电流互感器及二次系统
- 格式:ppt
- 大小:917.00 KB
- 文档页数:34
浅谈电流互感器误差及影响摘要:电流互感器是一次系统和二次系统电流间的联络元件,将一次回路的大电流转换为小电流,供给测量仪表和保护装置使用。
电流反应系统故障的重要电气量,而保护装置是通过电流互感器来间接反应一次电流的,因此电流互感器的性能直接决定保护装置的运行。
然而从互感器本身和运行使用条件方面来看,电流互感器存在不可避免的误差,本文分别从这两个方面分析了误差,并结合实际工作阐述了误差带来的影响,以便在工作中加强重视,并做出正确的分析。
关键词:电流互感器 励磁电流 误差一、电流互感器的误差在理想条件下,电流互感器二次电流I 2=I 1/Kn ,Kn=N 2/ N 1 ,N 1 、N 2 为一、二次绕组的匝数,不存在误差。
但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。
这一点我们可以从图中看到。
从图一看,实际流入互感器二次负载的电流I’2 =I 1-Ie ,其中I’2 = I 2 * Kn,Ie 为励磁电流,即建立磁场所需的工作电流。
正是因为励磁损耗的存在,使得I 1 和I’2 在数值上和相位上产生了差异。
正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大,经常可以被忽略。
但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。
图二相量图,以I’2 为基准,E 2 较-I’2超前φ角(二次总阻抗角,即Z 2 和Z 阻抗角),如果不考虑铁磁损耗,励磁阻抗一般被作为电抗性质处理,Ie 超前E 2 为90度, I’2与Ie 合成I 1。
图中I’2与I 1不同相位,两者夹角δ即为角度误差。
对互感器误差的要求一般为,幅值误差小于10%,角度误差小于7度。
二、电流互感器的饱和电流互感器的误差主要是由励磁电流Ie 引起的。
正常运行时由于励磁阻抗较大,因此Ie 很小,以至于这种误差是可以忽略的。
但当CT 饱和时,饱和程度越严重,励磁阻抗越小,Z图一 等值电路E 图二 相量图励磁电流极大的增大,使互感器的误差成倍的增大,影响保护的正确动作。
电流互感器的二次原理电流互感器(Current Transformer,CT)是一种用于测量和保护电流的装置,主要用于将高电流变换为低电流,以便进行测量和监控。
它是电力系统中常用的一种电气设备,广泛应用于高压变电站、发电厂、工矿企业等场所。
1.互感器的变比:电流互感器的核心原理是基于互感现象。
一次线圈中通过的电流会在二次线圈中感应出一个与一次线圈电流成比例的电流。
这个比例关系就是变比。
变比是互感器的一个重要性能参数,通常用K表示,K=二次电流/一次电流。
2.线圈匝数比:电流互感器的二次原理还涉及到线圈的匝数比。
一次线圈和二次线圈的匝数比决定了互感器的变比。
通常情况下,二次线圈的匝数比一次线圈大得多,这样才能实现从高电流到低电流的变换。
3.互感器的线性特性:电流互感器的二次原理还涉及到互感器的线性特性。
互感器应当具备良好的线性特性,即在整个测量范围内,一次电流和二次电流之间的比例关系应当保持不变。
如果互感器的线性特性不好,将会对测量结果产生误差。
4.额定电流和准确度等级:电流互感器的二次原理还涉及到额定电流和准确度等级。
额定电流是指互感器能够连续工作的最大电流,准确度等级则是指互感器的测量误差允许范围。
一般来说,互感器的额定电流应当大于被测电流的最大值,并且准确度等级应当符合测量要求。
5.二次回路的负荷:电流互感器的二次原理还涉及到二次回路的负荷。
二次回路的负荷是指接在互感器二次线圈上的负载电阻。
负荷的大小会影响互感器的输出电流,因此需要根据具体情况进行合理选择。
综上所述,电流互感器的二次原理主要包括变比、线圈匝数比、线性特性、额定电流和准确度等级以及二次回路的负荷等方面。
了解这些原理可以帮助我们更好地理解和应用电流互感器,确保其正常工作和准确测量。
电流互感器二次侧开路的现象及处理提到电流互感器(简称CT ),相信大家自然而然会想起一句话——“电流互感器二次侧不允许开路”。
