当前位置:文档之家› 水泥与高效减水剂相容性的影响因素

水泥与高效减水剂相容性的影响因素

水泥与高效减水剂相容性的影响因素
水泥与高效减水剂相容性的影响因素

水泥与高效减水剂相容性的影响因素

随着预拌混凝土的飞速发展,混凝土配合比设计除了考虑混凝土强度、耐久性之外,其工作性能也非常重要,水泥与减水剂的相容性是影响混凝土工作性的重要因素。

对于商品混凝土搅拌站,或者更进一步拓宽为技术较好的混凝土生产者来说,如果不说水泥与高效减水剂相容性比强度更重要,至少与强度同等重要!

水泥与外加剂相容性不好,可能是外加剂的原因,也可能是水泥品质的原因,也可能是使用

方法造成的,或几种因素共同起作用引起的。

文贴力图成为迄今为止对水泥与高效减水剂相容性影响因素总结的最为全面的资料。欢迎大家补充。

1 水泥熟料矿物组成及工艺制度的影响

1.1 熟料四种主要矿物含量的影响

四种矿物对减水剂吸附量由大到小的顺序为C3A>C4AF>C3S>C2S。尤其C3A的吸附量远远大于其他三种熟料矿物。这是因为减水剂主要吸附在水化产物上,吸附量与其水化产物的数量和表面性质有关,凡水化快,水化产物比表面大的熟料矿物,吸附量就大,而使溶液中的减水剂大大减少。C3A的水化速度最快,C4AF ,C3S次之,C2S最慢,C3A的水化产物比面积大。所以含C3A多的水泥,减水剂的适应性差。

1.2 熟料烧成温度和烧成速度

高温烧成的熟料与低温烧成的熟料表现出的性能不同,高温快烧的熟料,硅酸盐矿物固熔较多其他组分(如C3S固熔Al2O3、Fe2O3、MgO等形成A矿),这增加了硅酸盐矿物的含量及性能,提高了水化活性,并使C3A与C4AF含量减少。其固熔量随温度的升高及烧成速度的加快而增大。故高温快烧的熟料,A矿发育良好,尺寸适中,边棱清晰,水泥强度较高,与外加剂相容性好。低温烧成的熟料,硅酸盐矿物活性较差,水泥强度较低,并且由于C3S固熔Al2O3、Fe2O3减少,熟料矿物中析晶出来C3A与C4AF较多,水泥标准稠度用水量

大,与外加剂相容性差。

1.3 冷却制度的影响

熟料在较高温度范围(1450℃—1200℃)的快速冷却,有利于A矿保持良好的晶型,C2S粉化,硅酸盐矿物活性较高;溶剂矿物多以玻璃体存在,大量减少C3A与C4AF的析晶,因而对于快冷熟料,即使C3A与C4AF计算含量较高,由于大部分以玻璃体存在,所磨制的水泥仍与外加剂相容性好,凝结时间正常,水泥强度较高。慢速冷却时,熟料中β-C2S转变为γ-C2S,矿物活性降低,C3A与C4AF大量析晶,水泥与外加剂相容性差。

2 混合材料种类和品质的影响

混合材对减水剂具有吸附作用。由吸附量实验得知,作为水泥混合材的吸附量由大到小,一般为煤矸石>粉煤灰>矿渣。掺矿渣的水泥适应性优于掺煤矸石的。一般来说火山灰质混合材具有较大的内表面积,故吸附量大,不同品质的粉煤灰适应性差异很大。优质的粉煤灰、超细粉煤灰适应性好;粗粉煤灰、含碳量大的吸附量大,适应性差。

粉煤灰:粉煤灰为多孔性的中空圆球体,优质的粉煤灰含有大量球形度良好的玻璃体,由于球形玻璃体的“滚珠效应”,可以改善水泥的流变性能,提高水泥与外加剂的适应性。粗粉煤灰和含碳量大的粉煤灰中含有较多未燃尽的碳,而未燃烬的碳具有多孔结构,能吸附大量的减水剂和水分,这种“吸附效应”使水泥与减水剂的相容性变差。

矿粉:粒化高炉矿粉除具有胶凝性和火山灰性,还具有微填充效应。混凝土体系可理解为连续级配的颗粒堆积体系,粗集料间隙由细集料填充,细集料间隙由水泥颗粒填充,水泥颗粒之间的间隙则由更细的集料填充,矿渣微粉的细度比水泥颗粒细,在取代了部分水泥以后,

这些小颗粒填充在水泥颗粒间的空隙中,置换期间的的填充水,因而使拌和物的表面水相应大量增加,促进了混凝土流动性的改善。同时,由于磨细矿渣的需水性低于硅酸盐水泥,因而替代部分水泥后所形成的胶凝体系的总需水量下降,富余的水分有利于提高混凝土的流动性。这就是矿渣的微填充效应,它有助于提高水泥与外加剂的相容性。

3 水泥含碱量和fCaO含量的影响

3.1 水泥碱含量

水泥的碱含量主要是指水泥中Na2O和K2O的含量。碱含量对水泥与减水剂的适应性会产生很大的影响。碱的存在使水泥标准稠度用水量增大,使水泥水化速度加快,减水剂的塑化效果变差,含碱量越高,水泥与减水剂的适应性越差,还将导致混凝土的坍落度经时损失增大。目前国内最普遍使用的是萘系高效减水剂,而碱含量是控制萘系减水剂与水泥相容性良好的关键因素之一。2000年在法国召开的第六界国际化学外加剂会议上,我国留学生姜施平博士等发表的文章指出:水泥的可溶性碱含量、细度、C3A含量和石膏类型,是控制掺萘系减水剂水泥浆和混凝土流变性能的关键参数。最佳可溶性碱含量在0.4%-0.6%当量的Na2O。萘系减水剂在水泥颗粒上的吸附率和水泥水化速率受这些参数影响,它们控制混凝土流动度的损失速率。使用可溶性碱含量低的水泥时,不仅当减水剂剂量不足时坍落度损失回较快,且当剂量稍高于饱和点时,又会出现严重的离析和泌水。

