需要确定爆破阻尼器的设置,以控制爆破震动。
2.爆破区域划分将隧道划分为若干爆破工作面,根据工作面的大小和地质条件的不同,制定相应的爆破方案。
需要注意的是,每个工作面的爆破要有一定的时间间隔,以防止爆炸冲击波之间的相互作用。
3.安全措施制定制定相应的安全措施,并在整个爆破过程中严格执行。
包括工作面的封闭、疏散通道的设立、安全防护设备的配备等。
4.爆破时序设计根据工程施工的需要,制定相应的爆破时序设计。
确定起爆顺序和时间,以确保各个爆破工作面的爆破效果。
三、施工流程1.拆除边坡在进行隧道爆破之前,需要先对其周围的边坡进行拆除,以确保爆破过程的安全性。
拆除边坡可以采用爆破方式,也可以采用机械挖掘和人工拆除等方法。
2.爆破准备在实施爆破之前,需要进行爆破准备工作。
包括清理隧道内的杂物和水分,防止对爆破效果产生影响;安装防震材料,减小爆炸冲击波的影响;设置探测仪器,实时监测爆破震动等。
3.爆破作业根据爆破方案进行爆破作业。
首先在爆破工作面钻孔,将装有爆破药剂的装药管安装在孔内。
然后,将爆破药剂按照设计要求充填到孔内,并将雷管正确安装在孔口。
爆破药剂装药完毕后,进行引爆操作,使爆破工作面发生爆炸。
四、安全保障措施1.爆破前安全警示在爆破前对周边地区进行安全警示,设置相应的警示标志和告示牌,以提醒人员注意爆破作业。
铁路隧道爆破专项施工方案隧道爆破施工方案一、工程概况本施工方案针对一条铁路隧道爆破施工工程进行设计,隧道总长1000米,断面尺寸为6米×6米,隧道主要由砂岩组成,其中含有少量的硬破碎带。
本施工方案旨在通过爆破施工方式,达到开挖隧道的目的。
二、施工准备1.施工区划划定:将施工区域划分为爆破区、清理区和安全区三个区域,确保施工过程中人员的安全。
2.清理区准备:设置专门的清理区,将爆破产生的碎石等物料及时清理,以保证隧道畅通。
3.安全措施:在施工现场设置警示标志,并配备专业的爆破工具和设备,确保人员的施工安全。
三、方案实施1.爆破孔设计:根据隧道的尺寸和岩性,合理设计爆破孔的位置和数量。
常用的爆破孔布置方式为正交网状孔布置。
爆破孔的直径为80毫米,间距为1.5米。
2.钻孔施工:采用钻石钻头进行钻孔,钻孔深度为8米。
钻孔完成后,将孔口清理干净,并进行测量,以保证孔深的准确性。
3.装药与装载:在爆破孔中放入爆破药品,使用专门的装药管进行装药。
每个爆破孔装药量为1.2kg。
装药后,进行装载,使用钢筒将装药管放入孔中,并用砂浆将孔口封堵。
4.起爆:在装药完成后,待所有爆破孔都装载完成后,进行起爆。
起爆采用电起爆方式,并设置合理的爆炸延时时间,以实现同步起爆。
5.清理炮口:爆破后,将隧道内的碎石和残留的炸药清理出来,确保隧道畅通,以便后续开挖施工。
四、安全控制1.施工现场安全:施工现场周边设置警示标志,划定安全区,严禁无关人员进入施工现场,在工人之间设置警戒线,确保施工期间的人员安全。
2.装药安全:装药时必须佩戴防爆眼镜和手套,并进行良好的防护。
在装药完成后,装药工具和装药管必须妥善存放,防止发生意外。
3.爆破起爆安全:起爆时严格按照操作规程进行,保证安全起爆。
起爆前必须确认无人员在爆破区域内,以免造成人员伤亡。
五、施工效果评估在爆破完成后,对隧道进行观察和测量。
观察爆破区域的情况,检查隧道内是否有裂缝和滑坡等现象;测量隧道的尺寸和地形,以评估爆破效果。
隧道爆破设计方案(台阶法)方案名称:隧道爆破设计方案 (台阶法)一:引言隧道爆破是在建设隧道时,为了方便地挖掘土层或岩层而采取的破坏方法之一。
台阶法是一种常见且有效的隧道爆破设计方法,本文将详细介绍隧道爆破设计方案 (台阶法) 的各个环节。
