第三章 多元正态分布
- 格式:ppt
- 大小:703.00 KB
- 文档页数:32
第3章 正态分布时的统计决策在统计决策理论中,涉及到类条件概率密度函数)|(i w x P 。
对许多实际的数据集,正态分布通常是合理的近似。
如果在特征空间中的某一类样本,较多地分布在这一类均值附近,远离均值点的样本比较少,此时用正态分布作为这一类的概率模型是合理的。
另外,正态分布概率模型有许多好的性质,有利于作数学分析。
概括起来就是: (1) 物理上的合理性 (2) 数学上的简单性下面重点讨论正态分布分布及其性质,以及正态分布下的Bayes 决策理论。
3.1 正态分布概率密度函数的定义及性质 1.单变量正态分布 定义:])(21ex p[21)(2σμσπρ--=x x(3.1-1)其中:μ为随机变量x 的期望,也就是平均值;2σ为x 的方差,σ为均方差,又称为标准差。
⎰∞∞-⋅==dx x x x E )()(ρμ (3.1-2)⎰∞∞-⋅-=dx x x )()(22ρμσ(3.1-3)概率密度函数的一般图形如下:)(x ρ具有一下性质:)(,0)(∞<<-∞≥x x ρ1)(=⎰∞∞-dx x ρ (3.1-4)从)(x ρ的图形上可以看出,只要有两个参数2σμ和就可以完全确定其曲线。
为了简单,常记)(x ρ为),(2σμN 。
若从服从正态分布的总体中随机抽取样本x ,约有95%的样本落在)2,2(σμσμ+-中。
样本的分散程度可以用σ来表示,σ越大分散程度越大。
2.多元正态分布 定义:∑---∑=-)]()(21ex p[||)2(1)(1212μμπρx x x T d(3.1-5)其中: T d x x x x ],,,[21 =为d 维随机向量,对于d 维随机向量x ,它的均值向量μ是d 维的。
也就是:T d ],,,[21μμμμ =为d 维均值向量。
∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,||∑为∑的行列式。
协方差矩阵∑是对称的,其中有2/)1(+⨯d d 个独立元素。
实验零多元正态总体检验(均值向量检验)1.实验目的:本实验讨论利用多元正态总体检验中的均值向量检验方法去判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
通过该实验,能够起到如下的效果:(1) 理解多元正态总体检验中的均值向量检验方法的作用、思想、数学基础、方法和步骤;(2) 熟悉如何利用多元正态总体检验中的均值向量检验方法,提出问题、分析问题、解决问题、得出结论;(3)会调用SAS软件实现多元正态总体检验中的均值向量检验方法的各个步骤,根据计算的结果进行分析,得出正确的结论,解决实际的问题。
2.知识准备:多元正态总体检验中的均值向量检验是从判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
其思想和步骤是:1.假设“需判断的总体均值等于预先判断的向量(单正态总体检验)”或“需判断的两个总体的均值相等(双正态总体检验)”;2.在该假设下,构造适当的统计量并给出其分布;3.根据观测数据算出其统计量的值;4.根据预先确定的检验水平查阅相应的分布表确定临界值和拒绝域;5.根据结果判断接受或拒绝原假设,得出结论。
(具体见书【1】第三章)3.实验内容:一、单正态总体检验:人出汗多少与人体内钠、钾含量有一定关系。
今测20名健康成年女性出汗多少(X1)、钠含量(X2)、钾含量(X3),其数据如下表1:表1 健康成年女性出汗情况的基本数据序号X1 X2 X3 序号X1 X2 X31 3.7 48.5 9.3 11 3.9 36.9 12.72 5.7 65.1 8 12 4.5 58.8 12.33 3.8 47.2 10.9 13 3.5 27.8 9.84 3.2 53.2 12 14 4.5 40.2 8.45 3.1 55.5 9.7 15 1.5 13.5 10.16 4.6 36.1 7.9 16 8.5 56.4 7.17 2.4 24.8 14 17 4.5 71.6 8.28 7.2 33.1 7.6 18 6.5 52.8 10.99 6.7 47.4 8.5 19 4.1 44.1 11.210 5.4 54.1 11.3 20 5.5 40.9 9.4利用多元正态总体检验中的单正态均值向量检验方法判断“(X1,X2,X3)的均值是否等于(4,50,10)”【1】(假设总体服从正态分布,分别取检验水平为0.05、0.01)。
第三章多元正态分布均值向量和协方差的检验
1.基本思想和步骤
2.均值向量的检验
(1)分布:设且X与S相互独立,,则称统计量的分布为非中心分布
当时,称服从(中心)分布,记为
(2)转换为F分布:若且X与S相互独立,令,则
3.一个正态总体均值向量的检验
(1)协差阵已知,检验统计量为
(2)协差阵未知,检验统计量为