3.2 水泥fCaO含量

水泥fCaO含量高明显影响与外加剂的适应性。这一点国内资料报道的少,据国外及生

产实践经验得知,这一影响不可忽视。

4 作为水泥调凝剂石膏品种和掺加量的影响

4.1 石膏的种类对其与减水剂相容性的影响也很大,因为不同种类石膏的溶解速度和溶解度差别较大,他们对水泥的缓凝作用不同,而对水泥与减水剂相容性影响也不同。天然二水石膏与高效减水剂适应性好,硬石膏有不利的影响应限制,工业副产品石膏中的某些微量成

分可能使水泥与高效减水剂的相容性变差。

4.2 水泥中SO3含量及石膏的形态影响与外加剂的适应性。在水泥凝结时间可以接受的范围内,适当提高水泥中SO3含量有利于改善水泥与高效减水剂相容性,适宜的SO3含量应根

据水泥中C3A、碱含量和比面积来确定。

5 水泥比面积和颗粒分布的影响

水泥颗粒对减水剂分子的吸附与水泥的比表面积有关,在掺加减水剂的水泥浆体中,水泥颗粒越细,意味着其比表面积越大,减水剂在相同掺量情况下,对于细度大的水泥,其塑化效果要差一些;同时,比表面积越高时,水泥与水接触的面积越大,水泥颗粒表面形成水膜所需水量就大,相同水灰比条件下,颗粒之间的自由水相应减少,水泥浆体流动性变差,水泥与减水剂适应性不好;另外,水泥比表面积越大,意味着水泥细颗粒多,水泥与水早期反应速度加快,水化产物絮状结构形成快,水泥浆体流动性差,水泥与减水剂相容性不好。水泥的颗粒分布对水泥与减水剂的适应性影响包括两方面。一方面,水泥均匀性系数大时,颗粒分布范围窄,其堆积空隙率大,需要更多水来填充这些空隙,自由水相应减少,外加剂掺量大,水泥与外加剂适应性差,均匀性系数小时,情况正好相反。另一方面,水泥颗粒平均粒径小时,水泥中细粉较多,比面积较大,水泥与外加剂相容性不好。

6 水泥新鲜度的影响

水泥的新鲜度是一个与水泥储存时间、环境的温度、湿度有关的概念。储存时间长、储存环境的温度、湿度高,水泥与高效减水剂的相容性提高。这是因为新鲜水泥干燥度高,正电性较强,对减水剂吸附大,降低了减水剂对其的塑化效果,使水泥浆体流动性大大降低。

这一点对配制高强度等级混凝土尤其明显。

7 水泥温度的影响

水泥粉磨温度高,二水石膏脱水成半水石膏和硬石膏,而半水石膏和硬石膏较二水石膏溶解度下降,不能有效阻止水泥快速水化生成絮凝结构,减水剂对其的塑化作用差,混凝土坍落度损失也快,水泥与高效减水剂相容性差。控制粉磨温度为110-120度为宜。

8 出厂水泥温度(水泥进混凝土搅拌机温度)

出厂水泥温度高,水泥水化反应速度快,水泥与减水剂适应性差。

河南减水剂项目建议书

河南减水剂项目 建议书 xxx有限公司

报告说明— 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单 体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓, 在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。 该聚羧酸减水剂项目计划总投资14610.94万元,其中:固定资产投资12458.07万元,占项目总投资的85.27%;流动资金2152.87万元,占项目 总投资的14.73%。 达产年营业收入17577.00万元,总成本费用13622.63万元,税金及 附加262.43万元,利润总额3954.37万元,利税总额4762.23万元,税后 净利润2965.78万元,达产年纳税总额1796.45万元;达产年投资利润率27.06%,投资利税率32.59%,投资回报率20.30%,全部投资回收期6.43年,提供就业职位266个。 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。

目录 第一章项目总论 第二章项目单位概况 第三章背景、必要性分析 第四章产业研究 第五章项目方案分析 第六章选址可行性分析 第七章项目工程方案分析 第八章工艺概述 第九章项目环境影响情况说明第十章企业卫生 第十一章投资风险分析 第十二章项目节能评估 第十三章实施计划 第十四章投资估算 第十五章经济效益分析 第十六章结论 第十七章项目招投标方案

《水泥与减水剂相容性试验办法》行业标准介绍

《水泥与减水剂相容性试验方法》行业标准介绍 0引言 为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核,水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验,从而进行生产控制和指导水泥的使用。这样做,虽然解决了试验方法的问题,但由于没有统一的评价基准,导致结果没有可比性。 同时,当出现相容性问题时,没有评判依据。为此,2006年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。经过大量的工作,该标准于2007年8月通过了水泥标准化技术委员会的审议,并建议2008年6月1日实施。为 1 ;而相容 被征服, 2 如下: 同时 ,由于 ”。3 经过试验研究表明(见表1):不同的水泥具有不同的饱和掺量点;不同的水泥在饱和掺量点时的Marsh时间和经时损失不同;不同的水泥在减水剂掺量相同时Marsh时间和经时损失不同。

另外,在保证一 ,以失3个参数 在3 (见图1),

经过研究,水泥浆体的流动性和经时损失率在减水剂饱和掺量点之后趋于稳定。经试验,大多数水泥的饱和掺量点小于0.8%,个别的大于0.8%,因此选择了0.8%的减水剂掺量作为水泥浆体的流动性和经时损失率的评价基准点。 4关于方法问题 根据资料[1~4],水泥与减水剂相容性试验方法有净浆流动度法、Marsh筒法和胶砂坍落度法几种,而且不同的文献对这几种方法给出了不同的评价。 考虑经济因素,排除了胶砂坍落度法,并对净浆流动度法和Marsh筒法进行了对比研究,结果表明: 1)两者的原理有所侧重,但基本一致,特别是Marsh筒法的高水灰比与混凝土的实际情况接近; 2)用 3)用 关性; 6)Marsh筒法试验误差影响因素少,重复性误差小于净浆流动度法。 考虑到净浆流动度法的应用历史和普遍性,以及与GB8076的兼容性,本标准将两个方法并列,供标准使用方选择。但有争议时,以Marsh筒法为准。 同时,作为标准起草单位,为了方便试验操作、减小试验误差,和河北科析仪器设备有限公司联合开发了自动Marsh时间测定仪,供大家选择。 5关于基准减水剂问题

