湖北省高中数学青年教师基本功考核笔试试题(含答案)
- 格式:pdf
- 大小:211.70 KB
- 文档页数:9
高中数学教师素养考试试题及答案一、选择题(每题2分,共20分)1. 函数f(x) = 3x^2 + 2x - 5的导数是:A. 6x + 4B. 6x^2 + 2C. 3x + 2D. 6x2. 以下哪个是等差数列:A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 4, 9, 16D. 1, 2, 4, 83. 已知集合A = {1, 3, 5},B = {2, 4, 6},A∩B的结果是:A. 空集B. {1}C. {2}D. {3}4. 如果a > 0且a ≠ 1,那么log_a(a^2)的值是:A. 1B. 2C. 4D. 85. 以下哪个是二次方程的根:A. x = 2B. x = -3C. x = 1/2D. x = 06. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr7. 以下哪个是正弦函数的周期:A. 2πB. πC. 1D. 28. 已知直线y = 2x + 3与x轴的交点是:A. (0, 3)B. (-3/2, 0)C. (3, 0)D. (0, 0)9. 以下哪个是复数的实部:A. 3 + 4iB. 4 - 3iC. 3D. i10. 以下哪个是向量的模:A. (3, 4)B. 5C. (-3, -4)D. √(3^2 + 4^2)二、填空题(每题2分,共20分)11. 函数f(x) = x^3 - 2x^2 + x - 2的极值点是_。
12. 等比数列1, 3, 9, 27...的公比是_。
13. 已知集合C = {x | x > 5},D = {x | x < 10},则C∪D表示的集合是_。
14. 已知a = log_2(3),则a的值大约是_。
15. 函数y = sin(x)的振幅是_。
16. 圆的周长公式是_。
17. 已知直线y = -x + 5与y轴的交点坐标是_。
18. 复数4 - 3i的共轭复数是_。
2023年教师资格(高级中学)-数学知识与教学能力(高中)考试备考题库附带答案第1卷一.全考点押密题库(共50题)1.(单项选择题)(每题 5.00 分) 投掷两枚均匀的骰子,己知点数之和是偶数,则点数之和为6的概率为()。
A. 5/18B. 1/3C. 1/2D. 以上都不对正确答案:A,2.(单项选择题)(每题 5.00 分) 设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是()。
A. 当λ≠0时,Ma垂直于aB. 当A>0时,Ma与a方向相反C. 当A正确答案:D,3.(单项选择题)(每题 5.00 分) 如果函数f(x)当x→x0时极限存在,则函数f(x)在点x0处()。
A. 有定义B. 无定义C. 不一定有定义D. 连续正确答案:C,4.(单项选择题)(每题5.00 分) —口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为()。
A. 2.5B. 3.5C. 3.8D. 以上都不对正确答案:C,5.(单项选择题)(每题 5.00 分) 《普通高中数学课程标准(实验)》中对于数学课程目标的阐述体现了()的有机结合。
A. 知识与技能、过程与方法、情感态度价值观B. 知识技能、问题解决、数学思考C. 知识技能、数学思考、情感与态度D. 解决问题、数学思考、情感与态度正确答案:A,6.(单项选择题)(每题 5.00 分) 考査正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()。
A. 1/75B. 2/75C. 3/75D. 4/75正确答案:D,7.(单项选择题)(每题 5.00 分) 设A,B都是n阶可逆矩阵,则()。
A. A+B是n阶可逆矩阵B. A+B是n阶不可逆矩阵C. AB是n阶可逆矩阵D. |A+B|=|A|+|B|正确答案:C,8.(单项选择题)(每题 5.00 分) 《义务教育数学课程标准(2011年版)》中指出:义务教育阶段的数学课程具有基础性、普及性和(),数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
