水泥与减水剂相容性试验方法 ppt
- 格式:ppt
- 大小:141.00 KB
- 文档页数:3
利用不同方法检测水泥与减水剂相容性的研究王娟荣摘要:分析了水泥与高效减水剂相容性的影响因素,探讨了评价水泥与高效减水剂相容性的方法,分析了不同水灰比条件时评价方法的选择。
结果表明,水泥与高效减水剂相容性同时受水泥矿物成份含量和形态,以及高效减水剂对水泥流变性能作用的影响;检测低水灰比条件下水泥-高效减水剂相容性时宜采用测定净浆流动度的试验方法,检测大水灰比条件下水泥-高效减水剂相容性时宜采用测定水泥净浆流动时间的试验方法。
关键词:水泥;高效减水剂;相容性引言外加剂与水泥的适应性是影响混凝土工作性的重要因素。
外加剂与水泥适应性不好,可能是外加剂的原因,可能是水泥的原因,也可能是使用方法造成的,或是几种因素共同作用的结果。
目前,全国各地水泥生产企业多,材料来源广,水泥的矿化成分复杂,加之混合材品种多,外加剂用于不同品种水泥技术效果区别很大。
因此,外加剂和水泥的适应性成为长期以来困扰施工人员的技术难题。
1水泥与减水剂相容性的影响因素在实际混凝土工程应用中,要解决好水泥和高效减水剂的相容性问题,首先要了解水泥与高效减水剂相容性理论上的影响因素,才能根据这些理论因素更合理地选择水泥品种及高效减水剂。
相关研究表明,熟料矿物组成对水泥与高效减水剂的相容性有重要影响,其中C3A的影响最大,其次为C4AF。
C3A含量越高,则水泥与高效减水剂的相容性就越差,反之,则相容性就越好,指出在探寻水泥与高效减水剂的相容性的内在影响因素时,应综合考虑矿物含量和形态(包括矿物析晶程度和固溶情况)。
对水泥与萘系减水剂的相容性研究表明,水泥熟料矿物中含铝相的多少、总碱量、细度及硫酸钙的形态与掺量都影响到高效减水剂的相容性。
水泥中含铝相C3A、C4AF含量越低,水泥-萘系减水剂的相容性就越好,并得出上文一致的结论:C3A的影响比C4AF大得多。
因为C3A的水化速度比C4AF快,高效减水剂优先吸附于C3A或初期水化产物的表面。
当水泥很细时,C3A水化速度就更快,就会在早期吸附更多的高效减水剂,从而减少了游离减水剂的含量,降低了分散作用。
关于水泥与减水剂的相容性,发改委于2008年颁布并实施了行业标准JC/T1083《水泥与减水剂相容性试验方法》,使水泥行业对水泥与减水剂相容性的检验、评价有了标准依据。
我国水泥厂重视和控制水泥流变性能的历史较短,对水泥流变性的研究处于初级阶段。
修订与颁布《水泥与减水剂相容性试验方法》标准时,国内减水剂市场还是蔡系减水剂的天下,现在减水剂市场呈多元化状态,聚竣酸系减水剂成为市场主角。
减水剂市场的变化使得《水泥与减水剂相容性试验方法》在某些方面存在滞后的情况。
1水泥与减水剂相容性的现象特征关于水泥与减水剂相容性的现象特征,《水泥与减水剂相容性试验方法》对水泥与减水剂相容性的定义包含了初始流动性、流动性经时损失和减水剂用量三个要素。
实际上,在饱和掺量(或接近饱和掺量,下同)下的保水性也是水泥与减水剂相容性的一个重要方面。
要全面表征水泥与减水剂相容性,至少应包括以下指标:减水剂的饱和掺量、减水剂推荐掺量下的净浆初始流动度、减水剂推荐掺量下的净浆60min(30min)经时流动度、一定减水剂掺量下净浆的保水性。
《水泥与减水剂相容性试验方法》中定义的水泥与减水剂相容性未包含保水性,也未包含保水性检验方法。
某些减水剂和水泥虽然可以得到很大的净浆流动度,但如果已经产生明显泌水,则净浆流动度再大也是没有应用意义的。
上述表征水泥与减水剂相容性的指标,对应着混凝土性能的不同方面,全部被水泥的使用者所关注。
水泥厂对水泥与减水剂相容性的控制,应该至少包括上述4项指标。
水泥与减水剂相容性良好,应包括以下现象特征:饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。
上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。