但是对于大多数初学者,这句话也只是知其然并不知其所以然。
下面我将和大家一起,从电流互感器的工作原理入手,分析CT 二次侧开路的现象及处理方法。
一、电流互感器的工作原理电流互感器的等效电路如图1所示,L u 为励磁阻抗,R 、L 分别为归算到一次绕组的负荷电阻和电抗。
互感器正常工作时,由于二次阻抗很小,接近于短路状态,一次电流所产生的磁化力大部分被二次电流所补偿,总磁通密度不大,二次绕组电势也不大。
当电流互感器开路时,二次阻抗无限增大,二次绕组电流等于零,二次绕组磁化力等于零,总磁力化等于原绕组的磁化力(I0N0=I1N1)。
简而言之,就是一次电流完全变成了励磁电流,使电流互感器的铁芯骤然饱和,此时铁芯中的磁通密度可高达1.8T 以上。
二、引起电流互感器二次回路开路的原因1、交流电路回路中的实验接线端子,由于结构和质量上的缺陷,在运行中发生螺杆与铜板螺孔接触不良,造成开路;2、电流回路中的试验端子连接片,由于连接片胶木头过长,旋转端子金属片未压在连接片的金属片上,而误压在胶木套上,造成开路;3、检修工作中失误,如忘记将继电器内部触头接好,或误断开了电流互感器二次回路,或对电流互感器本体试验后未将二次接线接上等;4、二次线端子触头压接不紧,回路中电流很大时,发热烧断或氧化过热而造成开路。
三、电流互感器二次侧开路的现象电流互感器二次回路开路时,对于不同的回路分别产生下列现象:1、电流互感器存在有“嘟嘟”的异常响声;2、电流互感器本体有严重发热,并伴有异味、变色、冒烟现象; RLi 1 图1 电流互感器等效电路图3、开路故障点有火花放电声、冒烟和烧焦的现象,故障点出现异常的高电压;4、继电保护及自动装置发生误动或拒动;5、仪表、电流表、继电保护等冒烟烧坏。
6、由负序、零序电流启动的继电保护和自动装置频繁动作,但不一定出口跳闸(还有其他条件闭锁),有些继电保护可能自动闭锁(具有二次回路断线闭锁功能);7、有功、无功功率表指示不正常,电流表三相指示不正常,电流表计量不正常;8、监控系统相关数据显示不正常;实际上,有时发现电流互感器的二次开路后,并没有发生异常现象。
电流互感器(变电管理一所)摘要:电流互感器是一次系统和二次系统之间的联络元件,将一次侧的大电流变成二次侧标准的小电流(5A 或1A),用以分别向测量仪表、继电器的电压线圈和电流线圈供电,使二次电路正确反映一次系统的正常运行和故障情况。
关键词:电流互感器分类接线方式一、电流互感器的主要技术数据(-)电流互感器分类(1)电流互感器按用途可分为两类:一是测量电流、功率和电能用的测量用互感器;二是继电保护和自动控制用的保护控制用互感器。
(2)根据一次绕组匝数可分为单匝式和多匝式(3)根据安装地点可分为户内式和户外式(4)根据绝缘方式可分为干式、浇注式、油浸式等。
(5)根据电流互感器工作原理可分为电磁式、光电式、电子式等电流互感器。
(二)电流互感器的型号规定目前,国产电流互感器型号编排方法规定如下:产品型号均以汉语拼音字母表示,字母含义及排列顺序见表4-l所示(三)电流互感器的主要参数1.额定电流变比额定电流变比是指一次额定电流与二次额定电流之比,额定电流比一般用不约分的分数形式表示。
额定电流,就是在这个电流下,互感器可以长期运行而不会因发热损坏。
当负载电流超过额定电流时,叫作过负载。
2.准确度等级国产电流互感器的准确度等级有0.01、0.02、0.05、0.1、0.2、0.5、1.0、3.0、5.0、0.2S 级及0.5S级。
3.额定容量电流互感器的额定容量,就是额定二次电流I2e通过二次额定负载Z2e时所消耗的视在功率S2e。
4.额定电压是指一次绕组长期能够承受的最大电压(有效值),它只是说明电流互感器的绝缘强度,而和电流互感器额定容量没有任何关系。
5.极性标志(1)一次绕组首端标为L1,末端标为L2。
当一次绕组带有抽头时,首端标为L1,自第一个抽头起依次标为L2,L3……(2)二次绕组首端标为K1,末端标为K2。