教师资格考试高中数学学科知识与教学能力模拟试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、设函数(f(x)=log2(x2−4x+5)),则该函数的定义域为:A.(x<2)B.(x>2)C. 全体实数D.(x≠2)2、已知向量(a⃗=(3,4)),(b⃗⃗=(−1,2)),若(c⃗=a⃗−2b⃗⃗),则(|c⃗|)(即(c⃗)的模)等于:A. 5B. 7C.(√29)D.(√53)3、在以下函数中,定义域为全体实数的是()A.(f(x)=√x−1))B.(g(x)=1x2C.(ℎ(x)=log2(x+3))+√x+1)D.(j(x)=1x−14、在等差数列({a n})中,若首项(a1=3),公差(d=2),则第10项(a10)的值是()A. 21B. 19C. 17D. 155、设函数(f(x)=x3−3x+1),则函数在区间[-2, 2]上的最大值为:A、1B、3C、5D、不存在6、若矩阵(A)经过有限次初等行变换可化为矩阵(B),下列叙述正确的是:A、(A)与(B)的秩不一定相等。
B、(A)与(B)的行列式值相同。
C、若(A)可逆,则(B)也可逆。
D、(A)与(B)相似。
7、在下列数学概念中,属于集合概念的是:A. 方程B. 函数C. 点D. 三角形8、函数y=lg(2x-1)的定义域是:A. (1, +∞)B. (0, +∞)C. (0, 1)D. (1, 2)二、简答题(本大题有5小题,每小题7分,共35分)第一题在高中数学课程中,函数是一个非常重要的概念,请详细解释函数的概念,并举例说明函数在实际生活中的应用。
第二题请结合高中数学课程标准,谈谈如何有效地进行高中数学概念的教学设计。
第三题题目:请简述函数的奇偶性,并举例说明。
如何利用函数的奇偶性简化某些积分问题?第四题请结合高中数学教学实际,阐述如何利用“问题情境”激发学生学习高中数学的兴趣。
第五题请结合高中数学教学实际,谈谈如何有效地进行数学课堂导入,提高学生的学习兴趣。
高中数学青年教师基本功考核笔试试题(含答案)考试时间:60分钟 满分:100分一、选择题:(每题6分,共30分)1. 已知符号函数,则函数的零点个数为1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩2()sgn(ln )ln f x x x =- ( )(A ). (B ). (C ). (D ).43212. 已知单位向量α,β,满足(α+2β)(2α-β)=1,则α与β夹角的余弦值为 ()⋅(A ) (B ) (C ) (D )13-1312153. 在△ABC 中,三个内角A ,B ,C 所对的边为a ,b ,c ,且,222b a ac c =-+,则90C A -=︒cos cos A C =( )(A )(B(C ) (D )4141-4. 函数的图象与轴所围成的封闭图形的面积为( )⎩⎨⎧≤≤+-<≤-+=)20(2)02(2)(2x x x x x f x (A).(B). (C). (D ). 326+234+3246+2234+5.某单位安排7位员工在2012年1月22日至1月28日(即今年除夕到正月初六)值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在除夕,丁不排在初一,则不同的安排方案共有()(A )504种(B )960种(C )1008种(D )1056种二、填空题:(每题6分,共30分)6.抛物线的准线为,点在圆上,设抛物线上28y x =l Q 22:68210C x y x y ++++=任意一点到直线的距离为,则的最小值为.P l m ||m PQ +7. 已知,,,,,322322=+833833=+15441544=+t at a66=+(a,t 均为正实数),类比以上等式,可推测a ,t 的值,则 .=+t a 8. 函数的定义域为 ,值域为()f x =+_________。
