电流互感器及其二次回路简介
- 格式:pptx
- 大小:6.06 MB
- 文档页数:40
电流互感器的二次原理电流互感器(Current Transformer,CT)是一种用于测量和保护电流的装置,主要用于将高电流变换为低电流,以便进行测量和监控。
它是电力系统中常用的一种电气设备,广泛应用于高压变电站、发电厂、工矿企业等场所。
1.互感器的变比:电流互感器的核心原理是基于互感现象。
一次线圈中通过的电流会在二次线圈中感应出一个与一次线圈电流成比例的电流。
这个比例关系就是变比。
变比是互感器的一个重要性能参数,通常用K表示,K=二次电流/一次电流。
2.线圈匝数比:电流互感器的二次原理还涉及到线圈的匝数比。
一次线圈和二次线圈的匝数比决定了互感器的变比。
通常情况下,二次线圈的匝数比一次线圈大得多,这样才能实现从高电流到低电流的变换。
3.互感器的线性特性:电流互感器的二次原理还涉及到互感器的线性特性。
互感器应当具备良好的线性特性,即在整个测量范围内,一次电流和二次电流之间的比例关系应当保持不变。
如果互感器的线性特性不好,将会对测量结果产生误差。
4.额定电流和准确度等级:电流互感器的二次原理还涉及到额定电流和准确度等级。
额定电流是指互感器能够连续工作的最大电流,准确度等级则是指互感器的测量误差允许范围。
一般来说,互感器的额定电流应当大于被测电流的最大值,并且准确度等级应当符合测量要求。
5.二次回路的负荷:电流互感器的二次原理还涉及到二次回路的负荷。
二次回路的负荷是指接在互感器二次线圈上的负载电阻。
负荷的大小会影响互感器的输出电流,因此需要根据具体情况进行合理选择。
综上所述,电流互感器的二次原理主要包括变比、线圈匝数比、线性特性、额定电流和准确度等级以及二次回路的负荷等方面。
了解这些原理可以帮助我们更好地理解和应用电流互感器,确保其正常工作和准确测量。
电流互感器二次回路常用接线电流互感器(Current Transformer,CT)是一种用于测量和保护电流的装置,常用于电力系统中。
在电流互感器的应用中,二次回路的接线方式非常重要,本文将介绍电流互感器二次回路常用的接线方式。
1. 直接接线方式直接接线方式是最常见也是最简单的一种接线方式。
在这种方式下,电流互感器的二次绕组直接与测量仪表或保护装置相连。
这种接线方式适用于二次回路较短的情况,可以提供相对准确的测量和保护功能。
2. 间接接线方式间接接线方式是将电流互感器的二次绕组与测量仪表或保护装置之间通过一段导线相连。
这种接线方式适用于二次回路较长的情况,可以降低因线路电阻和电感对测量结果的影响。
3. 双绕组接线方式双绕组接线方式是将电流互感器的二次绕组分成两个独立的回路,分别与测量仪表和保护装置相连。
这种接线方式可以同时满足测量和保护的需求,且能够提供更好的抗干扰性能。
4. 串联接线方式串联接线方式是将多个电流互感器的二次回路串联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护大电流的情况,可以将大电流分成若干个小电流进行测量或保护。
5. 并联接线方式并联接线方式是将多个电流互感器的二次回路并联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护小电流的情况,可以将小电流叠加成一个大电流进行测量或保护。
需要注意的是,在进行电流互感器二次回路接线时,应根据实际情况选择合适的接线方式。
同时,还需要注意接线的可靠性和安全性,确保接线正确无误。
总结起来,电流互感器二次回路常用的接线方式包括直接接线方式、间接接线方式、双绕组接线方式、串联接线方式和并联接线方式。
根据实际需求和具体情况,选择合适的接线方式可以确保电流测量和保护的准确性和可靠性。
电流互感器二次回路接地解析摘要:高压电流互感器(如无说明,下文中电流互感器均指高压电流互感器)将一次回路中的大电流、高电压变为小电流、低电压,供仪表和继电器等二次设备使用,同时使仪表和继电器等二次设备与一次侧主回路电气隔离,保证设备和人身安全。