4.两个正态总体均值向量的检验
设为来自p维正态总体的容量为n的样本,
为来自p维正态总体的容量为m的样本,且两组样本相互独立
①针对共同已知协差阵,检验统计量为
②针对共同未知协差阵,检验统计量为
(2)协差阵不等
①针对n=m的情形,检验统计量为
②针对n≠m的情形,检验统计量为
5.多个正态总体均值向量的检验
(1)单因素方差分析:设k个正态总体分别为,从k个总体中取个独立样本,,假设H0成立,检验统计量为
其中,组间平方和为,组内平方和为,总平方和为,其中,
(2)若,则为X的广义方差,为样本广义方差
(3)Wilks分布:若且二者相互独立,
为Wilks统计量,分布为Wilks分布,简记为
(4)多元方差分析:检验统计量为
其中,,A为组间离差阵,E为组内离差阵,T为总离差阵,且T=A+E
6.协差阵的检验
(1)一个正态总体协差阵的检验:构造检验统计量
(2)多个协差阵相等的检验:构造检验统计量。
第三章 多元正态分布多元正态分布是一元正态分布在多元情形下的直接推广,一元正态分布在统计学理论和应用方面有着十分重要的地位,同样,多元正态分布在多元统计学中也占有相当重要的地位。
多元分析中的许多理论都是建立在多元正态分布基础上的,要学好多元统计分析,首先要熟悉多元正态分布及其性质。
第一节 一元统计分析中的有关概念多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵,学习多元统计分析,首先要对随机向量和随机矩阵有所把握,为了学习的方便,先对一元统计分析中的有关概念和性质加以复习,并在此基础上推广给出多元统计分析中相应的概念和性质。
一、随机变量及概率分布函数 (一)随机变量随机变量是随机事件的数量表现,可用X 、Y 等表示。
随机变量X 有两个特点:一是取值的随机性,即事先不能够确定X 取哪个数值;二是取值的统计规律性,即完全可以确定X 取某个值或X 在某个区间取值的概率。
(二)随机变量的概率分布函数随机变量X 的概率分布函数,简称为分布函数,其定义为:)()(x X P x F ≤=随机变量有离散型随机变量和连续型随机变量,相对应的概率分布就有离散型概率分布和连续型概率分布。
1、离散型随机变量的概率分布若随机变量X 在有限个或可列个值上取值,则称X 为离散型随机变量。
设X 为离散型随机变量,可能取值为1x ,2x ,…,取这些值的概率分别为1p ,2p ,…,记为k k p x X P ==)((Λ,2,1=k )称k k p x XP ==)((Λ,2,1=k )为离散型随机变量X 的概率分布。
离散型随机变量的概率分布具有两个性质: (1)0≥k p ,Λ,2,1=k(2)11=∑∞=k k p2、连续型随机变量的概率分布若随机变量X 的分布函数可以表示为dt t f x F x⎰∞-=)()(对一切R x ∈都成立,则称X 为连续型随机变量,称)(x f 为X 的概率分布密度函数,简称为概率密度或密度函数。
第三章 正态分布一、教学大纲要求(一) 掌握内容1.正态分布的概念和特征 (1)正态分布的概念和两个参数; (2)正态曲线下面积分布规律。
2.标准正态分布标准正态分布的概念和标准化变换。
3.正态分布的应用 (1)估计频数分布; (2)制定参考值范围。
(二) 熟悉内容 标准正态分布表。
(三) 了解内容1.利用正态分布进行质量控制 2.正态分布是许多统计方法的基础二、教学内容精要(一)正态分布 1.正态分布若X 的密度函数(频率曲线)为正态函数(曲线)2.正态分布的特征服从正态分布的变量的频数分布由μ、σ完全决定。
(1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。
正态分布以x μ=为对称轴,左右完全对称。
正态分布的均数、中位数、众数相同,均等于μ。
(2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
(二)标准正态分布1.标准正态分布是一种特殊的正态分布,标准正态分布的0=μ,12=σ ,通常用u(或Z )表示服从标准正态分布的变量,记为u ~N (0,21)。
2.标准化变换:σμ-=X u ,此变换有特性:若X 服从正态分布),(2σμN ,则u 就服从标准正态分布,故该变换被称为标准化变换。
3. 标准正态分布表标准正态分布表中列出了标准正态曲线下从-∞到u 范围内的面积比例()u Φ。
(三)正态曲线下面积分布1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。
不同),(21X X 范围内正态曲线下的面积可用公式3-2计算。
)()(2112)22(2)(21u u dx eD X X X Φ-Φ==--⎰σμπσ (3-2)1212X X u u μμσσ--==其中, , 。
2.几个重要的面积比例X 轴与正态曲线之间的面积恒等于1。