9. 已知是定义在R 上的不恒为零的函数,且对于任意的,满足()x f R b a ∈,(2)(2)()()(),(2)2,(),()2n n n n nf f f ab af b bf a f a n N b n N n **=+==∈=∈ 下列结论:①;②为偶函数;③数列为等比数列;④数列)1()0(f f =)(x f {}n a 为等差数列.其中正确的是.{}n b 10. 如下图所示,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点.设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①3OB =;②5BF =;③5OA =;④2AF =.其中正确结论的序号是 .第10题图三、解答题:(本大题共40分)11.(本小题满分20分)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=,点E 在PD 上,且PE:ED=2:1.a 2(1)证明: PA ⊥平面ABCD ;(2)求以AC 为棱,EAC 与DAC 为面的二面角的大小; (3)在棱PC 上是否存在一点F ,使BF//平面AEC?若存在,指明F 的位置并证明你的结论。
2024年教师资格考试高中数学学科知识与教学能力自测试题及答案指导一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列选项中,不属于高中数学课程性质的是()A、理论性B、应用性C、综合性D、创新性答案:D解析:高中数学课程具有理论性、应用性和综合性,旨在培养学生的数学思维能力和解决问题的能力。
创新性虽然也是重要的教育目标之一,但并不是高中数学课程的基本性质。
因此,正确答案为D。
2、在以下数学概念中,不属于函数概念范畴的是()A、映射B、定义域C、值域D、对应法则答案:C解析:函数的概念包括映射、定义域、值域和对应法则四个基本要素。
映射是指每个定义域中的元素都有唯一的值域元素与之对应;定义域是函数输入值的集合;值域是函数输出值的集合;对应法则是定义域和值域之间元素对应关系的描述。
值域是函数的一个组成部分,因此不属于函数概念范畴的选项为C。
正确答案为C。
3、在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,5)。
若点C 在直线y=x+2上,且三角形ABC是直角三角形,则点C的坐标可能是()A、(1,3)B、(3,5)C、(-1,4)D、(2,4)答案:C解析:首先,三角形ABC是直角三角形,我们可以假设直角在A或B上。
假设直角在A点,则AC垂直于BC,因此斜率乘积为-1。
点A和点C的斜率为(y2-y1)/(x2-x1),将点A(2,3)和C(x,y)代入得(y-3)/(x-2)1=-1,解得y=2x-1。
将直线y=x+2和y=2x-1联立,解得x=-1,y=4,故点C的坐标为(-1,4)。
同理,假设直角在B点,则BC垂直于AB,斜率乘积为-1。
点B和C的斜率为(y-5)/(x+1)(3-5)/(2+1)=-1,解得y=4,点C的坐标为(-1,4)。
所以,点C的坐标可能是(-1,4),选项C 正确。
4、已知函数f(x)=ax^2+bx+c,若a≠0,且f(x)在x=-1时取得最小值,则下列结论错误的是()A、a>0B、b=-2aC、f(x)在x=0时取得最大值D、f(x)的图像是一个开口向上的抛物线答案:C解析:函数f(x)=ax2+bx+c是一个二次函数,a≠0表示抛物线开口向上或向下。
学校 姓名2021年姜堰市高中数学青年教师根本功大赛〔笔试〕试题〔考试时间120分钟 总分值200分〕姜堰市教研室命制一、 根底知识〔30分〕1、在创立解析几何学的过程中,法国数学家 笛卡尔 和费马做出了最重要的奉献,成为解析几何学的创立者。
2、我国齐梁时代的数学家祖冲之的儿子 祖暅 提出一条原理:“幂势既同,那么积不容异〞这句话的大致意思是 两等高的几何体假设在所有等高处的水平切面的面积相等,那么这两个几何体的体积相等 。
3、在物理学中利用了三角函数“任意的正弦函数与余弦函数的 叠加 函数()f x 都可以化成sin()a x θ+或者cos()a x θ+的形式,而且周期不变〞的结论,可以解释声波的共振现象。
4、【江苏省2021年高考说明】对数学根本能力的考查主要包括:空间想象、抽象概括、推理论证、运算求解、 数据处理 这五个能力。
5、【江苏省2021年高考说明】对知识的考查要求依次为了解、理解、 掌握 三个层次〔分别对应A 、B 、C 〕6、【普通高中数学课程标准〔试验〕】简称新课标中提出的三维目标是指:知识与技能、过程与方法、 情感态度与价值观 。
二、 解题能力〔90分〕1、函数3213()2132f x x x x =-+-的单调增区间为 〔-。
,1〕,(2, +。
) 。