二:勘察分析1. 地质与地下水情况调查2. 隧道预期断面与纵断面设计3. 岩体参数测定4. 隧道支护方式设计三:设计参数确定1. 地表炮点布置方案2. 钻孔、装药、引爆线参数确定3. 投掷体参数确定4. 施工工期安排四:施工准备1. 施工人员培训及安全意识提升2. 施工设备准备与检修3. 施工现场布置五:施工过程1. 预处理2. 钻孔施工3. 装药4. 引爆线布置5. 投掷体布置6. 引爆操作六:安全保障与风险控制1. 施工现场安全措施2. 爆破后的处理措施3. 灾害预防与应急响应准备七:质量控制1. 爆破震动监测与控制2. 爆破产物排泄控制3. 施工现场环境治理八:验收与总结1. 施工记录整理2. 施工成果验收3. 总结与改进措施九:附件本文档涉及的附件包括但不限于:1. 地质与地下水调查报告2. 隧道预期断面与纵断面设计图纸3. 岩体参数测定报告4. 施工现场安全控制措施图纸5. 施工记录与监控数据法律名词及注释:1. 隧道爆破:在隧道建设中,采用爆破方法破坏土层或岩层以便挖掘。
2. 台阶法:一种常见的隧道爆破设计方法,按照一定的步骤逐层破坏岩体。
---方案名称:隧道爆破设计方案 (层状分区法)一:引言隧道爆破是在隧道建设中常用的破坏土层或岩层的方法之一,层状分区法是一种常见的隧道爆破设计方法。
本文将详细介绍隧道爆破设计方案 (层状分区法) 的各个环节。
二:勘察分析1. 地质与地下水情况调查2. 隧道预期断面与纵断面设计3. 岩体参数测定4. 隧道支护方式设计三:设计参数确定1. 地表炮点布置方案2. 钻孔、装药、引爆线参数确定3. 施工工期安排四:施工准备1. 施工人员培训及安全意识提升2. 施工设备准备与检修3. 施工现场布置五:施工过程1. 预处理2. 钻孔施工3. 装药4. 引爆线布置5. 引爆操作六:安全保障与风险控制1. 施工现场安全措施2. 爆破后的处理措施3. 灾害预防与应急响应准备七:质量控制1. 爆破震动监测与控制2. 爆破产物排泄控制3. 施工现场环境治理八:验收与总结1. 施工记录整理2. 施工成果验收3. 总结与改进措施九:附件本文档涉及的附件包括但不限于:1. 地质与地下水调查报告2. 隧道预期断面与纵断面设计图纸3. 岩体参数测定报告4. 施工现场安全控制措施图纸5. 施工记录与监控数据法律名词及注释:1. 隧道爆破:在隧道建设中,采用爆破方法破坏土层或岩层以便挖掘。
全断面法隧道爆破设计方案————————————————————————————————作者:————————————————————————————————日期:隧道爆破设计方案一、工程概述本合同段有四座隧道。
隧道设计为左右幅分离式双洞单向行车双车道,净跨11.2m,净高7.0m的三心圆拱曲墙断面。
隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。
本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅲ级围岩采用全断面法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。
爆破方法采用光面爆破。
二、光面爆破的特点光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。
据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。
根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施工。
三、光面爆破方案的确定目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。
根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。
四、全断面(Ⅲ级围岩)爆破方案设计1、爆破参数的选择光面爆破参数选择主要与地质条件有关,其次是炸药的品种与性能;隧道开挖断面的形状与尺寸,装药结构与起爆方法。
隧道主要为Ⅲ、Ⅳ、Ⅴ级围岩,Ⅲ级围岩全断面爆破断面面积为83.1m2,Ⅳ级围岩上导坑爆破断面面积为58.45m2,采用2号岩石乳化炸药,Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破。
隧道爆破设计方案本爆破设计方案依据《爆破规程》,并结合我单位类似工程施工经验进行编制。
