当前位置:文档之家› 实验十二冷却法测量金属比热容

实验十二冷却法测量金属比热容

实验十二冷却法测量金属比热容
实验十二冷却法测量金属比热容

实验十二 冷却法测量金属比热容

一 实 验 目 的

1 掌握用冷却法测定金属的比热容,测量金属在室温至200℃温度时的比热容。

2 了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。

二 实 验 原 理

单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,其值随温度而变化。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测量各种金属在不同温度时的比热容。本实验以铜为标准样品,测定铁、铝样品在100℃或200℃时的比热容。将质量为的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(1M t Q ΔΔ/)与温度下降的速率成正比,于是得到下述关系式:

t

M C t Q ΔΔ=ΔΔ111θ

(1) 式中为该金属样品在温度1C 1θ时的比热容,t

ΔΔ1

θ为金属样品在1θ的温度下降速率,根据冷却定律有:

m s a t

Q

)(0111θθ?=ΔΔ (2) 式中 为热交换系数为该样品外表面的面积,m 为常数,1a 1S 1θ为金属样品的温度,0θ为周围介质的温度。由式(1)和(2),可得

m s a t

M C )(01111

1

1θθθ?=ΔΔ (3) 同理对质量为,比热容为的另一种金属样品,可有同样的表达式:

2M 2C m s a t

M C )(02222

2

2θθθ?=ΔΔ (4) 由(3)和(4)式,可得:

m

m

s a s a t

M C t M C )()(1011102221

12

2

2θθθθθθ??=ΔΔΔΔ (5) 所以 m

s a t

M s a t

M C C m )(011122)(1

202221

1

θθθ

θθθ?Δ=?ΔΔ (6)

如果两样品的形状尺寸都相同,即21s s =;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有。于是当周围介质温度不变(即室温21a a =0θ恒定而样品又处于相同温度θθθ=?21)时,上式可以简化为:

1

22

112?

?????ΔΔ?

????

?ΔΔ=t M t M C C θθ (7) 如果已知标准金属样品的比热容质量;待测样品的质量及两样品在温度1C 1M 2M θ时冷却速率之比,就可以求出待测的金属材料的比热容。几种金属材料的比热容见表1,实验装置(图1所示)。

2C

三 实 验 内 容

1. 用铜一康铜热电偶测量温度,而热电偶的热电势采用温漂极小的放大器和三位半数字电压表,经信号放大后输入数字电压表显示的满量程为20mV ,读出的mV 数查表即可换算成温度。

2. 选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量。再根据这一特点,把它们区别开来。 O M Al Fe Cu M M M >>3. 使热电偶端的铜导线数字表的正端相连;冷端铜导线与数字表的负端相连。当本隔绝的有机玻璃圆筒内自然冷却(筒口须盖子)。当温度降到接近102℃时开始记录,测量样品102℃下降到98℃所需要时间。按铁、铜、铝的次序,分别测量其温度下降速度,每一样品得重复测量5次。因为各样品的温度下降范围相同(Δθ=102℃-98℃ =4℃)所以公式(7)可以简化为:

O t Δ1

22

11

2)()(t M t M C C ΔΔ= (8)

图1冷却法测量金属比热容实验装置

4. 仪器红色指示灯亮,表示连接线未连好或加热温度过高(超过200℃)已自动保护。

5. 注意:测量降温时间时,按“计时”或“暂停”按钮应迅速、准确,以减小人为计时误差。

四 实 验 数 据

例:样品质量:g M g M g M Al Fe cu 99.3;03.

11;35.12===。热电偶冷端温度:0℃样品由120℃下降到98℃所需时间(单位为S)

表2

以铜为标准: )/(0940.01C g cal C C o

cu ==铁:)/(114.079.16.03.1126

.1835.120940.0)()(12211

2C g cal t M t M C C o =×××=ΔΔ=

铝:)/(234.079

.1699.342

.1335.120940.0)()(122113C g cal t M t M C C o =×××=ΔΔ=

二、技术指标

1. 数字电压表:三位半,量程:0-20mV ,分辨率:0。01mV ,准确度:读

%38.0±数+1字。

2. 加热器功率:50W 。

3. 传感器采用铜、康铜热电偶。

4. 测量金属在100℃时的比热容与公认值百分差小于5%。

5. 输入交流电压:220V 。 %10±6. 电源功率约:90W 。 7. 重量:7.5Kg 。

五 附 录

由于配方和工艺的不同,实际使用的铜一康铜热电偶在100℃温度时(冷端温度为0℃),输出的温差电势差一般为4.0mV ~4.3mV 之间(例如国标铜一康铜有一种规格为4.277mV )。本仪器使用的热电偶在100℃温度时(参考0℃),输出的温差电势差为4.072mV 。实验时可参考附表数据测量温度,也可自行测量进行定标。

