第三章 正态分布
- 格式:pdf
- 大小:193.89 KB
- 文档页数:7
第三章多元正态分布均值向量和协方差的检验
1.基本思想和步骤
2.均值向量的检验
(1)分布:设且X与S相互独立,,则称统计量的分布为非中心分布
当时,称服从(中心)分布,记为
(2)转换为F分布:若且X与S相互独立,令,则
3.一个正态总体均值向量的检验
(1)协差阵已知,检验统计量为
(2)协差阵未知,检验统计量为
4.两个正态总体均值向量的检验
设为来自p维正态总体的容量为n的样本,
为来自p维正态总体的容量为m的样本,且两组样本相互独立
①针对共同已知协差阵,检验统计量为
②针对共同未知协差阵,检验统计量为
(2)协差阵不等
①针对n=m的情形,检验统计量为
②针对n≠m的情形,检验统计量为
5.多个正态总体均值向量的检验
(1)单因素方差分析:设k个正态总体分别为,从k个总体中取个独立样本,,假设H0成立,检验统计量为
其中,组间平方和为,组内平方和为,总平方和为,其中,
(2)若,则为X的广义方差,为样本广义方差
(3)Wilks分布:若且二者相互独立,
为Wilks统计量,分布为Wilks分布,简记为
(4)多元方差分析:检验统计量为
其中,,A为组间离差阵,E为组内离差阵,T为总离差阵,且T=A+E
6.协差阵的检验
(1)一个正态总体协差阵的检验:构造检验统计量
(2)多个协差阵相等的检验:构造检验统计量。
第三章 多元正态分布多元正态分布是一元正态分布在多元情形下的直接推广,一元正态分布在统计学理论和应用方面有着十分重要的地位,同样,多元正态分布在多元统计学中也占有相当重要的地位。
多元分析中的许多理论都是建立在多元正态分布基础上的,要学好多元统计分析,首先要熟悉多元正态分布及其性质。
第一节 一元统计分析中的有关概念多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵,学习多元统计分析,首先要对随机向量和随机矩阵有所把握,为了学习的方便,先对一元统计分析中的有关概念和性质加以复习,并在此基础上推广给出多元统计分析中相应的概念和性质。
一、随机变量及概率分布函数 (一)随机变量随机变量是随机事件的数量表现,可用X 、Y 等表示。
随机变量X 有两个特点:一是取值的随机性,即事先不能够确定X 取哪个数值;二是取值的统计规律性,即完全可以确定X 取某个值或X 在某个区间取值的概率。
(二)随机变量的概率分布函数随机变量X 的概率分布函数,简称为分布函数,其定义为:)()(x X P x F ≤=随机变量有离散型随机变量和连续型随机变量,相对应的概率分布就有离散型概率分布和连续型概率分布。
1、离散型随机变量的概率分布若随机变量X 在有限个或可列个值上取值,则称X 为离散型随机变量。
设X 为离散型随机变量,可能取值为1x ,2x ,…,取这些值的概率分别为1p ,2p ,…,记为k k p x X P ==)((Λ,2,1=k )称k k p x XP ==)((Λ,2,1=k )为离散型随机变量X 的概率分布。
离散型随机变量的概率分布具有两个性质: (1)0≥k p ,Λ,2,1=k(2)11=∑∞=k k p2、连续型随机变量的概率分布若随机变量X 的分布函数可以表示为dt t f x F x⎰∞-=)()(对一切R x ∈都成立,则称X 为连续型随机变量,称)(x f 为X 的概率分布密度函数,简称为概率密度或密度函数。
正态分布及其应用课件下载Email:yixuetjx@ 密码:000000变异指标小结1.极差较粗,适合于任何分布;2.四分位间距比极差稳定,但仍未考虑每个观察值的变异。
常用于:①偏态分布资料; ②分布不明;③分布末端无确切值;3.标准差与均数的单位相同,最常用,适合于近似正态分布;4.变异系数主要用于单位不同或均数相差悬殊资料;5.平均指标和变异指标分别反映资料的不同特征,常配套使用。
如正态分布:均数、标准差;偏态分布:中位数、四分位间距正态分布及其应用(Normal distribution)一. 正态分布的概念和特征二. 正态曲线下面积的分布规律三. 标准正态分布的性质四. 正态分布的应用【学习要求】¾掌握正态分布的概念、图形特征、¾掌握u转换的思想及方法,其图形的面积规律及求法。
¾掌握医学参考值范围的求法。
在医学卫生领域中,许多变量的频数分布是中间(靠近均数处)频数多,两边频数少,且左右对称。
如人体的尺寸、许多生化指标等。
等。
这种变量的频数分布规律可用概率论中的一种重要的随机变量分布—正态分布(Normal distribution)加以描述。
一.正态分布的概念和特征1.正态分布的概念正态曲线( normal curve):是一条高峰位于中央,两侧逐渐下降并完全对称,曲线两端永远不与横轴相交的钟形曲线。
若变量x 的频率曲线对应于数学上的正态分布曲线,则称该变量服从正态分布。
二.正态密度函数曲线下的面积规律③曲线下在区间(μ-σ,μ+σ)的面积为68.27%,曲线下在区间(μ-1.96σ,μ+1.96σ)的面积为95.00%,曲线下在区间(μ-2.58σ,μ+2.58σ)的面积为99.00%。
三、标准正态分布实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。
对于不同的参数μ和σ会产生不同位置、不同形状正态分布,(x1,x2)范围内的面积也不同,计算起来很麻烦。
第三章 正态分布一、教学大纲要求(一) 掌握内容1.正态分布的概念和特征 (1)正态分布的概念和两个参数; (2)正态曲线下面积分布规律。
2.标准正态分布标准正态分布的概念和标准化变换。
3.正态分布的应用 (1)估计频数分布; (2)制定参考值范围。
(二) 熟悉内容 标准正态分布表。
(三) 了解内容1.利用正态分布进行质量控制 2.正态分布是许多统计方法的基础二、教学内容精要(一)正态分布 1.正态分布若X 的密度函数(频率曲线)为正态函数(曲线)2.正态分布的特征服从正态分布的变量的频数分布由μ、σ完全决定。
(1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。
正态分布以x μ=为对称轴,左右完全对称。
正态分布的均数、中位数、众数相同,均等于μ。
(2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
(二)标准正态分布1.标准正态分布是一种特殊的正态分布,标准正态分布的0=μ,12=σ ,通常用u(或Z )表示服从标准正态分布的变量,记为u ~N (0,21)。
2.标准化变换:σμ-=X u ,此变换有特性:若X 服从正态分布),(2σμN ,则u 就服从标准正态分布,故该变换被称为标准化变换。
3. 标准正态分布表标准正态分布表中列出了标准正态曲线下从-∞到u 范围内的面积比例()u Φ。
(三)正态曲线下面积分布1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。
不同),(21X X 范围内正态曲线下的面积可用公式3-2计算。
)()(2112)22(2)(21u u dx eD X X X Φ-Φ==--⎰σμπσ (3-2)1212X X u u μμσσ--==其中, , 。
2.几个重要的面积比例X 轴与正态曲线之间的面积恒等于1。