2、设复数()2()2z a a ai a R =-+∈为纯虚数,那么a = 1 .3、y x ,满足条件⎪⎩⎪⎨⎧≤+≥≥12430y x x y x ,那么132+++x y x 的取值范围是____[3, 9]___________.4、1200辆汽车通过某一段公路时的时速频率分布直方图如下图,那么时速在[50,60)的汽车大约有 360 辆.5、某算法的流程图如下列图所示,那么输出的结果是 5 .6、P 和Q 分别是函数1ln 2y x =和函数2x y e =上关于直线y x =对称的两点,那么线段PQ 长度的最小值为7、(此题总分值15分) 试证明定理:在空间,如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
高中青年教师教学基本功竞赛数学试卷及参考答案江苏省兴化市周庄高级中学教育教学研究室江苏省兴化市教育局教研室数学试卷(考试时间为150分钟,满分150分.)本卷由三部分组成;解题研究;试题命制;教学设计.1.解题研究本题满分40分(问题1为必答题,问题2、问题3两题任选一题做答,每题满分20分).1.1.错因分析学生在学习中,总会产生错误,错误往往是正确认知的前兆,这正是失败乃成功之母,所以教师要珍视学生学习中的错误,并以此为契机,培养学生的批判性思维,发展思维能力.写出学生解决下面问题有可能出现的典型错误,并分析产生错误的根本原因(至少分析两个典型错误),最后请您给出本题的正确解答.问题1:求函数y=sin(-3x+π/4)(x∈的单调递减区间.1.2.总结策略教学目的之一是为了让学生掌握思考问题和解决问题的方法,当学生面临一个新的情境下的问题时总要联想,把以往获得的方法再加工迁移到新的问题上,因此有教育家提出了为“迁移而教”的口号,为了实现“迁移”就必须对学习加以总结概括,总结概括得越精当,越有利于“迁移”的产生,从而能够迅速地解决新问题.解下列问题,完成后请您总结解决该类“恒成立”问题的解题策略.问题2:已知c>0,设P:函数y=Cx在R上单调递减;Q:不等式x+∣x-2c∣>1的解集为R.如果P和Q有且仅有一个正确,求C的取值范围。
1.3 探究拓展著名数学家、教育家波利亚说过,解题就像采蘑菇一样,当我们发现一个蘑菇时,它的周围可能有一个蘑菇圈.在解题中,当您解完了一道题,可以借助如,类比,(1)类比推理:根据两种事物在某些方面属性的相似,推想此两种事物在其他一些方面的属性也相似;(2)方法类比:将处理某种事物卓有成效的经验或方法移植到处理与其相似的另一事物上,以及其他一些科学思维策略和数学思想方法,对问题进行探索与拓展,从而解决一类问题,发展思维能力。
完成下面一道题后,根据探索的要求进行探索与拓展。
荆州中学数学学科青年教师基本功考核试题卷一、选择题:(每题5分,10小题,共50分)1.已知集合{}1916),(22=+=y x y x S , {}1),(22=+=y x y x M ,则S 与M 的关系是A .M S ≠⊂ B .S M ≠⊂ C .Φ=M S D .M M S =2.方程22520x x -+=的两个根可分别作为 A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率3.若复数iia 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值A .-2B .4C .-6D .64.若函数()f x 满足22()log ||f x x =+()f x 的解析式是 A .2log x B .2log x - C .2x- D .2x -5.已知不等式(x+y)(1x + ay )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为A .2B .4C .6D .86.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,这个问题被解决的概率是p ,则乙解决这个问题的概率是 A .111p p p -- B .)1)(1(11p p --- C .1p p - D .)1)(1(1p p -- 7.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为A .32B .33C .34D .238.一线段的分割法是:使小的一段与大的一段长度的比值等于大的一段与整个线段长度的比值,设x 是小的一段与大的一段的比值,那么2122--++-x xx x 的值为A .3B .3C .5D .x 2 9.如右图1,设P 为△ABC 内一点,且2155AP AB AC =+, 则△ABP 的面积与△ABC 的面积之比为 A .15 B .25 C .14 D .1310.有一塔形几何体由若干个正方体构成,构成方式如右图所示,上层正方体下底面的四个顶点是下层正方体上底面各 边的中点。