附表 本实验使用的铜-康铜热电偶分度表

0 1 2 3 4 5 6 7 8 9 0

0 0.038 0.076 0.114

0.1520.1900.2280.2660.304 0.342 10 0.380 0.419 0.458 0.4970.5360.5750.6140.6540.693 0.732 20 0.772 0.811 0.850 0.8890.9290.969 1.008 1.048 1.088 1.128 30 1.169 1.209 1.249 1.289 1.330 1.371 1.411 1.451 1.492 1.532 40 1.573 1.614 1.655 1.696 1.737 1.778 1.819 1.860 1.901 1.942 50 1.983 2.025 2.066 2.108 2.149 2.191 2.232 2.274 2.315 2.356 60 2.398 2.440 2.482 2.524 2.565 2.607 2.649 2.691 2.733 2.775 70 2.816 2.858 2.900 2.941 2.983 3.025 3.066 3.108 3.150 3.191 80 3.233 3.275 3.316 3.358 3.400 3.442 3.484 3.526 3.568 3.610 90 3.652 3.694 3.736 3.778 3.820 3.862 3.904 3.946 3.988 4.030 100 4.072 4.115 4.157 4.199 4.242 4.285 4.328 4.371 4.413 4.456 110 4.499 4.543 4.587 4.631 4.674 4.707 4.751 4.795 4.839 4.883 120 4.527

空气比热容比的实验报告

空气比热容比的测量 实验目的: 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。实验原理: 对理想气体的定压比热容C p和定容比热容C v 之关系由下式表示: C p —C v =R(1) (1) 式中,R为气体普适常数。气体的比热容比r值为: r= C p /C v (2) 气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。 测量r值的仪器如图〈一〉所示。实验时先关闭活塞C 2 ,将原处于环境大气 压强P 0、室温θ 的空气从活塞C 1 ,处把空气送入贮气瓶B内,这时瓶内空气压 强增大。温度升高。关闭活塞C 1,待稳定后瓶内空气达到状态I(P ,θ ,V 1 ),V 1 为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II(P 1 ,θ ,V 1 )后, 迅速关闭活塞C 2 ,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程: P1V1’=P0V2’(3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ 0 时,原状态为 I(P 1,θ ,V 1 )体系改变为状态III(P 2 ,θ ,V 2 ),应满足: P1V1=P0V2(4) 由(3)式和(4)式可得到: r=(log P0-log P1)/(logP2-log P1) 利用(5)式可以通过测量P 0、P 1 和P 2 值,求得空气的比热容比r值。 实验装置:

图〈一〉实验装置中1为进气活塞塞C 1,2为放气活塞C 2 ,3为电流型集成温 度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温 范围为-50℃至150℃。AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。当待测气体压强为环境大气压P 0 时,数字电压表显示为0;当待测气体压强为 P +10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。 实验内容: 1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。用Forton式 气压计测定大气压强P 0,用水银温度计测环境室温θ 。开启电源,将 电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。 2.把活塞C 2关闭,活塞C 1 打开,用打气球把空气稳定地徐徐进入贮气瓶

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

冷却法测金属比热容(P76) + 故障判断(P80)

在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t 的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 如测量次数≥5次,总的不确定度为_____,如测量次数<5次,总的不确定度为_____,其中S x、Δx为_____不确定度。 答案1: 答案2: 答案3: 答案4: 正确答案为:4 在冷却法测金属比热容实验中,温度指示选择转换旋钮的“设定温度”档可用来设定 __________所需加热的温度,而当旋钮旋至“加热盘温度”档时,可用来_____________。答案1:加热盘;设定金属盘加热温度 答案2:加热盘;显示加热盘温度变化 答案3:金属盘;设定金属盘加热温度 答案4:金属盘;显示加热盘温度变化 正确答案为:2 在冷却法测金属比热容实验中,为了计算标准铜盘(或待测铝盘)在50℃的斜率,应采用下面哪一种方法: 答案1:在冷却曲线上任意选择两个点求斜率 答案2:在冷却曲线上在50℃附近选择两个点求斜率 答案3:在冷却曲线上在45℃—55℃之间选择两个点求斜率 答案4:在冷却曲线上在50℃处作曲线的切线,在切线上选择两个点求斜率 正确答案为:4