一、工程地质条件本隧道处于岑溪至梧州高速公路上,位于广西岑溪市与苍梧县交界处,隧道内普遍分布的第四系松散层以粘土、含碎石亚粘土为主,其厚度变化较大,在硬质砂岩地段一般在0.5-0.8m,而在软质长石砂岩、页岩地段,层厚0.5-20m不等,下伏基岩为中奥陶统缩尾岭组岩层,岩性以砂、页岩为主,以层状和页片状为主要特征,岩层产状多在80-1300∠30-650间。
由于地层时代较老,经历多次构造运动,岩层中节理、裂隙发育,风化带厚度较大,弱风化与微风化间的界面从地表往下在7-66m之间,在地表测绘区存在两条断裂带,对隧道施工有影响的F2断层从ZK32+130及YK32+140附近经过,隧道洞身围岩分别为Ⅰ-Ⅲ类,其中以Ⅱ类围岩居多,毛洞形成较差,洞口稳定性差,容易产生坍塌。
本隧道为两座独立的分离式隧道,两座独立隧道的轴线间距为50米,其中隧道右线长1452米(YK30+935 ~YK32+387),左线长1440米(ZK30+920 ~ZK32+360)。
隧道以Ⅱ类围岩为主,其中明洞72m,占2.5%;Ⅰ类围岩150m,占5.2%;Ⅱ类围岩为2040m,占70.5%;Ⅲ类围岩为630m,占21.8%。
二、人员组织为搞好动态设计,成立专门的爆破小组,组长:孙学斌,成员:袁开新、游元明、兰作火。
三、爆破器材本工地所用的爆破器材主要有以下几种:序号火工品名称规格产地1 乳化炸药32mm¡200mm¡150g 广西建化机械厂2 非电毫秒雷管1~15段广西建化机械厂3 导爆索外径≤6.2mm广西建化机械厂4 火雷管8# 广西建化机械厂5 导火索外径5.2~5.8mm 广西建化机械厂四、爆破方案根据不同的地质条件,选择不同的施工方法。
S1、S2-1衬砌段为土方开挖,开挖方法为人工配合挖掘机施工,不做爆破设计;当S2-1衬砌段接近S2-2衬砌段时及S2-2衬砌段,采用松动爆破,人工配合挖掘机开挖。
隧道爆破设计方案一、工程概述本合同段有四座隧道,双幅全长4077m。
隧道设计为左右幅分离式双洞单向行车双车道,净跨11.2m,净高7.0m的三心圆拱曲墙断面。
隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。
本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅲ、Ⅳ级围岩采用全断面和台阶法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。
爆破方法采用光面爆破。
二、光面爆破的特点光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。
据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。
根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施工。
三、光面爆破方案的确定目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。
根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。
四、全断面(Ⅲ级围岩)爆破方案设计1、爆破参数的选择光面爆破参数选择主要与地质条件有关,其次是炸药的品种与性能;隧道开挖断面的形状与尺寸,装药结构与起爆方法。
隧道主要为Ⅲ、Ⅳ、Ⅴ级围岩,Ⅲ级围岩全断面爆破断面面积为83.1m2,Ⅳ级围岩上导坑爆破断面面积为58.45m2,采用2号岩石乳化炸药,Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破。
周边眼采用不耦合间隔装药,其他炮眼采用连续柱状装药,采用导爆索和毫秒延期导爆雷管起爆。
严格控制周边眼的装药量,采用合理的装药结构,尽可能的使药沿药眼长均匀的分布,这是实现光面爆破的重要条件。
在光面爆破中,炮眼间距E、最小抵抗线V、炮眼密集系数K、装药密度q 是相互制约的。