浅析高效减水剂与水泥间的适应性

浅析高效减水剂与水泥间的适应性 减水剂是混凝土工程中常用的外加剂之一,其作用是提高混凝土拌合物的流动性,保证混凝土施工质量。当前,高效减水剂以其优异的减水性能而备受青睐,但是其与水泥间的适应性却受到众多因素的影响,成为困扰工程界的难题,适应性的好坏将对混凝土质量带来直接的影响。本文分析了减水剂与水泥适应性的影响因素,并提出了改善适应性的方法。 标签:减水剂;水泥;适应性;影响因素 当前,低水灰比的高性能混凝土成为发展趋势。而低水胶比势必造成流变性能降低,从而影响其工作性,造成浇筑困难、成型质量不好,最终导致混凝土结构强度低、耐久性差。为了改善高性能混凝土的工作性,通常采取的方法是加入减水剂。减水剂应用至今,经历了若干阶段。目前仍在使用的减水剂,按功能主要分为两大类:普通减水剂和高效减水剂;按成分:木质素减水剂、萘系减水剂、脂肪族减水剂、密胺减水剂、聚羧酸减水剂。不同品种的减水剂适用的范围也有所不同,在选用的过程中要根据具体的使用条件,慎重选择。因为高效减水剂的减水效果等性能好,因此在工程中得到了较为广泛的应用。但是高效减水剂的适应性问题却给工程人员带来了困扰。在混凝土拌合物中,与减水剂性能最为相关的就是水泥。当水泥与减水剂相适应时,可以起到改善混凝土工作性能的作用,当水泥与减水剂不适应时,会造成相反的后果,引起工作性能不良,如坍落度降低、坍落度损失大等。另外,减水剂与水泥适应性较好的时候,低掺入量即可带来较明显的效果,若减水剂与水泥适应性差,则势必要提高掺入量,以达到期望的流动性要求。 1 减水剂与水泥适应性的影响因素 水泥与高效减水剂的适应性包括3个方面:水泥砂浆和混凝土的初始工作性、高效减水剂在水泥砂浆和混凝土中是否有明确的饱和点和拌合物的工作性能损失情况。[1] 减水剂与水泥适应性的影响因素较为复杂,涉及到的学科较多,如水泥化学、表面物理化学、电化学等方面知识,二者的适应性问题是困扰广大研究人员的难题。适应性问题的解决与否,关系到外加剂能否得到应用推广。而通过相关的试验研究与理论分析,得出影响减水剂与水泥适应性的因素,大致可归纳为三个主要方面,即减水剂的性能、水泥性能、混凝土拌合物的性能。 1.1 减水剂的性能产生的影响 减水剂的性能主要包括:分子量、分子链长度、交联程度、硫化程度、有无硫酸盐存留、平衡离子等方面。以萘系高效减水剂为例,萘的磺化程度和磺化产物对适应性会产生影响,其中的多萘磺酸会影响到适应性;萘系减水剂分子量的大小会对适应性产生影響,为保证良好的使用效果,其减水剂分子的最佳核体数

聚羧酸高效减水剂项目可行性报告

年产1万吨聚羧酸(醚酯共聚)高效减水剂 可 行 性 报 告 编制: 审核: 单位: 年月日

目录 1、概况 (1) 1.1、项目名称 (1) 1.2、承办单位概况 (1) 1.3、拟建地点 (1) 1.4、建设内容与规模 (1) 1.5、建设年限 (1) 1.6、概算投资 (1) 1.7、效益分析 (2) 2、项目建设的必要性和条件 (3) 2.1、项目建设的必要性分析 (3) 2.2、建设条件分析 (5) 3、建设规模与产品方案 (6) 3.1、建设规模 (6) 3.2、产品方案 (6) 4、技术方案、设备方案和工程方案 (6) 4.1、技术方案 (6) 4.2、主要设备方案 (6) 4.3、工程方案 (7) 5、投资估算及资金筹措 (7) 5.1、投资估算 (7)

5.2、资金筹措 (7) 6、效益分析 (8) 6.1、评价依据 (8) 6.2、基本数据 (8) 6.3、总成本估算 (9) 6.4、财务效益预测 (9) 6.5、社会效益 (10) 6.6、生态效益 (10) 7、结论 (10)

1、概况 1.1项目名称: 年产1万吨聚羧酸(醚酯共聚)高效减水剂。 1.2承办单位概况: 项目承办单位:XX 注册资金:XX 企业经营范围:XX 公司占地面积XX 多平方米,。。。。 公司现有员工XX人,其中高中级管理及技术人才XX余人,聘请了相关科研院所、高等院校等单位的技术专家人作为本厂的技术顾问,使公司具有了较强的研发及技术创新能力。 承办单位主要经历: 项目负责人:XXX 联系电话:XXX 技术负责人:XXX 联系电话:XXX 1.3拟建地点:

影响水泥和减水剂相容性因素浅析

影响水泥和减水剂相容性因素浅析进入夏季,混凝土搅拌站反馈最多的是混凝土塌落度损失大、减水剂相容性差等问题。水泥厂接收到的搅拌站投诉问题中,最多的也是水泥和减水剂相容性差。 如何改善水泥性能,使水泥和不同减水剂均相容较好,是水泥厂所关注的问题。我们将水泥生产工艺做了相应的调整,做了大量试验,但是由于自己所处是粉磨站企业,存在很多局限性,水泥和减水剂相容性问题,始终没有得到彻底改善。于是很多公司便把水泥和减水剂适应性差的原因归结到助磨剂的使用上,所以非常有必要和大家共同探讨影响水泥和减水剂相容性因素。此文中,本人对影响相容性因素做的几点总结。 1、混凝土性能 水泥和减水剂的相容性最终都表现在混凝土的性能中,混凝土的性能分为新拌混凝土性能及硬化混凝土性能,重要的几点列举如下: a.和易性:混凝土拌合物最重要的性能。它综合表示拌合物的稠度、流动性、可塑性、抗分层离析泌水的性能及易抹面性等; b.强度:强度是混凝土最主要的性能,它是混凝土构件中所能承受荷载的压力。 c.变形:混凝土在一定荷载作用下产生的变形。 d.耐久性:凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。 2、水泥和减水剂相容性的评价 2.1 水泥和减水剂相容性的评价内容包括如下三点:

a.同一配合比条件下配制相同强度等级、相同流动性能的混凝土拌和物,所需减水剂用量的多少. b.混凝土拌和物塌落度经时损失的大小. c.混凝土拌和物离析、泌水性能的好坏. 2.2 相容性的评价方法 检测方法按中华人民共和国建材行业标准JC/T1083-2008《水泥与减水剂相容性试验方法》进行。 饱和点掺量小,饱和点Marsh时间短,Marsh时间经时损失小,浆体抗离析泌水性能好,则水泥与外加剂相容性好。 3. 影响水泥和减水剂相容性的因素鱼刺图 影响混凝土性能的所有因素都会影响水泥和减水剂相容性,混凝土性能的影响因素可以用鱼骨图(见下图)生动形象地表现出来。

减水剂项目计划书

减水剂项目计划书 投资分析/实施方案

摘要说明— 减水剂下游主要应用于预拌及预制混凝土,其商品混凝土为最主要应用产品,占比在70%以上。 该减水剂项目计划总投资3723.84万元,其中:固定资产投资2662.85万元,占项目总投资的71.51%;流动资金1060.99万元,占项目总投资的28.49%。 达产年营业收入8394.00万元,总成本费用6536.93万元,税金及附加66.49万元,利润总额1857.07万元,利税总额2179.71万元,税后净利润1392.80万元,达产年纳税总额786.91万元;达产年投资利润率49.87%,投资利税率58.53%,投资回报率37.40%,全部投资回收期4.17年,提供就业职位149个。 报告内容:概论、项目建设背景及必要性分析、产业调研分析、产品规划方案、选址评价、土建工程分析、工艺原则及设备选型、环境保护和绿色生产、企业安全保护、建设风险评估分析、项目节能评价、实施安排方案、项目投资方案、项目经营效益、结论等。 规划设计/投资分析/产业运营

减水剂项目计划书目录 第一章概论 第二章项目建设背景及必要性分析第三章产品规划方案 第四章选址评价 第五章土建工程分析 第六章工艺原则及设备选型 第七章环境保护和绿色生产 第八章企业安全保护 第九章建设风险评估分析 第十章项目节能评价 第十一章实施安排方案 第十二章项目投资方案 第十三章项目经营效益 第十四章招标方案 第十五章结论

第一章概论 一、项目承办单位基本情况 (一)公司名称 xxx有限责任公司 (二)公司简介 在本着“质量第一,信誉至上”的经营宗旨,高瞻远瞩的经营方针, 不断创新,全面提升产品品牌特色及服务内涵,强化公司形象,立志成为 全国知名的产品供应商。公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城 市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界, 对服务区域经济与社会发展做出了突出贡献。 公司在管理模式、组织结构、激励制度、科技创新等方面严格按照科 技型现代企业要求执行,并根据公司所具优势定位于高技术附加值产品的 研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强调产品 开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配备专业 学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果良好。 管理制度的先进性和创新性,极大地激发和调动了广大员工的工作热情, 吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目 承办单位较好的经济效益和社会效益。公司实行董事会领导下的总经理负

外加剂与水泥适应性的定义与试验方法

外加剂与水泥适应性的定义与试验方法 外加剂和水泥的相容性应该是“双向适应”,实际上还是单纯强调外加剂对水泥的适应性,即混凝土外加剂如何去适应水泥。关于混凝土外加剂与水泥的适应性有多种描述。 《混凝土外加剂应用技术规范》GB50119 - 2003附录A 规定了混凝土外加剂对水泥的适应性检测方法。其主要内容是:对某种水泥需选择外加剂时,每种外加剂应分别加入不同掺量;对某种外加剂选择水泥时,每种水泥应分别加入不同掺量的外加剂。对不同品种外加剂,不同掺量应分别进行试验。绘制掺量为横坐标,流动度为纵坐标的曲线。其中饱和点(外加剂掺量与水泥净浆流动度变化曲线的拐点) 外加剂掺量低、流动度大,流动度损失小的外加剂对水泥的适应性好。 ①按照混凝土外加剂应用技术规范,将经检验符合有关标准要求的某种外加剂,掺入到按规定可以使用该种外加剂且符合有关标准要求的水泥中,外加剂在所配制的混凝土(或砂浆) 中若能产生应有的作用效果,则称该外加剂与水泥相适应;若外加剂的作用效果明显低于使用基准水泥的检验结果,或者掺入水泥中出现异常现象,则称该外加剂与水泥适应性不良或不适应。 ②按照混凝土外加剂应用技术规范,将经检验符合有关标准的某种外加剂掺加到用按规定可以使用该品种外加剂的水泥所配制的混凝土(或砂浆) 中,若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂不适应。 ③水泥与减水剂的适应性影响到混凝土硬化前,硬化过程中和硬化后的性能。涉及电化学、表面化学、水泥化学和高分子化学诸方面相互影响,十分复杂。大体上可用 3 项指标衡量,即:初始流动度,是否有明晰的饱和点和流动度损失大小。国内用水泥净浆流动度方法进行检测。 ④作者认为,应从实际应用来考虑,以在外加剂和水泥系统中,掺入某种功能性外加剂能否达到预期的效果来表示外加剂与水泥是否适应。GB50119 -2003 的方法有时会出现误判。最直观地应进行混凝土试验,通过新拌混凝土的坍落度及坍落度损失、保水性、粘聚性等及硬化混凝土的强度和耐久性来综合评定。快速测定方法建议采用《混凝土外加剂匀质性试验方法》GB/ T8077 - 2000 测定胶砂的减水率或流动度;或者水泥净浆流动度及损失来判定。