答案1:α1=α2;T10=T20 答案2:m1=m2;T10=T20 答案3:T10=T20;n1=n2 答案4:α1=α2;n1=n2 正确答案为:4 在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 在冷却法测金属比热容实验中,该实验仪器______用来测量室温,此时须把温度指示选择转换旋钮拔向__________________。 答案1:可以;“散热盘温度”档 答案2:可以;空档 答案3:不可以;空档 答案4:可以;“加热盘温度”档 正确答案为:1 在冷却法测金属比热容实验中,下列哪一项不属于本实验对金属样品的要求? 答案1:金属样品的直径应较大 答案2:金属样品的厚度应较小 答案3:金属样品的导热性能应较好 答案4:金属样品的表面状况应大致相同

第四周物理实验报告空气比热容比的测量

华南农业大学实验报告 专业班次农学班一组别题目空气比热容比地测量姓名梁志雄日期 实验名称:空气比热容比地测量 实验地目地:学习用绝热膨胀法测定空气地比热容比;观测热力学过程中状态变化及基本物理规律. 实验原理:气体地定压比热容和定容比热容之比称为气体地比热容比,用符号 表示.(即),它被称气体地绝热系数,它是一个重要地参量,经常出现在热力学方程中.通过测量,可以加深对绝热、定容、定压、等温、等热力学过程地理解. 如图所示,实验开始时,首先关闭活塞.打开活塞,由压气泡将原处于环境大气压强P.室温地空气压入贮气瓶B内,这时瓶内压强增大,温度变至一定值时,关闭活塞.待稳定后,瓶内空气达到状态,为贮气瓶容积. 然后突然打开活塞,使瓶内空气与大气相通,到达状态时迅速关闭活塞,由于放气过程很短,故认为此过程是一个近似地绝热过程.瓶内气体压强减小,温度降低,绝热膨胀过程应该满足泊松定律: () 由气态方程可知 ()由以上两式子可以得到 ()当关闭活塞之后,贮气瓶内气体温度将升高,当升高到时,到达状态.从状态到状气体地体积不变. 由查理定律 ()由()和()两式得 ()再由()和()两式得 ()那么利用()式这一测量公式,通过测量,,地值可测量出空气地比热容地值. 实验步骤:.连结好仪器,将电子仪器部分预热分钟用容盒式气压表测定大气压强,通过调零电位器调节零点.

.把活塞关闭,活塞打开.用压气泡把空气稳定地徐徐地压入气瓶中,待瓶内气压达到一定值后,停止压气,并记录下稳定后地压强值..突然打开活塞,当气瓶地空气压强降低至环境大气压强时(即放气声消失),迅速关闭活 塞. .待贮气瓶内空气地压强稳定后,记录下. .用测量公式()进行计算,求得空气比热容比 记录数据地表格: 周围大气压强 × 实验开始前地室温℃ 数据处理 由表格中地数据可知,空气地比热容比地平均值是 ,而标准偏差 操作思考题 打开活塞放气时,若提前关闭或滞后关闭活塞,各会给实验结果带来什么影响? 由实验中比热容比地计算公式γ=[㏒(P1)-㏒(P0)]÷[㏒(P1)-㏒(P 2)]可知,当提前关闭活塞C2时,气缸内地压强P2就会增大,根据上面公式,求地空 气地比热容比会增大,同理,当推辞关闭活塞C2时,空气地比热容比会减少.本实验地误差来源于那几个方面?最大地实验误差是哪个因素造成地?怎样减少误差? 实验地主要误差主要来源于温度和压力方面;而最大地实验误差则来源于压强方面,在实验地过程中,由于操纵活塞C2地时候所产生地误差,就导致了气缸中气体溢出外界地量地多少,从而对缸里地压强产生一个直接地影响,导致测出地空气比热容比产生误差,为了减少实验过程中所产生地误差,在做实验地时候,应注意检查气体是否产生泄露,在测量数据时,尽量测量多组数值,取平均值.测量次数 状态压强显示值 状态温度 状态Ⅲ压强显 示值 状态Ⅲ温度 Ⅲ 状态气体实际压强 状态Ⅲ气体实际压强 γ 2.66