(1)炮眼深度炮眼深度受开挖面大小的影响,炮眼过深,周边岩石的夹制作用较大,故炮眼深度不宜过大,一般最大炮眼深度取断面宽度(或高度)的~倍,同时考虑到Ⅲ级围岩每循环掘进一般不超过3.0m,Ⅳ级围岩一般不超过1.5m。
故Ⅲ级围岩钻孔深度取3.0m。
钻孔采用YT-28风钻,钻头直径为φ40mm,炮眼孔径为φ42mm,为克服及减少岩石的夹制作用,除掏槽眼和底眼深度L=3.2米外,其余周边眼、辅助眼等炮孔深度L=3.0米。
(2)、光面爆破不耦合系数(D)及装药直径(d)炮眼直径dk与药卷直径di之比称为不偶合系数,合适的周边眼不偶合系数应使爆炸后作用于炮眼壁的压力小于围岩抗压强度,理论与实践证明,当岩石种类为软岩(我标段四座隧道岩层)时,不偶合系数在~范围时,缓冲作用最佳,光爆效果最好D=dk/di式中D——不耦合系数;dk——炮眼直径(cm);di——装药直径(cm);在实际使用过程中,我们采用直径为32mm的2号岩石乳化炸药,周边眼采用2号岩石乳化炸药沿长度方向对半切(相当于φ20小药卷)即周边眼的不耦合系数D=42/20=,符合D=~的要求。
(3)周边眼间距(E)、最小抵抗线(V)和相对距系数(K)最小抵抗线与开挖的隧道断面大小有关。
在断面跨度大,光爆眼所受到的夹制作用小,岩石比较容易崩落,最小抵抗线可以大些,断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小些,最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石最小抵抗线可大些。
我标段四座隧道岩质主要为软岩,故确定最小抵抗线(V)为~。
相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。
K= E/V式中, E为周边炮眼间距,cm;V为最小抵抗线,cm;K值总是小于1,当d=38~46mm,E=30~50cm,V=40~60cm时,K=~。
考虑到权爆区岩石节理较发育,并参照规范周边眼间距取值范围30cm-50cm, 对周边眼间距取45cm,最小抵抗线值取60cm,K=E/V=。
(4)装药量计算:光面爆破装药量的计算,主要是确定周边眼光爆层炮眼装药集中度,即以kg/m表示,一般采用实验方法求得或从同类工程中选取。
q=QEV式中q—装药集中度,kg/m;Q—单位体积耗药量,g/m3;E—周边眼间距,m;V—最小抵抗线,m;通过现场试验和施工经验数据,用计算法进行校核,确定q=~0.15kg/m。
按照q=0.15kg/m计算。
(5)炮眼数量N=qS/ηγ式中:N——炮眼数量,不包括未装药的空眼;q——单位炸药消耗量,一般取q=~2.4kg/m³;S——开挖段面积,㎡;η——装药系数,即装药长度与炮眼长度的比值,暂取;γ——每米药卷的炸药质量,kg/m,2号岩石乳化炸药γ=。
即:N=(×)/(×)=192个其中掏槽眼6个(向内倾斜15°),辅助掏槽眼8个(向内倾斜15°),辅助眼111个,周边眼53个,底眼14个,非装药眼四个(增加临空面,增强爆破效果)。
单位:厘米(6)每一循环装药量计算及分配Q=qV式中:q ——单位炸药消耗量,取q=1.47kg/m ³;V ——1个开挖循环进尺爆落岩石总体积,m ³;即:Q=××=366.47kg各炮眼装药量分配如下:因为计算炮眼数量时,采用η=,由周边眼装药集中度q=0.15kg/m,得出周边眼装药系数为,设其它各炮眼装药系数取值:掏槽眼,底眼,辅助眼,则6×+8×+53×+14×+111×=(6+8+53+14+111)η计算得:η=若计算η≠0. 7,则需重新调整η值代入N=qS/ηγ,并适当调整所设掏槽眼、底眼、辅助眼装填系数,使试选η值与计算η相符。
所以按上列装填系数进行分配是可以的。
每个掏槽眼装药量=××=2.544kg,折合为卷,采用13卷每个辅助掏槽眼装药量=××=2.713kg,折合为卷,采用卷;每个辅助眼装药量=××=2.439kg,折合为卷,采用12卷;每个周边眼装药量=××=0.447kg,折合为卷,采用2卷;每个底眼装药量=××=2.621 kg,折合为卷,采用13卷;(7)装药结构和起爆方式光面爆破采用不耦合装药,软岩一般不耦合系数为~,炮眼装药按装药集中度计算出的药量均匀装入炮眼内。