2023年下半年教师资格证考试《高中数学》题(含答案)一、单项选择题。
本大题共8小题,每小题5分,共40分。
1极限的值是()。
A、-1B、0C、1D、22在平面直角坐标系中,圆围成的面积可以用定积分表示为()。
A、B、C、D、3平面x=2与双曲面的交线是()。
A、两条直线B、椭圆C、抛物线D、双曲线4已知向量a=(1,2,1),b=(t,3,0),c=(2,t,1)线性相关,则t的取值是()。
A、-3或-1B、-3或1C、-1或3D、1或35矩阵是可逆矩阵,E是二阶单位矩阵,则下列叙述不正确的是()。
A、行列式B、a=c=0C、向量与向量线性无关D、存在N,使得MN=E6若同一样本空间中的随机事件A,B满足P(A)+P(B)=1.2,则下列叙述一定正确的是()。
A、P(A)=P(B)=0.6B、A与B相互独立C、D、A与B互不相容7贯穿普通高中数学课程内容的四条主线之一是()。
A、三角函数B、几何与代数C、频率与概率D、应用统计8南北朝科学家祖暅在实践基础上提出了体积计算原理“幂势既同,则积不容异”,这一原理也常常被称为祖暅原理,其中“幂”和“势”的含义分别是()。
A、乘方、高B、乘方、宽C、面积、高D、面积、宽二、简答题。
本大题共5小题,每小题7分,共35分。
9已知实系齐次线性方程组有无穷多个解。
根据以上材料回答问题:(1)求k的值。
(3分)(2)求此时方程组的通解。
(4分)10在空间直角坐标系中,直线过点P(4,0,2)且与直线:垂直相交。
根据以上材料回答问题:(1)求两条直线的交点坐标。
(4分)(2)求直线的标准方程。
(3分)11某设备由甲、乙两名工人同时操作,两人的操作相互独立,每名工人出现操作失误的次数只能是0、1、2,对应的概率分别是0.7、0.2、0.1,将两名工人操作失误的总数记为X,若X2,则该设备不能正常工作。
根据以上材料回答问题:(1)求该设备正常工作的概率。
(3分)(2)求X的分布列与数学期望。
教师资格考试高级中学数学学科知识与教学能力自测试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、下列关于高等数学中极限概念的理解,正确的是()。
A、极限是指当自变量趋向某个值时,函数值也趋向于一个确定的值。
B、极限是指当自变量趋向于无穷大时,函数值趋向于零。
C、极限是指当自变量趋向一个特定值时,函数值可能趋向于无穷大。
D、极限是指当自变量趋向无穷小时,函数值趋向于无穷大。
2、在解析几何中,对于直线方程y = 2x + 1,下列说法正确的是()。
A、直线的斜率为-2,y轴截距为1。
B、直线的斜率为2,y轴截距为-1。
C、直线的斜率为2,y轴截距为1。
D、直线的斜率为-2,y轴截距为-1。
3、以下哪一项不属于数学教学的基本原则?A、启发性原则B、直观性原则C、简洁性原则D、量力性原则4、在几何证明的教学中,教师引导学生通过探究性学习来发现定理,这主要体现了哪种教学策略?A、讲授式教学B、探究式教学C、合作式教学D、演示式教学5、在概率论教学中,教师选择以下哪个实验来帮助学生理解“对立事件”的概念最为恰当?A、掷一枚硬币,观察正反面的概率B、掷一枚骰子,观察大于3和小于或等于3的概率C、随机安排学生为小组成员,观察小组中有男生和全部是女生的概率D、从一副扑克牌中抽一张,观察是红心和不是红心的概率6、在讲解函数的性质时,教师下列哪一实例最适合作为“奇函数”的概念例子?A、y = x^2B、y = 2^xC、y = log xD、y = -x)的周期是()。
7、三角函数y=3sin(2x+π4A、π2B、πC、2πD、4π8、在一个尺寸为4×4的矩阵中,用行列式法求其行列式的值,如果第一行元素分别是1,2,3,4,第二行元素分别是−1,−2,−3,−4,第三行元素分别是2,1,0,−1,第四行元素是−3,4,1,1,那么该矩阵的行列式值是()。
A、0B、24C、-24D、48二、简答题(本大题有5小题,每小题7分,共35分)第一题题目:请简述高中数学中导数的概念及其在数学中的应用,并举例说明在中学数学教学中应如何利用导数这一概念进行有效的教学。