实验五 固体比热容的测量(电热法)

实验五 固体比热容的测量(电热法) 金属是重要的固态物质,本文对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本文重点介绍电热法测量固体比热容。 【实验目的】 1、掌握基本的量热方法——用量热器测热量法。 2、学习用电热法测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、待测钢球、测温探头 【实验原理】 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍电热法测量固体比热容。 在量热器中加入质量为m 的待测物,并加入质量为0m 的水,如果加在加热器两端的电压为U ,通过电阻的电流为I ,通电时间为t ,则电流作功为: UIt A = (5-1) 如果这些功全部转化为热能,使量热器系统的温度从1T ℃升高至2T ℃,则下式成立 ()()1201100T T c c m c m mc UIt -+++=ω (5-2) c 为待测物的比热容,0c 为水的比热热容,1m 为量热器内筒的质量,1c 为量热器内筒的比热容, 2m 为铜电极和铜搅拌器总质量,2c 为铜比热容。 由(5-2)式得 ()[]m c c m c m T T UIt c //0110012ω----= (5-3) 为了尽可能使系统与外界交换的热量达到最小,在实验的操作过程中就应注意以下几点: 1、不应当直接用手去把握量热筒的任何部分,不应当在阳光直接照射下进行实验。

空气比热容比实验报告

竭诚为您提供优质文档/双击可除空气比热容比实验报告 篇一:实验报告空气比热容比的测定 1.实验名称 空气比热容比的测定2.实验目的 (1)了解绝热、等容的热力学过程及有关状态方程。(2)测定空气的比热容比。 3.实验原理:主要原理公式及简要说明、原理图 (1)热力学第一定律及定容比热容和定压比热容热力学第一定律:系统从外界吸收的热量等于系(:空气比热容比实验报告)统内能的增加和系统对外做功之和。考虑在准静态情况下气体由于膨胀对外做功为dA?pdV,所以热力学第一定律的微分形式为 dQ?de?dA?de?pdV(1) 定容比热容cv是指1mol的理想气体在保持体积不变的情况下,温度升高1K所吸收的热量。由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(dQ=de),所以

?dQ?de ?cv???dT??dT(2)??v 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上 任何过程中内能的变化都可以写成de=cvdT 定压比热容是指1mol的理想气体在保持压强不变的情况下,温度升高1K所吸收的热量。即 ?dQ? ?(3)cp???dT???p 由热力学第一定律(3)式,考虑在定压过,就有 dV?dQ??de? ??????p(4) dT?dT?p?dT?p 由理想气体的状态方程pV=RT可知,在定压过程中入(4)式,就得到定压比热容与定容比热容的关系 dVRde ?,又利用?cv代dTpdT cp?cv?R(5) R是气体普适常数,为8.31J/mol·K,引入比热容比?为 ??cp/cv(6) 在热力学中,比热容比是一个重要的物理量,它与温度

实验题目 冷却法测金属的比热容

实验题目 冷却法测金属的比热容(416房间) 【目的要求】 1、掌握用冷却法测金属的比热容; 2、了解关于铜-康铜热电偶的定标知识。 【实验原理】 单位质量的物质,其温度升高1K(1C o )所需的热量叫做该物质的比热容,其值随温度而变化。将质量为M 1的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失( t Q ??)与温度下降的速率成正比,于是得到下 述关系式: t M C t Q ??=??111θ (1) (1)式中C 1为该金属样品在温度1θ时的比热容, t ??1θ为金属样品在1θ时的温度下降速率。根据冷却定律有: m s a t Q )(0111θθ-=?? (2) (2)式中a 1为热交换系数,S 1为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(1)和(2),可得: m s a t M C )(0111111θθθ-=?? (3) 同理,对质量为M 2,比热容为C 2的另一种金属样品,可有同样的表达式: m s a t M C )(0222222θθθ-=?? (4) 由上式(3)和(4),可得: m m s a s a t M C t M C )()(01110222111222θθθθθθ--=???? 所以: m m s a t M s a t M C C )()(01112202221112θθθθθθ-??-??= 如果两样品的形状尺寸都相同,即S 1=S 2;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有a 1=a 2。于是当周围介质温度不变(即室温0θ恒

空气比热容比测定实验报告(实验数据及其处理)