水泥与减水剂的适应性及其影响因素和改善方法

水泥与减水剂的适应性研究综述 (中南大学土木建筑学院,湖南长沙410075) 摘要:混凝土外加剂与水泥的适应性是一个复杂的问题,其影响因素也较多。本文将综合国内外研究学者的研究成果,简述水泥与减水剂之间的适应性的影响因素及机理分析,并总结主要了改善适应性的措施。 关键词:水泥;减水剂;作用机理;适应性;改善措施 The adaptability of the cement and water reducing agent and its influencing factors and the improvement measures (School of Civil Engineering and Architecture,Central South University,Changsha 410075,China) Abstract: The adaptability of cement and water reducing agent is a complex problem,its influencing factors are more. This paper studies the research results of the scholars at home and abroad, briefly the influence factors between cement and water reducing agent , adaptability and mechanism analysis, and summarizes the main measures to improve the adaptability. Key words:cement; water reducing agent; mechanism; adaptability; Improvement measures 近年来,高性能混凝土已经成为国内外的研究热点,而配制高性能混凝土的关键就是要保证其具有良好的流变性能,能满足不同条件下的使用要求,要达到这一目的,就必须选择适应性良好的水泥与减水剂。但是,减水剂与水泥的适应性问题仍没有很好地解决,一直是困扰着世界混凝土学界的一个难题,它影响了减水剂的作用效果,影响了水泥混凝土的各项性能,同时也影响了高性能混凝土的推广应用。因此,对水泥与减水剂之间的适应性进行分析并进行改善十分重要。

减水剂项目建议书(总投资8000万元)(31亩)

减水剂项目 建议书 规划设计 / 投资分析

摘要说明— 该减水剂项目计划总投资7653.71万元,其中:固定资产投资6112.20万元,占项目总投资的79.86%;流动资金1541.51万元,占项目总投资的20.14%。 达产年营业收入14706.00万元,总成本费用11574.37万元,税金及 附加135.56万元,利润总额3131.63万元,利税总额3699.14万元,税后 净利润2348.72万元,达产年纳税总额1350.42万元;达产年投资利润率40.92%,投资利税率48.33%,投资回报率30.69%,全部投资回收期4.76年,提供就业职位219个。 严格遵守国家产业发展政策和地方产业发展规划的原则。项目一定要 遵循国家有关相关产业政策,深入进行市场调查,紧密跟踪项目产品市场 走势,确保项目具有良好的经济效益和发展前景。项目建设必须依法遵循 国家的各项政策、法规和法令,必须完全符合国家产业发展政策、相关行 业投资方向及发展规划的具体要求。 总论、建设背景分析、市场研究、建设规划方案、项目建设地方案、 土建工程、项目工艺分析、项目环境影响分析、安全经营规范、项目风险 评价、项目节能说明、项目进度方案、投资方案计划、项目经济效益分析、综合结论等。

第一章建设背景分析 一、项目建设背景 1、《中国制造2025》的实施,已经和仍将发挥提升中国制造企业国际竞争力的作用,中国制造业将直面第四次工业革命的机遇和挑战,并受惠 于所产生的科技成果,加快转型升级和动能转换的步伐,进一步提升创新 能力和供给能力,排除干扰,朝着制造强国这一目标坚定地前进。 2、目前中国的制造业产量占世界的近25%,超过德国成为世界制造业 产出最大的国家,但是我国总体上仍然是一个发展水平较低的发展中国家,按可比价格计算,我国人均GDP排名世界100名左右。中国制造业目前虽 然以2.5万亿美元产值居世界第一,但人均只有2.6万美元,仅为美国的15.6%。 3、“十三五”时期,要以转变经济发展方式为目标,以科学发展、 跨越发展为主线,顺应世界科技飞速发展带来的新机遇和新挑战,加快产 业升级换代,积极谋划战略性新兴产业、高技术发展重点,培育壮大具有 当地特色的产业集群;紧紧抓住加快培育发展战略性新兴产业的新机遇, 跟踪世界高技术产业发展动态,立足现有产业基础,充分利用国际和国内 资源,加强创新引领,不断改造提升传统优势产业,大力培育壮大区域特 色和比较优势的战略性新兴产业,力争建成一批有自主核心技术、有一定

水泥与减水剂相容性试验方法行业标准介绍

水泥与减水剂相容性试 验方法行业标准介绍 Hessen was revised in January 2021

《水泥与减水剂相容性试验方法》行业标准介绍 0 引言 为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB807 6《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水 泥的使用。这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。 同时, 当出现相容性问题时, 没有评判依据。为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。为了便于标准的实施, 现将该标准简要介绍如下。 1 关于标准中相容性术语问题 综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。 根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。 当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。因此, 两者的关系应该叫相容性, 而非适应性。 2 关于水泥与减水剂相容性的定义问题 什么叫水泥与减水剂相容性, 至今没有一个明确的定义。许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。因此,从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。 同时, GB8076《混凝土外加剂》对泌水率比、凝结时间变化幅度和强度比进行了规定, GB8077《混凝土外加剂匀质性试验方法》对试验方法进行了规定。因此本标准将水泥与减水剂相容性定义为水泥浆体流动性的变化, 具体为“使用相同减水剂或水泥时, 由于水泥或减水剂质量的变化而引起水泥浆体流动性、经时损失的变化程度, 以及为获得相同的流动性而导致减水剂掺量的变化程度”。 3 关于水泥与减水剂相容性的评价参数及基准点 经过试验研究表明( 见表1) : 不同的水泥具有不同的饱和掺量点; 不同的水泥在饱和掺量点时的Ma rsh 时间和经时损失不同; 不同的水泥在减水剂掺量相同时Marsh 时间和经时损失不同。