某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。
问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措施也不同。
减水剂的饱和掺量是随减水剂掺量增加、净浆初始流动度不再明显增加的掺量,也可以是经时流动度损失不再明显减小的掺量。
DB53/T XXXXX—202030附录A(资料性附录)混凝土减水剂密度、与水泥相容性快速测定方法A.1试验材料、仪器A.1.1试验材料本方法所使用的材料为实际工程所用的水泥、减水剂、细集料和水,对各种材料的要求如下:a)测试前水泥、减水剂、细集料和水应提前放置在A.2要求的环境中直至恒温;b)细集料性能应满足本标准规定的连续级配以及有害物质含量要求;c)减水剂密度测试时应保证其温度为(20±1)℃,如有沉淀应滤去。
A.1.2仪器仪器要求如下:a)波美比重计,量程1.000 g/cm3~2.000 g/cm3,1支,精度为0.001 g/cm3;b)精密密度计,量程分别为1.000 g/cm3~1.100 g/cm3、1.100 g/cm3~1.200 g/cm3、1.200 g/cm3~1.300 g/cm3、1.300 g/cm3~1.400 g/cm3、1.400 g/cm3~1.500 g/cm3各1支,精度为0.001 g/cm3;c)超级恒温器或同等条件的恒温设备;d)水泥净浆搅拌机,其性能参数应符合《水泥净浆搅拌机》JC/T729的要求;e)净浆流动度试模,为深60 mm、顶内径Ф36 mm、底内径Ф60 mm的截顶圆锥体。
试模由耐腐蚀的、有足够硬度的、内壁光滑无暗缝的金属制成;f)玻璃板,边长为400 mm、厚度5 mm的平板玻璃,稠度试验每个试模应配备一个边长或直径约100 mm、厚度4 mm~5 mm的平板玻璃底板;g)刮刀;h)直尺,量程300 mm,分度值1 mm;i)天平,量程100 g,分度值0.01 g;量程1000 g,分度值1 g;j)烧杯,容量400 mL;k)量筒,容量250 mL,分度值1 mL;l)抹刀。
A.2环境条件A.2.1试验室的温度应保持在(20±2)℃,相对湿度应不低于50 %。
A.2.2水泥试样、拌合水、仪器和用具的温度应与试验室一致。
《水泥与减水剂相容性试验方法》行业标准介绍0 引言为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水泥的使用。
这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。
同时, 当出现相容性问题时, 没有评判依据。
为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。
经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。
为了便于标准的实施, 现将该标准简要介绍如下。
1 关于标准中相容性术语问题综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。
根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。
当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。
因此, 两者的关系应该叫相容性, 而非适应性。
2 关于水泥与减水剂相容性的定义问题什么叫水泥与减水剂相容性, 至今没有一个明确的定义。
许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。
因此, 从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。
水泥与多种减水剂的相容性摘要:使用日本的净浆流动度检验方法T 法流动度,对10 种高效减水剂与5 种水泥之间的相容性进行了交叉试验,旨在考察水泥与高效减水剂的相容性结果是否具有统计学的规律。