007 实验报告 评分: 课程: ******** 学期: ***** 指导老师: **** 年级专业: ***** 学号:****** 姓名:!习惯一个人007 实验3-5空气比热容比的测定 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 r r o r o r T p T p 1 1 11 --= (3-5-2) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系: 0 21T p T p o = (3-5-3) 由(3-5-2)式和(3-5-3)式,可得 )lg /(lg )lg (lg 1210P P P P --=γ (3-5-4) 利用(3-5-4)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。

实验3 TG-DTA法测定材料熔点

实验3:TG-DTA法测定材料熔点 实验学时数:3学时 每组核定人数:5人 适用专业:金属材料工程、焊接等本科专业 一、实验目的 热分析(thermal analysis)是在控制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时问)的关系的一类技术。热分析法的技术基础在于通过加热或者冷却过程中,随着其物理状态或化学状态的变化,通常伴有相应的热力学性质(如热焓、比热、导热系数等)或其他性质(如质量、力学性质、电阻等)的变化,因而通过对某些性质(参数)的测定可以分析研究物质的物理变化或化学变化过程。在主要的热分析法当中,具有代表性的主要有三种方法:差热分析法(DTA)、差示扫描量热法(DSC)和热重法(TG)。这几种方法的主要应用范围如表1所示。本次实验的目的如下:1.掌握热分析仪的种类、原理以及使用方法; 2.掌握差热分析的参数的选择以及测试过程的注意事项; 3.测试后数据的分析 表1典型的热分析法及其测定的物理化学参数 Diamond TG/DTA用于科学研究,产品研发,质量控制等各个领域,适用于无机材料(如:陶瓷、合金、矿物、建材等)。有机高分子材料(如:塑料、橡胶、涂料、油脂等),食品,药物及催化反应和各种固液态试样,可以获得以下重要信息:组份分析、热稳定性、添加剂含量、分解温度、分解动力学、脱酸、脱水、

氧化还原反应、非均匀相催化反应、氧化诱导期、熔点、反应热、与红外、质谱联用,对逸出气体进行定性、定量分析。 二、实验内容及基本原理 (1)差热分析(DTA)的原理 差热分析是在程序控制温度下测定物质和参比物之间的温度差和温度关系的一种技术,差热分析装置称为差热分析仪,图2为差热分析仪结构示意图。 如图2所示,将样品和参比物同时进行升温,当样品没有发生化学变化时,样品温度(Ts)和参比物的温度(Tr)相同,温差△T=Ts-Tr=0,无热效应发生,温差电势等于0。当试样在某一温度下发生物理或化学变化,则会放出或吸收一定的热量,此时温差热电势△T就会偏离基线,出现差热峰。试验中将温差热电势讯号经过放大后送入记录仪中,得到横坐标为温度T(或时间t)、纵坐标为试样与参比物的温差△T的差热分析曲线。△T=0表示没有热效应产生,此时记录的DTA曲线为一直线,称为基线。如果样品有热效应产生,则记录的差热峰反映样品的放热、吸热过程。典型的DTA曲线如图3所示。

金属比热容测量实验中误差的来源探讨和修正

金属比热容测量实验中误差的来源探讨和修正 Prepared on 24 November 2020

天津师范大学本科毕业论文(设计) 题目:金属比热容测量实验中误差的来源探讨和修正 学院:物理与电子信息学院 学生姓名:于永洋 学号:07506015 专业:物理学 年级:2007级 完成日期:2011年5月 指导教师:曹猛

测量金属比热容实验中误差的来源探讨和修正 于永洋 (天津师范大学物理与电子信息学院) 摘要:金属比热容的测量是大学物理中的一个经典实验,但由于在实验过程中受外界环境影响因素较大,造成测量结果往往有一定偏差。本研究分析了混合法测量金属比热容实验中可能产生实验误差的各种因素,对误差对结果的影响进行分析,并提出改进的实验方法用以减小误差的影响。 关键词:误差、比热容、混合法 Error to explore and fixed in metal specific heat capacity measurement YU YONGYANG (College of Physics and Electronic Information Science, Tianjin Normal University) Abstract:Specific Heat capacity measuring in metal is the classic college physics experiment.Certain deiation often measurement results because of the experimental process by external environment factors. This study analyzes various factors of the error by the cooling method and hybrid method.Analysing the influence of the error of the results and some improvements to the experimental method to lower the error influence. Keywords:error, specific heat capacity, hybrid method 目录 引言 (1) 一、研究背景 (1)