为了保证电流互感器二次绕组及与其连接的继电保护装置和测控仪表的功能及安全,二次绕组必须接地。
本文对电流互感器二次回路接地进行了探究。
关键词:电流互感器;二次回路;接地1电流互感器1.1电流互感器的概念电流互感器就是将一次回路的大电流变为二次回路标准小电流的互感器。
电流互感器是由闭合的铁心和绕组组成。
它的一次绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路,二次侧不能开路。
1.2电流互感器的作用电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
2电流互感器二次回路不开路,二次负荷小的原因在电流互感器的应用中,如果CT初级绕组的匝数少,并且该绕组串联在要测试的线路上。
另外,次级绕组的匝数很大,与仪器和继电器串联。
由于电流线圈的阻抗较小,CT被视为短路形式。
另外,在电流互感器的工作中,由次级电流产生的磁通势将起到消磁作用,但是由于励磁电流较小,励磁电流相对较小。
芯中的总磁通也非常小,并且次级绕组的感应电动势也非常小。
但是,在运行中,如果消磁效果消失,则初级电流将完全成为励磁电流,并且磁芯将处于饱和状态。
如果次级绕组的匝数很大,则次级绕组两端的电压将会很高,这严重威胁了设备和人员的安全。
另外,当次级电路断开时,由于开路相电流为零,保护装置可能会失效或不动作,并且铁芯在磁饱和状态下会产生严重的热量。
电流互感器二次回路开路分析电流互感器是一种用于测量高电流的传感器,其原理是通过利用主回路中的一部分电流来感应并传递给次回路中,进而实现电流的测量。
当互感器的次回路开路时,会对互感器的工作性能和测量准确性产生影响。
因此,有必要对开路时的现象和原因进行分析。
当电流互感器的二次回路开路时,会造成以下几个现象:1.互感器输出电压降低。
由于次回路开路,电流无法在次回路中流动,导致次回路的电压减小。
2.互感器输出电流减小。
由于次回路开路,电流无法通过次回路,导致输出电流减小。
3.互感器的变压比下降。
次回路开路后,电流无法在次回路中流动,导致互感器的变压比下降。
实际测量中,可能会出现输出信号过小的情况,导致测量误差增大。
次回路开路的原因主要可以归纳为以下几种:1.次回路接线错误。
次回路的接线错误可能会导致开路的情况发生,例如接触不良或接线松动等。
2.互感器内部故障。
互感器内部的零部件故障或损坏可能导致次回路开路,例如互感器内部接线脱落或短路等。
3.外部负载故障。
如果互感器的次回路被连接到一个有故障的外部负载上,也可能导致开路的情况发生,例如负载开路或短路等。
针对次回路开路的问题1.检查次回路的接线,确保接线正确牢固。
对于已经出现接触不良或接线松动的情况,应及时修复并加固。
2.对互感器进行维护和检修。
定期对互感器进行检查和维护,防止由于内部零部件故障或损坏而导致的次回路开路。
3.对外部负载进行故障排查。
如果问题是由于外部负载故障导致的互感器次回路开路,应先修复外部负载的故障,然后再进行互感器的测量。
4.考虑采用带保护功能的互感器。
一些新型互感器具有内置的保护机制,当次回路发生开路时,可以自动停止输出,以防止测量误差的产生。
综上所述,电流互感器次回路开路会对互感器的测量准确性产生影响,但可以通过检查和维护互感器以及排查外部负载故障等方法来解决。
在实际应用中,应根据具体情况选择适当的解决办法,以确保互感器的正常工作和测量精度。
互感器及二次回路一互感器测量、监视、控制电力系统的潮流及运行工况,需由测量仪表及自动装置来完成;为快速切除故障及确保系统的安全,需由继电保护来完成。
测量仪表、自动装置及继电保护装置均系低电压二次设备。
二次设备不能直接接入一次系统的高电压及大电流。
为此,需要一种特殊的变换器,将电力系统的一次电流及一次电压变换成与其成正比的小电流及低电压,以供给测量仪表、继电保护及自动装置,并起到一、二次的隔离作用。