结果显示,在本试验抽取样品范围内,无论是多个高效减水剂对水泥的相容性,还是多个水泥对高效减水剂的相容性,均具有很好的一致性,即相容性较差的高效减水剂对所有水泥的相容性均相对较差;相容性较差的水泥对所有高效减水剂的相容性均相对较差。
0 引言随着商品混凝土技术的发展,高效减水剂在商品混凝土中的应用越来越广泛。
水泥与高效减水剂的相容性是水泥生产厂家十分关注的问题,对此已有许多研究[1~7]。
以往的研究所使用的高效减水剂和水泥样品的数量十分有限,无法判断某种水泥对多种高效减水剂和某种高效减水剂对多种水泥的相容性。
本文选取了 5 个水泥样品和10 个高效减水剂样品,对水泥与多种高效减水剂的相容性进行了交叉试验,以期得到一些令人关注的具有统计学意义的结果。
1 试验材料及方法1.1 试验材料水泥:在华北、东北地区的市场上抽取4 个大型预分解窑水泥厂生产的硅酸盐水泥和普通硅酸盐水泥样品,和1 个符合GB/T 80772000 要求的基准水泥。
化学成分见表1,物理性能见表2。
水泥1、水泥3 为PⅡ42.5R 水泥,水泥2、水泥4 为PO 42.5R 水泥,水泥5 为基准水泥。
高效减水剂:在华北、东北地区的预拌商品混凝土商砼站抽取了 4 个高效减水剂样品;中国外加剂协会提供3 个样品;外加剂生产厂家提供2 个样品;1 个日本花王公司高效减水剂( 萘系) 样品,是日本用于进行水泥与高效减水剂相容性试验的基准减水剂。
所用高效减水剂样品均为液体。
编号JP 为日本基准高效减水剂,编号1、2、6 为聚羧酸高效减水剂,编号3、4、5、7 为萘系高效减水剂,编号8 为氨基磺酸盐高效减水剂,编号9 为三聚氰胺高效减水剂。
1.2 试验方法目前国内评价高效减水剂与水泥的相容性较多采用GB/T80772000《商品混凝土外加剂匀质性试验方法》中规定的水泥净浆流动度法。
浅谈水泥与高效减水剂的相容性作者:唐佳来源:《建材发展导向》2013年第01期摘要:本文以水泥为材料进行多种实验,证实水泥与减水剂之间的相容性关系。
关键词:水泥;高效减水剂;相容性高效减水剂与水泥相容性的试验方法在我国已广泛应用,然而在实际应用中,并不是所有的减水剂与水泥都具有很好的相容性。
因此,在实际工程使用减水剂时了解减水剂与水泥的相容性是很必要的。
1、相容性试验方法及原材料水泥与高效减水剂相容性的检测,最终都是要通过检验新拌混凝土的流动性能来进行的。
目前常用的研究方法有微型塌落度筒法及Marsh筒法。
1.1 实验材料减水剂采用某外加剂厂生产的萘系高效减水剂,少数为羧酸系减水剂,水泥净浆水灰比固定为0.35,萘系高效减水剂的掺量固定为1.0%。
1.2 实验方法按GB/T8077-2000《混凝土外加剂匀质性试验方法》中规定的水泥净浆流动度试验方法进行。
用水泥净浆流动度作为评价相容性的宏观指标。
本试验综合微型塌落度仪法以及Marsh筒法来检测水泥与高效减水剂的相容性。
在高效减水剂的推广应用中,发现减水剂的减水功能与水泥的品种有关,即使是同一品牌、同一品种的水泥,减水剂的减水效果也会出现差异。
2、试验结果与讨论在评价水泥与高效减水剂相容性的时候,有必要将两种方法结合起来,才能做出较全面的评价。
但是,水泥与高效减水剂之间存在相容性问题,相容性不好,不仅会影响高效减水剂的减水率,更重要的是会造成混凝土严重的坍落度损失,使混凝土拌和物不能正常地运输与浇筑施工,降低混凝土强度。
2.1 两种方法试验结果存在的差异①基于的原理是不同的。
Marsh筒法是由加拿大Sherbrooke大学提出。
Marsh筒法是基于筒内水泥净浆在重力的剪切作用下往下流动,其流动的快慢与水泥净浆的表观粘度有关,表观粘度越大,流动越慢,Marsh时间就越长;微型塌落度仪法是基于水泥净浆在重力的作用下,自然摊平而流动开来的情况,反映的是重力在流动方向上的分力(相当于剪切应力)与水泥净浆的屈服应力之间的关系。
水泥与减水剂的相容性分析关键词:水泥;减水剂;相容性;分析1、引言高效减水剂可以改善新拌混凝土的工作性能,提高硬化混凝土的物理力學性能与耐久性,同时可以节约水泥,改善施工条件,提高施工效率。