水泥与混凝土外加剂相容性的试验研究

水泥与混凝土外加剂相容性的试验研究 水泥与外加剂相容性是生产优质混凝土的重要影响因素,本文通过检测水泥净浆流动度,对比不同矿物组成的熟料及不同条件下的水泥与外加剂相容性的差异,为高性能水泥生产提供参考。 1 试验用材料 1)水泥、熟料:选择江山南方水泥生产过程中有代表性的样品及小磨制备对比样品。 2)混凝土外加剂:不同时间用户提供的多种外加剂。 2 试验方法 检测水泥、熟料掺入外加剂后的净浆流动度,外加剂掺量按用户提供的推荐掺量加入。 3 试验结果及分析 3.1 熟料矿物组成对净浆流动度的影响 表1 熟料净浆流动度试验记录 试样编号 熟料矿物组成(%) 水泥净浆流动 度 (mm) 窑型 外加剂 C 3S C 2S C 3A C 4AF f-CaO A0 57.57 18.76 6.77 9.73 0.94 238 5000t/d 江山南方 温州用户提 供 聚羧酸1.0% A1 56.77 19.87 7.27 9.46 0.89 257 A2 58.44 18.65 7.75 9.50 0.88 240 A3 51.54 22.45 8.17 9.83 1.06 249 A4 53.57 20.73 8.43 9.90 1.07 244 A5 56.88 17.83 8.86 9.96 1.10 238 B0 56.29 19.31 7.05 9.28 1.27 233 2500t/d 江山南方 B1 47.52 26.68 7.96 9.65 1.54 244 B2 50.08 25.96 7.98 9.44 0.98 238 B3 43.61 31.18 8.43 9.75 1.18 247 B4 56.25 16.88 9.12 10.12 1.75 255 C0 51.23 25.29 7.96 9.94 / 249 5000t/d 常山南方 C1 55.64 20.61 8.24 9.15 / 247 从表1熟料净浆流动度试验结果看: 江山南方5000t/d 和2500t/d 两条生产线熟料,其C 3A 含量从6.77%逐步增加至9.12%,C 3S 含量在43.61%至58.44%之间变动,检测熟料净浆流动度结果比较接近,熟料矿物组成与净浆流动度之间没有形成一定的规律性,与常山南方5000t/d 的熟料相比,其净浆流动度结果也未有明显差异。 3.2 水泥混合材料对净浆流动度的影响 3.2.1试验用材料 1)熟料:江山南方5000t/d 生产线生产的熟料; 2)矿渣:本地钢铁厂矿渣;

(整理)怎样调整外加剂与水泥的适应性

怎样调整外加剂与水泥的适应性 冯浩 摘要:本文提出一种外加剂与水泥适应性的系统试验方法,解析该方法六个实验步骤及相关注意。 关键字:外加剂水泥混凝土适应性 今天本人要与诸位探讨如何进行混凝土外加剂与水泥适应性试验的方法。 外加剂与水泥产生不适应的情况时有发生,尤其在使用泵送减水剂时发生更频繁。 不相适应的表现首先是新拌混凝土坍落度偏小,扩展度更小,可此时减水剂用量已经相当大了,通俗说法就是“打不开”;其次是坍落度损失大,有时甚至出现假凝,即在搅拌开始时水泥浆很稀,可是迅速发粘、变干,出机后混凝土和易性很差;其三是虽然坍落度和扩展度都不小,但是混凝土泌水、也有时滞后1—3小时泌水并且量大;还有时是砂浆包裹不住石子,发生离析但却并未伴大量泌水,如此这般。更有时新拌混凝土中未观察到明显不适应,可硬化后强度偏低。特定外加剂与特定的水泥发生不适应的原因可能来自三方面:水泥特性引起;混凝土组成材料、特别是其中的砂及掺合料引起;外加剂本身匹配不当所引起。究竟哪个是主要原因,就需要经过试验和分析,怎样调整到相适应,就必须进行实验。 于是、从何处着手开始试验,就摆到我们面前了。 第一步宜从检测打算使用的水泥PH值开始,也就是水泥的碱度。用PH试纸就可以完成这项工作,当然用PH计更好。可以用三份水溶解一份水泥,充分搅

拌后沉淀澄清,取清液一滴置于广泛PH试纸上,观察试纸背面变色程度以确定水泥的碱性。一般PH值应在12以上,但也有的普硅水泥只有9-10,个别还更低。试验结果让我们能初步判断:水泥中可溶性碱量大还是小;水泥中的混合材是否含偏酸性的材料或石粉类惰性材料使PH值偏低。 第二步是考察。考察的第一部分是要尽量设法取得该种水泥的熟料分析结果。水泥厂每班做一次熟料的萤光快速分析,每个月有一个平均值,虽然不可能写在水泥合格证上,但也不是一个保密资料。如果我们能得到近期任何一日的熟料分析结果也可以。根据分析的数据可以计算出水泥中的四种矿物:铝酸 三钙C 3A,铁铝酸四钙C 4 AF,硅酸三钙C 3 S和硅酸二钙C 2 S的数量。影响水泥适应 性的矿物是铝酸三钙、硅酸三钙和铁铝酸四钙。这些数据可以帮助我们选择缓凝剂的品种。另外根据熟料分析中的碱和硫含量数据,我们能计算出塑化度值SD,作为复配外加剂时要适当加硫酸盐还是加碱的参考依据。 虽然熟料分析单中的碱是总碱量而非单纯的可溶性碱量,但对我们快速认定SD值仍有重要的参考价值。而将水泥溶于水后,溶液的碱含量是包括混合材在内的可溶性碱含量,对我们调整适应性的试验可能更有意义。 考察的第二部分是了解熟料磨成水泥时加多少什么种类的混合材。这对分析诸如混凝土泌水,凝结时间异常(过长、过短)的成因都很有帮助。粉磨熟料时混合材只是矿渣(水渣)或粉煤灰,则出来的成品水泥对外加剂尤是缓凝剂的适应性好,但以水渣作混合材的水泥有时泌水,这是因水渣硬度大于熟料,不易磨得与熟料同样细的缘故。混合材是煤矸石、页岩灰、窑皮等火山灰质材时,成品水泥表现为吸附高效减水剂,后者掺量必须增加很多才能得到预计的混凝土坍落度,并且扩展度还达不到要求,往往用了“牺牲剂”的效果也不明显。粉磨时混合材有石灰石粉则成品水泥易产生泌水,粉磨前在水泥中加了存放时间久的陈旧