实验8冷却法测金属比热容

实验八 冷却法测量金属的比热容 用冷却法测定金属或液体的比热容是量热学中常用的方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测得各种金属在不同温度时的比热容。热电偶数字显示测温技术是当前生产实际中常用的测试方法,它比一般的温度计测温方法有着测量围广,计值精度高,可以自动补偿热电偶的非线性因素等优点。 本实验以铜样品为标准样品,而测定铁、铝样品在100℃或200℃时的比热容。通过实验了解金属的冷却速率和它与环境之间温差的关系,以及进行测量的实验条件。 【实验目的】 1.掌握用冷却法测定金属的比热容,测量铁、铝金属样品在100℃或200℃温度时的比热容。 2.了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 DH4603型冷却法金属比热容测量仪、待测量金属材料样品(铜、铁、铝)等 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量称为该物质的比热容,其值随温度而变化。将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(/Q t ??)与温度下降的速率成正比,于是得到下述关系式: 111Q c M t t θ??=?? (8-1) 式中1c 为该金属样品在温度1θ时的比热容,1 t θ??为金属样品在1θ的温度下降速率,根据冷却定律有: 1110()m Q S t αθθ?=-? (8-2) 式中1α为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(8-1)和(8-2),可得 1 11 1110()m c M S t θαθθ?=-? (8-3)

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据课气体比热容比的测定 1、学习测定空气比热容比的方法。题 教学目 2、熟练掌握物理天平和螺旋测微器的使用方的 法。 3、熟练掌握直接测量值和间接测量值不确定度 重难 1、物理天平的调节和使用。的计算。 点 2、各物理量不确定度的计算。 教学方讲授、演示、提问、讨论、操作相结合。 学 3学时。法 时 一、前言 气体的定压比热容和定体比热容的比值称为比热容比。气体的值在许多热力学过程特别是绝热过程中是一个很重要的参数。由气体动理论可知,理想气体的值为: (1) 式中为气体分子的自由度,对于单原子分子 ;对于双原子刚性分子, ;对于多原子刚性分子,。实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的值。 二、实验仪器 FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。

三、实验原理 如图1所示,钢球A位于精密细玻璃管B中,其直径仅仅比玻璃管直径小 0.01-0.02mm,使之能在玻璃管中上下移动,瓶上有一小孔C,可以通过导管将 待测气体注入到玻璃瓶中。 图1 设小球质量为m,半径为r,当瓶内气压P满足下式时,小球处于平衡位置: (2) 设小球从平衡位置出发,向上产生微小正位移x,则瓶内气体的体积有一 微小增量: (3) 与此同时瓶内气体压强将降低一微小值,此时小球所受合外力为: (4) 小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程: (5) 两边微分,得 (6) 将(3)、(4)两式代入(6)式,得: (7) 由牛顿第二定律,可得小球的运动方程为: (8) 可知小球在玻璃管中作简谐振动,其振动周期为: (9) 最后得气体的值为: (10)

实验冷却法测定金属比热容

实验 冷却法测定金属比热容 专业___________________ 学号___________________ 姓名___________________ 一、预习要点 1. 了解冷却定律以及冷却法测量金属比热容的实验原理和计算方法; 2. 熟悉掌握金属比热容测量仪的使用方法及测量结构示意图; 3. 在课前写好预习报告,上课时务必将预习报告和原始数据表格一并带来,否则扣分。 二、实验内容 1. 用天平称出(铜、铁、铝)三种实验样品的质量,填入表1上方;三种实验样品可根据质量大小区分(Cu m >Fe m >Al m ); 2. 打开电源,注意调零数字电压表,并连接各仪器导线; 3. 测量铁和铝在100℃时的比热容: (1) 将铜样品套在容器内的热电偶上,调节支架上的旋钮,下降实验架,使电烙铁套于样品上,开启加热开关;用铜—康铜热电偶测量实验样品的温度,当电压表读数超过5.00mV 时,断开加热开关,上升加热支架;让样品继续安放在与外界基本隔绝的防风容器内自然冷却(容器必须盖上盖子); (2) 冷却过程中,观察比热容测量仪中的电压值,当电压表显示为4.37mV 时(此时样品温度为102 ℃),迅速按下时间指示下方的“起动/停止”按钮;一段时间后,当电压表显示为4.18mV 时(此时样品温度为98 ℃),再次迅速按下 “起动/停止”按钮;记录此时仪器上显示的时间,即为样品降温所需要的时间1t ?; (3) 重复以上步骤(1)、(2),再次测量铜样品的降温时间2t ?、3t ?,填入表1; (4) 重复以上步骤(1)、(2)、(3),测量铁和铝样品的降温时间1t ?、2t ?、3t ?,填入表1; 4. 测量金属的冷却规律: (1) 选取两种样品,重复第3点中第(1)步; (2) 冷却过程中,当电压表显示为4.37mV 时,迅速按下 “起动/停止”按钮;每隔5秒,记录电压表的读数V ,填入表2; 三、实验注意事项 1. 加热装置向下移动时,动作要慢,应注意要使被测样品垂直放置,以使加热装置能完全套入被测样品。 2. 样品冷却时,电压表的读数跳变会比较大(比如:4.39mV 直接跳到4.36mV ),要注意把握,记录数据时动作要敏捷,以免错过合适的测量点,以减少误差。 3. 降温测量时,间隔测量时间较短,应迅速、准确,以减小人为计时误差。 4. 加热后样品烫手,勿用手触摸以免烫伤手指,使用镊子夹取样品。