高效减水剂已成为混凝土工程建设中重要的外加剂之一,尤其在高强高性能混凝土中应用甚为广泛。
专家学者一直致力于探讨利用便捷的方法评价水泥与减水剂相容性研究[1-2]。
清华大学覃维祖[3]采用微型坍落度仪测定净浆流动度的试验方法进行低水灰比条件下水泥-高效减水剂相容性的检测,得到水泥-高效减水剂体系相容性较好的点。
减水剂被广泛应用于建筑工程施工中,在施工过程中起到无法比拟的作用,学生在课程中已学习了各种外加剂的相关理论知识,为加强学生对减水剂的深刻理解,强化理论知识与实践的联系,本实验研究分析水泥与减水剂的相容性。
学生通过查阅文献等共需设置三种实验情境,三种不同品种的水泥均添加同一种减水剂,测得饱和点时减水剂的添加量,对实验结果分析比较得出结论,分析不同种类水泥与减水剂的相容性。
本项目的开展能激发学生的学习热情,有利于理论与实践的结合,对学生综合素质和能力的提高均有一定作用。
以期培养学生分析问题、查阅文献、实验设计和科研能力,同时使学生懂得独立思考、动手实践、创新创业和团队协作的重要性,培养高素质技能型专业人才。
2、实验目的通过该实验使学生熟悉《混凝土外加剂应用技术规范》GB50119-2013的标准、规范与技术要求,对减水剂材料的性状有进一步的了解,研究胶凝材料与减水剂相容性质的分析,巩固与丰富理论知识;使学生掌握基本实验方法、手段和操作技能,学会正确使用各种仪器和实验设备,具有对常用土木工程材料独立进行质量检测的能力;进行科学研究的基本训练,掌握处理实验数据的科学方法,培养学生运用所学理论进行科学研究、分析问题和解决问题的能力,树立实事求是的科学态度和严谨的工作作风;通过理论与实践的结合,巩固和加深对所学基本原理的理解,并在该方面得到充实和提高,培养学生的工程实践能力和创新能力。
济南大学硕士学位论文减水剂、水泥及掺合料相容性研究姓名:张鸣申请学位级别:硕士专业:材料学指导教师:刘福田;张德成20060510济南大学硕士学位论文摘要近年来,随着外加剂和水泥品种的不断增多以及高性能混凝土技术发展的需要,外加剂、与水泥及掺合料相容性问题变得日趋重要。
本文根据流变学原理,研究了水泥的主要矿物组成、细度及掺合料性能等几个方面的因素对相容性的影响。
采用减水剂饱和点掺量、水泥净浆流动度、流动度经时损失、净浆3llr常压泌水率和硬化浆体的力学性能作为宏观评价指标,根据水泥/掺合料浆体的zeta电位和减水剂的吸附量等参数,对影响减水剂与水泥及掺合料相容性的原因进行了探讨,提出了一些解决相容性问题的方法,研究了相容性的差异对混凝土性能的影响,最后综合以上评价指标,提出了相容性的定量评价方法。
研究表明:水泥中硫铝酸盐矿物的水化速度快,对减水剂的吸附量大,其含量增加,减水剂与水泥的相容性降低:水泥中C。
S的含量的增加有利于改善减水剂与水泥的相容性;水泥比表面积的提高和微细颗粒含量的增大,使减水剂的饱和点掺量提高、水泥浆体的流动性损失加快;净浆的泌水率减小,各龄期抗压强度增加。
矿渣与粉煤灰的掺量和细度变化对减水剂的饱和点掺量影响不大,但对水泥浆体的流动性及流动性保持效果有明显的影响,掺量的增大,减水剂的分散效果增强,流动度经时损失减小,抗压强度降低,泌水率增加,细度越细,减水剂的分散效果略有减小,但对流动性的保持效果越好;沸石粉掺量增大、细度变细会增大减水剂的饱和点掺量,浆体的流变性变差,浆体抗压强度降低,但对改善浆体的板结、泌水非常有利。
掺合料的辅助减水作用主要有三种效应:有效吸附表面积降低;颗粒堆积密度增加;颗粒球形度提高。
相容性的好坏对新拌混凝土的早期流变性能、后期的宏观结构和性能、微观结构和性能影响很大,良好的相容性是制备高性能混凝土的基础。
把减水剂的饱和点掺量、水泥净浆流动度、流动度经时损失、及净浆3llr常压泌水率作为宏观评价指标,建立了减水剂与水泥相容性定量评价方法的数学模型;通过分析验证,该评价方法简便、快捷,具有良好的数学拟合性;并据此提出了相容程度这一概念。