高效减水剂的作用及原理

高效减水剂的作用及原理 时间:2009-07-20 00:04来源:砼建外加剂网作者:砼建公司点击:151次 高效减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。与普通减水剂相比,减水及增强作用都较强。 高效减水剂的作用可以有效地减少了混凝土的的塌落度损失,改善混凝土的工作度,提高流动性,在高性能混凝土中发挥重要的作用,只是至今为止仍旧没有一个完美的理论来解释高效减水剂的作用机理,但有几个理论为大家普遍认同。 1)静电斥力理论 水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。高效减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。Zeta电位的绝对值越大,减水效果就越好。随着水泥的进一步水化,电性被中和,静电斥力随之降低,范德华力的作用变成主导,对于萘系、三聚氰胺系高效减水剂的混凝土,水泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。而对于氨基磺酸、多羧酸系高效减水剂,由于其与水泥的吸附模型不同,粒子间吸附层的作用力不用于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。 2)立体位阻效应 掺有高效减水剂的水泥浆中,高效减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。而氨基磺酸类高效减水剂分子在水泥微粒表面呈环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电位经时变化小,宏观表现为分散性更好,坍落度经时变化小。而多羧酸系接枝共聚物高效减水剂大分子在水泥颗粒表面的吸附状态多呈齿形。这种减水剂不但具有对水泥微粒极好的分散性而且能保持坍落度经时变化很小。原因有三:其一是由于接枝共聚物有大量羧基存在.具有一定的螫合能力,加之链的立体静电斥力构成对粒子问凝聚作用的阻碍;其二是因为在强碱性介质例如水泥浆体中,接枝共聚链逐渐断裂开,释放出羧酸分子,使上述第一个效应不断得以重视;其三是接枝共聚物Zeta电位绝对值比萘系和三聚氰胺系减水剂的低,因此要达到相同的分散状态时,所需要的电荷总量也不如萘系和三聚氰胺系减水剂那样多。对于有侧链的聚羧酸减水剂和氨基磺酸盐系高效减水剂,通过这种立体排斥力,能保持分散系统的稳定性。 3)润滑作用 高效减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡 与水泥颗粒问也因同电性相斥而类似在水泥微粒间加入许多微珠,亦起到润滑作用,提高流动性。 2 与水泥的适应性问题

西宁减水剂项目投资申报材料

西宁减水剂项目 投资申报材料 xxx有限公司

西宁减水剂项目投资申报材料说明 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工程中高效减水剂作为最主要的外加剂被大量运用;20世纪90年代,日本又研制出第三代高性能减水剂,聚羧酸系,相较第二代产品减水率更高、掺量更低,并且更加环保。 该聚羧酸减水剂项目计划总投资14056.39万元,其中:固定资产投资11891.13万元,占项目总投资的84.60%;流动资金2165.26万元,占项目总投资的15.40%。 达产年营业收入14450.00万元,总成本费用11513.17万元,税金及附加215.25万元,利润总额2936.83万元,利税总额3557.16万元,税后净利润2202.62万元,达产年纳税总额1354.54万元;达产年投资利润率20.89%,投资利税率25.31%,投资回报率15.67%,全部投资回收期7.88年,提供就业职位251个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安

全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生 的要求,保障职工的安全和健康。 ...... 报告主要内容:概论、建设背景及必要性、市场分析预测、项目建设 内容分析、项目选址、土建方案、工艺技术方案、项目环境影响分析、安 全生产经营、项目风险应对说明、节能、项目实施计划、项目投资估算、 项目经济效益可行性、项目总结、建议等。 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。

深圳减水剂项目实施方案

深圳减水剂项目实施方案 仅供参考

报告说明— 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。 该聚羧酸减水剂项目计划总投资9326.21万元,其中:固定资产投资6801.70万元,占项目总投资的72.93%;流动资金2524.51万元,占项目 总投资的27.07%。 达产年营业收入22391.00万元,总成本费用17040.96万元,税金及 附加183.05万元,利润总额5350.04万元,利税总额6271.03万元,税后 净利润4012.53万元,达产年纳税总额2258.50万元;达产年投资利润率57.37%,投资利税率67.24%,投资回报率43.02%,全部投资回收期3.82年,提供就业职位403个。 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单 体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓, 在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。

第一章概述 一、项目概况 (一)项目名称及背景 深圳减水剂项目 我国从2000年开始对聚羧酸减水剂的研究和应用,近年来得益于高铁事业的发展,聚羧酸减水剂应用得到飞速推广。随着高性能和低成本化的并行发展,目前聚羧酸减水剂逐渐从高铁、大坝、核电站等领域向民用领域推广。2011年聚羧酸减水剂产量仅为239.11万吨,到了2015年就达到了621.95万吨(按20%浓度计算)。与之相对的是萘系减水剂的境遇,尽管因为价格低廉而一直在民用市场保有市占率,但是萘系减水剂近年受到的环保压力大增。2015年萘系减水剂产量仅有180.62万吨,相比2013年的357.59万吨减少了接近一半。此消彼长之下,聚羧酸减水剂市占率从2007年的14.6%快速上升至2015年72.9%,而高效减水剂(以萘系减水剂为主)的市占率从2007年的79.3%下降至2015年的26.4%。 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工

外加剂与混凝土适应性

外加剂与混凝土适应性的分析研究 [摘要] 本文主要论述了在混凝土系统工程中外加剂的科学应用,针对水泥、外加剂,掺合料及混凝土配合比组成等诸方面因素,进行了系统性分析,从而 为合力解决外加剂适应性问题,提出了较为全面的思维方式。 [关键词] 水泥外加剂混凝土原材料质量水平配合比质量水平 张保 砼外加剂是用于改变水泥反应的进程和新拌与硬化砼的性能。 若要充分发挥外加剂的自身效应,就必须对外加剂—水泥的相互适 应性,以及砼施工过程中的综合技术特征进行研究。其中也包含了 对属于胶结材料体系里的矿物掺合料的合理使用。 外加剂对水泥、砼的适应性既有相同性又有不相同性。相同的是:水泥是砼的主要胶凝材料,如果某种水泥和某种外加剂相互适应,那么用该水泥和该外加剂配置成砼亦应该相互适应。所不同的是,砼中其它材料性质亦可能和外加剂性能发生违勃,比如骨料中 的含碱量过高,掺合料的化学成份等等。故前者是指外加剂和水泥 矿物组成的是否适应,后者是指外加剂和砼所有材料性质的是否适应,并延伸到砼的强度等级、流态指标、搅拌方式、运输距离、施 工方法以及施工环境等等。 外加剂对水泥、砼的适应性体现在各个方面。比如减水率、流 动度、泌水程度、凝结时间、塌落度损失、抗冻抗渗性能等等。这 诸多要素都和外加剂的品种,化学成份以及水泥的矿物组成,砼的