@金属比热容的测量

金属比热容的测量 【实验目的】 1.学会用铜-康铜热电偶测量物体的温度, 2.掌握用冷却法测定金属的比热容,并测量铁和铝不同温度下的比热容。 【实验原理】 单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,它是温度的函数,一般情况下,金属的比热容随温度升高而增加,在低温时增加较快,在高温时增加较慢。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。 将质量为M 1的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(t Q ??)与温度下降的速率成正比,于是得到下述关 系式: t M C t Q ??=??111θ (1) (1)式中C 1为该金属样品在温度1θ时的比热容, t ??1θ为金属样品在1θ时的温度下降速率。根据冷却定律有: m s a t Q )(0111θθ-=?? (2) (2)式中a 1为热交换系数,s 1为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(1)和(2),可得: m s a t M C )(0111111θθθ-=?? (3) 同理,对质量为M 2,比热容为C 2的另一种金属样品,可有同样的表达式: m s a t M C )(022222 2θθθ-=?? (4) 由上式(3)和(4),可得: m m s a s a t M C t M C )()(01110222111222θθθθθθ--=???? 所以:

m m s a t M s a t M C C )()(011122022211 12θθθθθθ-??-??= 如果两样品的形状尺寸都相同,即s 1=s 2;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有a 1=a 2。于是当周围介质温度不变(即室温0θ恒定而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: 221112)()(t M t M C C ????=θθ (5) 如果已知标准金属样品的比热容C 1质量M 1;待测样品的质量M 2及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容C 2。 已知铜在100℃时比热容为C cu = 0.0940cal /(g .K )。 【实验仪器】 FD-JSBR 型冷却法金属比热容测量仪、铜铁铝实验样品、盛有冰水混合物的保温杯、镊子、秒表。 FD-JSBR 型冷却法金属比热容测量仪由加热仪和测试仪组成。加热仪的热源A 是75 瓦电烙铁改制而成,利用底盘支撑固定并通过调节手轮自由升降;实验样品B 是直径5mm ,长30mm 的小圆柱,其底部钻一深孔便于安放热电偶,放置在有较大容量的防风容器E 即样品室内的热电偶支架D 上;测温铜-康铜热电偶 C(其热电势约为0.042mV /0C )放置于被测样品 B 内的小孔中。当加热装置 A 向下移动到底后,可对被测样品B 进行加热;样品需要降温时则将加热装置A 移上。装置内设有自动控制限温装置,防止因长期不切断加热电源而引起温度不断升高。 热电偶的冷端置于冰水混合物G 中,带有测量扁叉的一端接到三位半数字电压表F 的“输入”端。热电势差的二次仪表由高灵敏、高精度、低漂移的放大器放大加上满量程为 20mV