该变换器称之为互感器。
将电力系统的一次大电流变换成二次小电流的互感器叫电流互感器;而将一次高电压变换成二次低电压的互感器叫电压互感器。
电磁型电流互感器与电压互感器的构成原理同电力变压器,同属电-磁耦合变换传递元件。
目前,广泛采用的电流互感器的输出是交流电流。
而继电保护及自动装置的计算逻辑回路通常是直流。
为确保继电保护及自动装置运行的可靠性及安全性,需将电流互感器的二次回路与继电保护及自动装置的逻辑回路进行隔离。
在保护装置中,将电流互感器的二次电流变换成与电流成正比的电压,并进行交、直流回路隔离的变换器,通常采用两种变换器之一,即采用辅助变流器或电抗互感器。
二对互感器的要求为确保安全而精确地测量及变换,应按照以下要求选用互感器:1.电流互感器及电压互感器的一次额定电压,应与所用在电网的额定电压等级相同;其绝缘水平应能承受长期运行及可能出现的短时过电压(运行过电压、雷击过电压及谐振或操作过电压等);2.变换精度高,应能满足测量精度,确保继电保护动作可靠;3.变比适当,其变比应能保证系统在额定工况下测量仪表、继电保护及自动装置的测量要求及工作在线性区;4.容量足够大,应满足正常及电力系统短路故障时,继电保护及自动装置的测量精度要求;保证互感器不过热;5.满足热稳定及动稳定的要求,饱和倍数足够大。
第二节电流互感器一构成及工作特点电流互感器的作用是:将电力系统的一次大电流变换成与其成正比的二次小电流,然后输入到测量仪表或继电保护及自动装置中。
电流互感器二次回路上工作
电流互感器是电力系统中常用的一种测量和保护装置。
在电力系统中,电流互感器主要用于测量和保护电力设备,例如变压器、发电机和电缆等。
电流互感器的主要功能是将高电流变换成低电流,以便于测量和保护。
电流互感器的二次回路是将互感器输出的低电流信号传输到负载端,从而实现对负载的测量和保护。
在电流互感器二次回路上工作时,需要注意以下几点:
1.二次回路的电缆选用应符合电力系统的规范要求,以保证传输信号质量和安全性。
2.二次回路的接线应正确可靠,避免接触不良、短路等情况发生。
3.二次回路中应设置电流互感器二次侧的保护装置,以防止二次回路受到过载、短路等故障的影响。
4.在进行电流互感器二次回路上的测量和调试时,应使用专用的测试仪器,并遵循相应的操作规程。
总之,电流互感器二次回路的工作是电力系统中重要的一环,需要注意安全和可靠性的问题,以确保电力系统的正常运行。
- 1 -。
电流互感器二次回路一、电流互感器二次回路电流互感器是将交流一次侧大电流转换成可供测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离,保证工作人员的安全。
电流互感器是单相的,一次侧流过电力系统的一次电流,二次侧接负载ZL(表计、继电器线圈等),一般二次侧额定电流为5A 或1A 。
1.电流互感器的极性和相量图电流互感器一次绕组和二次绕组都是两个端子引出,如图8-l 所示,绕组L1-L2为一次绕组,绕组K1-K2为二次绕组。
在使用电流互感器时,需要考虑绕组的极性。
电流互感器一次绕组和二次绕组的极性通常采用减极性原则标注,即当一次和二次电流同时从互感器一次绕组和二次绕组的同极性端子流入时,它们在铁芯中产生的磁通方向相同。
在图8-1中,L1与K1是同极性端子,同样L2与K2也是同极性端子。
同极性端子还可以用“*”、“·”等符号标注。
电流互感器采用减极性原则标注时,当一次电流从L1(或L2)流人互感器一次绕组时,二次感应电流的规定正方向从K1(或K2)流出互感器二次绕组(这也是二次电流的实际方向),如图8-2(a )所示。
如果忽略电流互感器的励磁电流,其铁芯中合成磁通为:02211=-N I N I (8-1)则 TA n I N N I I 11211/ == (8-2)式中21I 、I ——电流互感器一次电流、二次电流;21、N N ——电流互感器一次绕组匝数、二次绕组匝数;TA n ——电流互感器变化。