为克服底部炮眼的阻力,在炮眼底部放半个标准药卷,使光爆层易于脱离岩体。
施工中采用如下图装药结构:①1/2普通标准药卷(φ32)起爆;②普通标准药卷沿长度方向对半切(相当于φ20小药卷)不耦合间隔装药。
图2 周边眼装药结构示意图(8)光面爆破的分区起爆顺序为:掏槽眼——辅助眼——底板眼——周边眼。
采用多段微差起爆(由内向外),其中主爆区的周边眼比辅助眼眼跳2段起爆,并用同一段雷管。
主爆区使用非电毫秒雷管,周边眼用导爆索一次同时起爆。
2、装药量分布及光面爆破参数表(见下表)全断面开挖断面面积:83.1平方米,掘进长度按3.0m考虑。
炸药单耗量:k=1.47kg/立方米。
复式楔形掏槽:槽口尺寸80cm×240cm和120cm×280cm。
周边眼直径:φ42mm,使用φ32mm药卷切半(相当于小直径药卷φ20mm),装药不耦合系数λ=。
周边眼间距E=45cm,最小抵抗线V=40~60cm,E/V=~,单孔装药量q=0.4kg。
光面爆破参数表2五、台阶法(Ⅳ级围岩)光面爆破设计方案(结合前文内容)1.光面爆破不偶合系数、装药直径公式:/k i D d d == 式中 D 一不偶合系数; dk —炮眼直径,mm; di —炸药直径,mm;a —爆生气体分子余容系数; P —爆生气体初始压力; c σ—岩石的三轴抗压强度; r —绝热指数,;在实际操作过程中,对于周边眼的药卷,我们采取将标准φ32mm 的2号岩石乳化炸药沿轴线对半切(相当于φ20mm )。
这个数值与理论计算值相近,则实际周边眼不偶合系数D=dk/di =42/20=,符合规范中软岩装药不耦合系数D=的要求。
式中: dk 炸药—炸药直径; di 炮眼—炮眼直径。
2.确定周边眼间距(E)、最小抵抗线(W)和相对距系数(K)最小抵抗线与开挖的隧道断面大小有关。
在断面跨度大,光爆眼所受到的夹制作用小,岩石比较容易崩落,最小抵抗线可以大些,断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小些,最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石最小抵抗线可大些。
我标段四座隧道岩质主要为软岩,故确定最小抵抗线(V)为~。
相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。
K= E/V式中, E为周边炮眼间距,cm;V为最小抵抗线,cm;K值总是小于1,当d=38~46mm,E=30~50cm,V=40~60cm时,K=~。
考虑到权爆区岩石节理较发育,并参照规范周边眼间距取值范围30cm-50cm, 对周边眼间距取45cm,最小抵抗线值取60cm,K=E/V=。
3、炮眼装药系数周边眼的装药集中度采用规范取值范围~0.15kg.m-1,取0.14kg/m,其它炮眼的填充系数选用见下表:4、循环进尺综合考虑各项因素,取L=1.5m5、孔径和孔深凿岩采用一字纤头,直径为Φ=40mm,则炮眼孔径为Φ=42mm。
孔深除掏槽、底角眼为1.7m外,其它采用1.5m。
孔深:为克服岩石的夹制作用,对掏槽眼和底板眼取1.7m(20cm的超深),其余各眼孔深取1.5m。
6、炮眼数量(采用2号岩石乳化炸药时)N眼=ad2式中N—炮眼数目(个);q—单位炸药消耗量,取1.2kg.m-3;S—开挖断面面积(m2),S=98.84m;A—炮眼装填系数,取;d一药卷直径,乳化炸药(除周边眼外)为32mm;N=××××=224(个)7、装药结构和起爆方式光面爆破采用不耦合装药,软岩一般不耦合系数为~,炮眼装药按装药集中度计算出的药量均匀装入炮眼内。
为克服底部炮眼的阻力,在炮眼底部放半个标准药卷,使光爆层易于脱离岩体。
施工中采用如下图装药结构:①1/2普通标准药卷(φ32)起爆;②普通标准药卷沿长度方向对半切(相当于φ20小药卷)不耦合间隔装药。
图2 周边眼装药结构示意图8、光面爆破的分区起爆顺序为:掏槽眼——辅助眼——底板眼——周边眼。