当二次绕组带有中间抽头时,首端标为K1,自第一个抽头起以下依次标志为K2,K3……(3)对于具有多个二次绕组的电流互感器,应分别在各个二次绕组的出线端标志“K”前加注数字,如1K1,1K2,1K3……;2K1,2K2,2K3……(4)标志符号的排列应当使一次电流自L1端流向L2端时,二次电流自K1流出,经外部回路流回到K2。
2024 03/电流互感器二次回路两点接地故障计量分析罗 焘 陈 莹 刘芮含(云南电网有限责任公司昆明供电局)摘 要:本文首先简述了在二次侧测量回路中,当出现二点接地故障时,对电能测量所产生的影响,然后分析了其工作原理,最后,从实际操作和维修的观点出发,对事故的防范和处置提出了一些建议。
关键词:电能计量;电流互感器;二次回路;接地故障0 引言从变压器的基本理论可知,变压器的初级绕组和次级绕组在正常工作状态下不存在电气连接[1]。
因此,当操作电流互感器二次侧仪表和继电保护回路时,操作人员不接触高电压。
但是,如果电流互感器一次侧的绝缘被损坏,一次侧的高电压就会作用在电流互感器二次侧的线圈上,因此,在电流互感器二次侧的仪表、继电保护装置和工作人员都将与一次侧的高电压直接接触,从而产生高压触电的风险。
为避免这一危害,应在二次侧接地,使高电压传到变压器二次侧时,接地的短路电流会通过接地体与人体两个通道。
接地体的电阻愈低,流过身体的电流愈少,一般人体的电阻是接地体的几百倍[2]。
电流互感器二次侧的接地非常重要,它是确保二次侧设备及工作人员安全的最有效方法,一般称为保护接地[3]。
但是,在现实生活中,电流互感器二次侧往往会有两个接地点,也就是除了电流互感器二次保护接地之外,二次电缆也有可能因为机械损坏或者是绝缘损坏而接地。
如果电流互感器二次侧有两点接地或者多点接地,就会导致计量错误,本文重点讨论了二次侧两点接地在测量中的作用。
1 案例说明及缺陷分析1 1 情况说明经调度员反馈,110kV变电站2号主变35kV侧302线路计量电能表A、B、C三相电流出现了严重的不平衡,可能是计量方面的问题,希望计量维护人员能够配合解决。
通过对用户的调查,运行维护人员发现,这条线路上的电能表出现了严重的三相不对称现象。
由所收集的数据可知,在第1天00:00~07:00期间,该系统所收集的A、B、C三相电流基本上是均衡的,但是在第1日09:00的时候,A、B、C三相电流的数值为0 59,B、C的三相电流为0 59,B、C,0 05。
第1章互感器及其二次回路互感器电压互感器电流互感器是一次回路和二次回路的联络设备。
一次回路的高电压、大电流二次回路的低电压、小电流作用接入方式变换作用电气隔离作用高电压、大电流变换为标准的低电压、小电流。
如100V,5A,1A将二次设备与一次设备相隔离,保证了设备和人身安全电压互感器一次绕组以并联形式接入一次回路;二次负荷以并联形式接在电压互感器的二次绕组回路,阻抗很大。
电流互感器一次绕组以串联形式接入一次回路;二次负荷以串联形式接在电流互感器的二次绕组回路,阻抗很小。
本章内容电压互感器二次回路电压互感器的结构电压互感器二次回路的要求电压互感器的接线方式二次侧接地方式二次回路的短路保护反馈电压的防范电压小母线设置二次回路的断线信号装置交流电网的绝缘监察二次回路的切换电流互感器二次回路电流互感器二次回路的要求电流互感器的接线方式二次侧接地保护二次回路开路的防范电流互感器的二次负载1-1 电压互感器二次回路电压互感器的结构1.单相式电压互感器的结构2.三相式电压互感器的结构3.由电容分压器与单相式电压互感器构成的电容式电压互感器三个单相三绕组电容式互感器构成的接线电压互感器的特点1.二次绕组的领定电压当一次绕组电压等于额定值时主二次绕组(Y 形接线者):额定线电压为100V ,额定相电压为V 。
辅助二次绕组(Δ形接线者)额定相电压:用于35kV 及以下中性点不直接接地系统,额定相电压为100/3V 用于110kV 及以上中性点直接接地系统为100V 2. 正常运行时近似空载状态3.二次侧不允许短路4.电压互感器的变比(一、二次侧额定相电压之比,近似等于一二次绕组匝比)若电压互感器一次绕组为ω1匝,额定相电压为U IN ;二次绕组为ω2匝,倾定相电压为U 2N ,则变比n Tv 为3/1003/100因此电压互感器的变比1-1 电压互感器二次回路1-1-1 电压互感器二次回路的基本要求(1)电压互感器的接线方式应满足测量仪表、远动装置、继电保护和自动装置的具体要求。