空气压强实验报告

竭诚为您提供优质文档/双击可除 空气压强实验报告 篇一:验证大气压强的实验 关于验证大气压强的实验 一、将一饮料瓶底部扎几个细孔,再往饮料瓶中到入适量的水,此时会发现瓶底处有水流出,可以印证液体对容器底部有压强。继续迅速把饮料瓶中灌满水,然后拧紧瓶盖,这时可观察到饮料瓶底部并没有水流出。如果再拧松瓶盖,又发现水流了出来。这说明是大气压作用形成的这一现象。 二、另取一空饮料瓶灌满水后拧紧平盖,然后用酒精灯加热一钢针。轻轻的在饮料瓶下部侧壁烫一细孔(注意烫孔时不要用力挤按饮料瓶)。当扎完小孔后会发现并没有水流出,在第一个孔的相同高度处,任意位置再烫一个细孔后发现依然没有水流出来。这是由于大气压的作用的结果,并且证明了大气压是各个方向都存在的,与液体压强特点形成对比。之后在前两个细孔的上方再烫一细孔后,发现下面的细孔向外流水,而上面的细孔不向外流水,并且有空气从此处进入饮料瓶内上方。如果拧开饮料瓶的瓶盖会发现三孔都会

流水。且小孔位置越靠近瓶底,水柱喷的越远。 三、再取一饮料瓶灌满水并拧紧瓶盖后,把它倒置在盛有足够多水的玻璃水槽中,在水中把瓶盖拧下来,抓住瓶子向上提,但不露出水面发现瓶里的水并不落回水槽中。(可以换更高的饮料瓶做“对比实验”,为托里拆利实验的引入打好基础。)还可以在此实验的基础上,在瓶底打孔,立刻发现瓶里的水流回水槽中。原因是瓶子内、外均有大气压相互抵消,水柱在本身重力的作用下流回水槽。 四、还可以选用易拉罐,拉盖不要全部拉开,开口尽量小一些。倒净饮料后用电吹风对罐体高温加热一段时间后,把拉口处用橡皮泥封好,确保不漏气。再用冷水浇在易拉罐上,一会听到易拉罐被压变形的声音,同时看到易拉罐上有的地方被压瘪。说明气体热胀冷。 篇二:空气比热容比的测量实验报告 空气比热容比的测量 班级:电子六班学号:20XX31190611姓名:官镇校 一、实验目的 测量室温下的空气比热容比。 二、实验仪器 储气瓶一套(包括玻璃瓶、活塞两只、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

实验报告空气比热容比的测定word文档良心出品

空气比热容比的测定 (1) 了解绝热、等容的热力学过程及有关状态方程。 (2) 测定空气的比热容比。 (1) 热力学第一定律及定容比热容和定压比热容 热力学第一定律:系统从外界吸收的热量等于系统内能的增加和系统对外做功之和。 考 虑在准静态情况下气体由于膨胀对外做功为 dA = PdV ,所以热力学第一定律的微分形式为 dQ =dE +dA=dE + PdV 1. 实验名称 2. 实验目的 3. 实验原理:主要原理公式及简要说明、原理图 定容比热容C v 是指1mol 的理想气体在保持体积不变的情况下, 温度升高1K 所吸收的 热量。由于体积不变,那么由 (1)式可知,这吸收的热量也就是内能的增加 (dQ = dE),所以 C 〔dQ 〕 dE C v = i 〒丨=—(2) i dT 丿v dT 由于理想气体的内能只是温度的函数, 所以上述定义虽然是在等容过程中给出, 任何过程中内能的变化都可以写成 d E = C v dT 定压比热容是指1mol 的理想气体在保持压强不变的情况下,温度升高 1K 实际上 所吸收的热 Cp ^dQ (3) 丿p 由热力学第一定律(3)式,考虑在定压过,就有 (dQ )冶 + ___ I — ___ I + I dT 丿p ■ I dT 丿 dV p dT ⑷ 由理想气体的状态方程 PV = RT 可知,在定压过程中 理=巴,又利用 dT P dE dT =Cv 代 入(4)式,就得到定压比热容与定容比热容的关系 C p =C v + R (5) R 是气体普适常数,为 8.31 J / mol K ,?引入比热容比丫为 在热力学中,比热容比是一个重要的物理量,它与温度无关。气体运动理论告诉我们, Y 与气体分子的自由度 f 有关

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① ? 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂 层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: $ 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

大学物理空气比热容的测量实验报告

大物实验报告撰写模板2 空气比热容比的测定 在热学中比热容比是一个基本物理量。过去,由于实验测量手段的原因使得对它的测量误差较大。现在通过先进的传感器技术使得测量便得简单而准确。本实验通过压力传感器和温度传感器来测量空气的比热容比。 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示 R C C v p =- (4-6-1) 其中, R 为普适气体常数。气体的比热容比γ定义为 v p C C = γ (4-6-2) 气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 γ γ2011V P V P = (4-6-3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系:

相关主题
文本预览
相关文档 最新文档