综合技术条件是息息相关的。如何平衡处理好这些因素,使其在予盾中统一,既要外加剂能达到理想的技术效应,又能够使砼获得应有的质量水平,应是砼外加剂应用研究的重点。 虽然外加剂对水泥、砼的适应性是多方面的,但按我国现在以商品砼、泵送砼为主要生产方法的工艺需求。外加剂对砼的适应性关键在于三个方面:即减水性能,粘聚程度和保塑能力。这三个问题不但是中国砼界高层研究人员所特别关注的,也是世界各国砼专家所予以关注的。从美国、加拿大和日本的研究成果来看,和我国同济大学的研究成果基本相一致。同济大学材料科学院和工程学院为摸清我国南方各省市诸多水泥品种和各种外加剂的适应性情况,以江苏、上海、浙江、广州、深圳等城市商品砼主要水泥品种和28种外加剂进行了研究性相关试验。试验研究结果证明,对外加剂—水泥—砼相互适应主要影响因素可归纳为以下几个方面: 一.外加剂方面的因素 1、奈系减水剂:生产奈系高效减水剂的主要原料—奈的来源、品位和纯度等对产品的性能有一定影响。奈系高效减水剂在生产过程中的磺化程度越高,则转变为带有磺酸基磺化物的奈环越多,该减水剂的分散作用也增强:水解越充分,则随后的缩聚反应越容易进行,减水剂品质越好。奈系高效减水剂分子的聚合度对其塑化效果有明显影响,一般奈系高效减水剂的聚合度为10左右较好。减水剂的状态也影响其对水泥的塑化效果,粉状减水剂的减水率约比液态减水剂低5%。 2、氨基磺酸盐高效减水剂:氨基磺酸盐高效减水剂作为新一代高性能减水剂,与传统的奈系高效减水剂和密胺系高效减水剂相比,不仅掺量低(0.2%~0.7%),而且塑化效果、控制塌落度损失能力

普通水泥与减水剂适应性差的原因分析及解决措施

普通水泥与减水剂适应性差的原因分析及解决措施 12 国道果子沟高速公路核心段———高架桥, 其混凝土设计泵送垂直高度215m, 泵送最长距离超过400m。使用A 厂生产的P·O32.5R 水泥, 在加入萘系高效减水剂后混凝土需水量大, 流动性差, 坍落度损失较大。在调整砂率及减水剂掺量等参数后, 效果均不明显,无法进行远距离混凝土泵送施工。 1 普通水泥与减水剂适应性问题的表现 A 厂对坍落度损失大的两批水泥进行试验, 混凝土配比见表1, 坍落度损失对比见表2。 从表2 可以看出: 采用现有水泥与混凝土配比,无法满足用户1h 坍落度>180mm 的要求。 2 适应性差的原因分析 2.1 水泥细度( 颗粒分布) 的影响 A 厂水泥磨为Ф3.0m×11m 闭路磨, 水泥颗粒分布0~3μm 含量在20%左右, 3~32μm 仅占30%左右,水泥颗粒分布不合理, 使水泥需水量大、水化速度偏快, 加剧了水

泥与减水剂的不适应性。造成这种现象的主要原因是由于磨机研磨体级配不是很合理, 存在部分过粉磨现象。 2.2 混合材种类的影响 A 厂使用的混合材主要是石灰石和煤矸石,煤矸石吸水性强, 与减水剂的适应性差, 从而影响水泥与减水剂的适应性。 2.3 熟料矿物成分的影响 A 厂是我公司2006 年底新投产的1 600t/d 新型干法生产线, 2007 年1~5 月熟料成分统计见表3。 从表3 中可以看出,2007 年1~5 月生产的熟料C3A 平均为8.6%, 其中5 月份C 3A 的含量平均达9.67%, 由于熟料中C3A 含量波动较大, 时高时低, 直接对水泥与减水剂适应性造成影响, 是造成混凝土坍落度损失大的主要原因。 3 解决措施 3.1 调整配料方案 根据熟料矿物与减水剂的相容性的大小顺序, 减少C3A 的含量。重新设计熟料的率值为: KH=0.91±0.02, n=2.5±0.1, P=1.0±0.1。原料从三组分配料改为四组分配料, 原料配比及熟料率值控制见表4。调整配料方案后熟料的化学成分、率值及矿物组成见表5。

四川减水剂项目实施方案

四川减水剂项目 实施方案 规划设计/投资方案/产业运营

报告说明— 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。 该聚羧酸减水剂项目计划总投资20002.76万元,其中:固定资产投资14316.56万元,占项目总投资的71.57%;流动资金5686.20万元,占项目 总投资的28.43%。 达产年营业收入48339.00万元,总成本费用37767.60万元,税金及 附加385.59万元,利润总额10571.40万元,利税总额12415.11万元,税 后净利润7928.55万元,达产年纳税总额4486.56万元;达产年投资利润 率52.85%,投资利税率62.07%,投资回报率39.64%,全部投资回收期 4.02年,提供就业职位713个。 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单 体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓, 在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。

第一章项目基本信息 一、项目概况 (一)项目名称及背景 四川减水剂项目 我国从2000年开始对聚羧酸减水剂的研究和应用,近年来得益于高铁事业的发展,聚羧酸减水剂应用得到飞速推广。随着高性能和低成本化的并行发展,目前聚羧酸减水剂逐渐从高铁、大坝、核电站等领域向民用领域推广。2011年聚羧酸减水剂产量仅为239.11万吨,到了2015年就达到了621.95万吨(按20%浓度计算)。与之相对的是萘系减水剂的境遇,尽管因为价格低廉而一直在民用市场保有市占率,但是萘系减水剂近年受到的环保压力大增。2015年萘系减水剂产量仅有180.62万吨,相比2013年的357.59万吨减少了接近一半。此消彼长之下,聚羧酸减水剂市占率从2007年的14.6%快速上升至2015年72.9%,而高效减水剂(以萘系减水剂为主)的市占率从2007年的79.3%下降至2015年的26.4%。 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工

相关主题
文本预览
相关文档 最新文档