电流互感器二次回路引起的差动保护误动电流互感器(Current Transformer,简称CT)是电力系统中常用的一种测量设备,用于将高电流变换成低电流,以便进行测量和保护。
然而,尽管电流互感器在电力系统中发挥着重要的作用,但在使用过程中也存在差动保护误动的问题。
差动保护是电力系统中常用的一种保护方式,通过对比输入和输出电流的差值,来判断系统是否存在故障。
然而,由于电流互感器的特性和工作原理,使得在某些情况下,差动保护可能会误动。
主要的原因是电流互感器二次回路引起的误动。
当电流互感器的二次回路中存在接地故障时,会导致差动保护误动。
这是因为接地故障会引起电流互感器二次回路的电压上升,进而导致输入和输出电流的差值增大,从而触发差动保护装置。
这种情况下,差动保护误动不仅会导致误切电源,还可能对电力系统产生不必要的影响。
当电流互感器的二次回路中存在电缆故障时,也会引起差动保护误动。
电缆故障会导致电流互感器二次回路的电阻增加,从而影响到输入和输出电流的差值。
当差值超过设定值时,差动保护装置会误判为系统存在故障,从而产生误动。
这种情况下,差动保护误动可能会导致系统不必要的停电,给电力系统的正常运行带来困扰。
电流互感器的二次回路中存在接触不良或接线错误等问题时,也可能引起差动保护误动。
这些问题可能导致输入和输出电流的差值异常,使得差动保护装置错误地判断系统存在故障。
这种情况下,差动保护误动可能会导致电力系统无故停电,给生产和生活带来不便。
为了解决电流互感器二次回路引起的差动保护误动问题,可以采取一些措施。
首先,对电流互感器的二次回路进行定期检查和维护,确保接地和接线的正常。
其次,在差动保护装置中设置合理的参数和灵敏度,避免误动的发生。
此外,还可以采用其他辅助保护装置,如过电流保护和跳闸保护,作为补充手段,提高系统的安全性和可靠性。
电流互感器二次回路引起的差动保护误动是电力系统中常见的问题。
在使用电流互感器和差动保护装置时,需要注意二次回路的接地、接线和维护等方面,以减少误动的发生。
电流互感器二次回路三相通流试验的方法电流互感器是用于测量电力系统中的电流的一种设备,常见的有一次侧和二次侧。
在电流互感器二次回路三相通流试验中,我们需要将电流互感器的二次侧进行接线,并通过通电的方法使电流在三相回路中流动,从而测试电流互感器的性能和准确度。
以下是电流互感器二次回路三相通流试验的基本步骤和方法:1.准备工作a.确保测试设备安全并处于正常工作状态。
b.检查电流互感器的二次侧接线端子,确保没有松动或脱落。
c.打开电流互感器二次回路中的断路器,并确保三相回路之间没有短路或故障。
2.接线方法a.首先,将电流互感器的二次侧末端的接线端子与测试设备的接线端子连接。
确保连接紧固,并正确接线相应的相位。
b.将测试设备的接线端子与三相回路的相应互感器接线端子相连。
同样,确保连接紧固,并正确接线相应的相位。
c.确保所有的接线都牢固地连接,并避免存在任何松动或接触不良的情况。
3.调整设备参数a.对测试设备进行电流校准,并将电流范围设置在所需的测试范围内。
b.根据需要,调整测试设备的采样频率、采样周期和波形采样方式。
4.开始通流试验a.确保测试设备和回路都处于安全状态,并保证工作人员没有接触带电的部分。
b.先观察电流互感器二次回路中的电流波形,确保其稳定和准确。
c.依次给三相回路施加电流,并观察测试设备上的电流显示值。
d.检测并记录每个相位的电流值,以及电流波形的功率因数和畸变程度。
e.对每个相位的测试结果进行比对和分析,确保测试数据的准确性和可靠性。
5.结束试验a.在完成测试后,关闭电流互感器二次回路中的断路器。
b.拆除所有的接线,并确保测试设备和回路恢复到安全状态。
c.将测试设备还原到初始设置,并进行必要的精确度校准和维护。
总结:电流互感器二次回路三相通流试验是一种对电流互感器的性能和准确度进行验证的重要方法。
通过正确的接线和调整设备参数,可以实施有效的试验。
在试验过程中,需要关注电流波形的稳定性和准确度,并记录和分析测试数据。