可见,此时电流互感器一次电流、二次电流相位相同,如图8-2(b)所示。
2.电流互感器的接线方式电流互感器的接线方式指电流互感器二次数绕组与电流元件线圈之间的线接方式。
常用的接线方式有三相完全星形接线、两相不完全星形接线、两相电流差接线方式等。
例如用于电流保护的常用接线方式如图8-3所示。
图8-3(a)三相完全星形接线,三相都装有电流互感器以及相应的电流元件,能够反应三相的电流,正常情况下中性线电流为0=++=c b a n I I I I ;图8-3(b )两相不完全星形接线,只有两相(一般是A 、C 相)装有电流互感器以及相应的电流元件,只能反应两相的电流,正常情况下中性线电流为b c a n I I I I -=+=。
二次回路基础知识目录一、基本概念 (3)1.1 什么是二次回路 (4)1.2 二次回路的作用 (5)1.3 二次回路的分类 (6)二、二次回路图 (7)2.1 电气图的基本概念 (8)2.2 二次回路图的表示方法 (10)2.3 二次回路图的基本符号 (11)三、电流互感器 (12)3.1 电流互感器的功能 (13)3.2 电流互感器的结构 (14)3.3 电流互感器的接线方式 (16)四、电压互感器 (17)4.1 电压互感器的功能 (18)4.2 电压互感器的结构 (19)4.3 电压互感器的接线方式 (20)五、断路器 (21)5.1 断路器的功能 (22)5.2 断路器的结构 (23)5.3 断路器的操作与保护 (24)六、隔离开关 (25)6.1 隔离开关的功能 (26)6.2 隔离开关的结构 (27)6.3 隔离开关的操作与保护 (28)七、互感器与开关电器的二次回路 (29)7.1 互感器在二次回路中的作用 (31)7.2 开关电器在二次回路中的作用 (33)八、二次回路的接线 (34)8.1 接线的类型与特点 (35)8.2 接线的原则与注意事项 (37)九、二次回路的接地 (38)9.1 接地的目的与要求 (39)9.2 接地的方式与注意事项 (40)十、二次回路的维护与故障处理 (41)10.1 二次回路的维护保养 (43)10.2 二次回路故障的处理方法 (44)十一、二次回路设计原则与实例 (45)11.1 设计原则与步骤 (47)11.2 实例分析 (49)一、基本概念二次回路定义:二次回路是电力系统中的低压电路系统,用于实现电气设备的控制、保护、测量和信号传输等功能。
它主要由各种电气元件(如开关、互感器、继电器、测量仪表等)以及连接这些元件的导线组成。
二次回路的作用:二次回路在电力系统中扮演着至关重要的角色。
其主要作用包括实时监测电力系统运行状态,提供设备控制信号,实现电力系统的自动控制和保护,保障电力系统的安全稳定运行。
电流及电压互感器的二次回路、开路问题
电流及电压互感器的二次回路、开路问题:
为什么110kV电压互感器二次回路要经过其一次侧隔离开关的辅助接点?
110kV电压互感器隔离开关的辅助触点应与隔离开关的位置相对应,即当电压互感器停用(拉开一次侧隔离开关时),二次回路也应断开。
这样可以防止双母线上带电的一组电压互感器向停电的一组电压互感器二次反充电,致使停电的电压互感器高压侧带电。
电流互感器运行中为什么二次侧不准开路?
电流互感器正常运行中二次侧处于短路状态。
若二次侧开路将产生以下危害:
①感应电势产生高压可达几千伏及以上,危及在二次回路上工作人员的安全,损坏二次设备;
②由于铁芯高度磁饱和、发热可损坏电流互感器二次绕组的绝缘.
电压互感器运行中为什么二次侧不准短路?
电压互感器正常运行中二次侧接近开路状态,一般二次侧电压可达100伏,如果短路产生短路电流,造成熔断器熔断,影响表计指示,还可引起继电保护误动,若熔断器选用不当可能会损坏电压互感器二次绕组等。
P为什么110kV及以上电压互感器的一次侧不装设熔断器?
因为110kV及以上电压互感器的结构采用单相串级式,绝缘强度大,还因为110kV系统为中性点直接接地系统,电压互感器的各相不可能长期承受线电压运行,所以在一次侧不装设熔断器。